流变相法制备Li_4Ti_5O_(12)材料及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对Li_4Ti_5O_(12)材料电子导电性比较低,且作为负极来说,其充放电电压相对较高的缺点,本文采用流变相法合成了Li_4Ti_5O_(12)负极材料,通过SEM、TEM等测试考察并优化了合成工艺、碳源、掺杂比例和金属离子的掺杂对Li_4Ti_5O_(12)材料性能的影响。
     首先,考察了Li_4Ti_5O_(12)材料的液相合成方式,通过与溶胶-凝胶法相比,流变相法的操作周期更短,制备的粒子更小,电化学性能也最好。然后研究了流变相法烧结气氛、烧结时间和烧结温度等工艺条件对材料性能的影响。结果表明,以流变相法制备的材料,在氩气的烧结气氛下,烧结温度为700℃,烧结时间为6 h,钛酸四丁酯与无水乙醇的体积比为1:5,能制备出纯相的尖晶石结构的Li_4Ti_5O_(12)材料,首次充电比容量为159 mAh·g~(-1)(1C)和133 mAh·g~(-1)(5C),循环20次后,材料的容量保持率为98%和89%。
     其次,研究了碳源的加入对Li_4Ti_5O_(12)材料在高倍率下充放电的性能影响。结果表明,包覆碳能极大的改善材料的循环性能,且均能减小Li_4Ti_5O_(12)/C复合材料的颗粒粒径。以葡萄糖为碳源时,加入量为5mass%时,此条件下合成的Li_4Ti_5O_(12)复合材料性能最佳。当以蔗糖为碳源时,最佳加入量为6mass%。当以超细石墨为碳源时,由于有杂质生成,超细石墨没有提高材料的容量,但是提高了材料的容量保持率。当以PEG为碳源时,12mass%含量的PEG性能最好。PEG能均匀的包覆在Li_4Ti_5O_(12)/C复合材料表面。材料的首次充电容量能达到166 mAh·g~(-1)(1C)和156 mAh·g~(-1)(5C)。20次循环的容量保持率为100%和98%。经历了大倍率充放电后,容量能恢复到161 mAh·g~(-1),为1C充放电的96%。
     最后,为了降低材料的相对电压,掺杂了金属Cr。掺杂Cr能很好的提高材料的容量和容量保持率。当掺杂量为0.2时,材料有最好的容量和循环性能。相对锂离子电压降低了0.4V。材料的首次充电容量为164 mAh·g~(-1)(1 C)和157 mAh·g~(-1)(5C)。20次循环的容量保持率为100%和99%。经历了大倍率充放电后,容量能恢复到1C充放电的99%。当放电倍率为20C,此时容量能达到163 mAh·g~(-1)。
     总之,包覆碳和掺杂金属离子均能提高材料的电子导电性,掺入Cr后明显的降低了材料的电压。
To overcome the defect of poor electronic conductivity of Li_4Ti_5O_(12) and its high relatively potential, this paper used a new route-rheological phase method to synthesis Li_4Ti_5O_(12) cathode material. Through the test of SEM、TEM and BTS,to check the effect of synthesis technology,carbon source and metallic ion doping.
     Firstly, the synthesis manners between rheogical phase methode and sol-gel method were compared.The sol-gel methode’s complexing agent is triethanolanmine.From the test, the rheological phase method has shorter operating time, smaller particle and better electrochemical properties.
     Then, researched the effect of sintering atmosphere,sintering time and sintering temperature and so on to the ptoperties of material.The result shoes that ,the material made by rheological pgase method,when its sintering temperature is 700℃, sintering time is 6h,the volume rate of tetrabutyl titanate and ethanol is 1:5, the pure spinel phase Li_4Ti_5O_(12) materials can be prepared.The first charge and capacity is 159 mAh·g-1(1C) and 133 mAh·g~(-1)(5C). After 20 cycles, the material capacity can maintain 98% and 89%.
     Then, the effect of the addition of carbon source on Li_4Ti_5O_(12) material at high charge and discharge rate is researched. The results shows that, carbon coating can greatly improve the cycling performance and can reduce the particle size of the Li_4Ti_5O_(12)/C composite material. When using glucose as carbon source, and the best amount is 5mass%, under these conditions, the best performance of Li_4Ti_5O_(12)/C composite material can be synthesized. When using sucrose as the carbon source and the best addition quantity is 6mass%. When the carbon source is nano graphite, because of impurity generation, the Li_4Ti_5O_(12)/C composite material didn’t increase the capacity, but improved the capacity retention rate of material. When the addition amount is 6mass%, the composite material with the best performance can be synthesised. As with PEG as the carbon source, the 12mass% PEG content has the best performance. PEG can be uniformly coated in Li_4Ti_5O_(12)/C composite material surface. The first charge capacity can reach 166 mAh·g~(-1)(1C) and 156 mAh·g~(-1)(5C). After 20 cycles, the loop retention rate is 100% and 98%. Through high rate charge and discharge, the capacity can restore to 161 mAh·g~(-1)(1C).
     Finally, in order to reduce the relative voltage of the material, metal ion Cr is doped. Cr-doping can improve the material’s capacity and its loop retention. When the doping content is 0.2, the material has the best capacity and cycling performance. The potential vs. Li~+/Li is 0.4V lower than the materiasl is 164 mAh·g~(-1)(1C) and 157mAh·g~(-1)(5C). After 20 cycles, the loop retention is 100% and 99%. Experinced large rate of charge and diacharge, the capacity of doping-Cr composite material can restore to 99% of the 1C capcacity. The limite rate is 20C, this point the first capacity can reach 128 mAh·g~(-1)and the capacity conservation rate is 75%.
     In short, carbon coated and metal ion doped can enhance the electronic conductivity of the material. Doping Cr can significantly the potential of the material vs. Li+/Li.
引文
1施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展.化学进展, 2005,17(4): 604~613
    2李景虹.先进电池材料.北京:化学工业出版社, 2004, 219~297
    3 D. W. Murphy, J. Broodhead, B. C. Steel. Materials for Advanced Batteries. NewYork: PlenumPress, 1980: 145
    4吴宇平,万春荣,姜长印等.锂离子二次电池.北京:化学工业出版社. 2002, 2~5
    5杨军,解晶莹,王久林.化学电源测试原理与技术.北京:化学工业出版社, 2006, 2~3
    6 K. Xu. Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries. Chem.Rev, 2004, 104(10): 4303~4417
    7胡信国.动力电池技术与应用.北京:化学工业出版社,2009, 123~124
    8何祚庥.中国城市交通未来展望.中国电力企业管理. 2002. 11
    9 M. S. Whittingham. Lithium Batteries and Cathode Materials. Chem.Rev. 2004, 104(10): 4271~4301
    10黄可龙,王兆翔,刘素琴等.锂离子电池原理与关键技术.化学工业出版社. 2007, 6-11
    11 H. Yang, S. Amiruddin, H. J. Bang, et al. A Review of Li-ion Cell Chemistries and Their Potential Use in Hybrid Electric Vehicles. J. Ind.Eng.Chem. 2006, 12(1): 12~38
    12 I. Nakai, K. Takahascon, L. C. Klein. In Situ XAFS Study of the Electrochemical Deintercalation of Li from Li1-xMn2-yCryO4 (y =1/9, 1/6, 1/3). J. Power Sources. 2001, 97-98: 412~414
    13 W. S. Yoon, Y. K.Chung, K. W. Nam, et al. Characterization of LiMn2O4 Coated LiCoO2 Film Electrode Prepared by Electrostatic Spray Deposition J. Power Sources. 2006, 163(1): 207~210
    14 E. V. Makhonina, Y. V. Shatilo, V. S. Dubasova, et al. Surface-modified Cathode Materials Bassed on an LiCoO2-LiMn2O4 Composite. Inorg. Mater. 2009. 8(45): 935~941
    15 M. Nasir Khan, J. Bashir. Synthesis and Structural Refinement of LiAlxCo1-xO2 System. Materials Research Bulletin. 2006, 41(9): 1589~1595
    16杨箫,倪江锋,黄友元等.钛掺杂对不同形貌LiCoO2电化学性能影响.物理化学学报. 2006, 22(2): 183~188
    17 L. Predoanǎ, A. Barǎu, M. Zaharescu, et al. Electrochemical Properties of the LiCoO2 Powder Obtained by Sol-gel Method. J. European Ceramic Society. 2007, 27(2-3): 117~1142
    18陶颖,陈振华,祝宝军.水热电化学法制备LiCoO2薄膜和粉末.材料科学与工程学报. 2005, 23(2): 177~180
    19 S. M. Lala, L. A. Montoro, J. M. Rosolen. LiCoO2 Sub-microns Particles Obtained from Micro-precipitation in Molten Stearic Acid. J. Power Sources. 2003, 124(1): 118~123
    20 K. Konstantinov, G. X. Wang, J. Yao, et al. Stoichiometry-controlled High-Performance LiCoO2 Electrode Materials Prepared by a Spray Solution Technique. J. Power Sources, 2003, 119~121:195~200
    21王云霞,郎晓珍,常宏涛等.微波合成法制备锂离子电池正极材料LiCoO2.材料与冶金学报. 2003, 2(3): 200~202
    22高德淑,苏光耀,肖启振等.锂离子电池正极材料LiNiO2的研究进展.电池工业. 2004, 9(6): 300~304
    23叶乃清,刘长久,沈上越.锂离子正极材料LiNiO2存在的问题与解决办法.无机材料学报, 2004, 19(6): 1217~1224
    24 Y. Z. Sun, P. Y. Wan, J. Q. Pan, et al. Low Temperature Synthesis of Layered LiNiO2 Cathode Material in Air Atmosphere by Ion Exchange Reaction, Solid State Ionics, 2006, 177(13~14): 1173~1177
    25 P. Piszora, J. Darul, W. Nowicki, E. Wolska. Synchrotron X-ray Powder Diffraction Studies on the Phase Transitions in LiMn2O4. J. Alloys. Compd. 2004, 362(1~2): 231~235
    26 T. Kakuda, K. Uematsu, K. Toda, et al. Electrochemical Performace of Al-doped LiMn2O4 Prepared by Different Methods in Solid-state Reaction. J. Power Sources, 2007, 167(2): 499~503
    27 C. H. Jiang, S. X. Dou, H. K. Liu, et al, Synthesis of Spinel LiMn2O4 Nanoparticles through One-step Hydrothermal Reaction. J. Power Sources. 2007, 172(1): 410~415
    28 M. W. Raja, S. Mahanty, P. Ghosh, et al. Alanine-assisted Low-Temperature Combustion Synthesis of Nanocrystalline LiMn2O4 for Lithium-ion Batteries. Materials Research Bulletin. 2007, 42(8): 1499~1506
    29 H. W. Chan, J. G. Duh, S. R. Sheen, Microstructure and Electrochemical Properties of LBO-coated Li-excess Li1+xMnO2 Cathode Material at Elevated Temperature for Li-ion battery, Electrochim. Acta, 2006, 51(18): 3645~3651
    30 B. L. He, W. J. Zhou, S. J. Bao, et al, Preparation and Electrochemical Propertiesof LiMn2O4 by the Microwave-assisted Theological Phase Method. Electrochim. Acta. 2007, 52(9): 3286~3293
    31 H. C. Wu, Z. Z. Guo, H. P. Wen, et al. Study the Fading Mechanism of LiMn2O4 Battery with Spherical and Flake Type Graphite as Anode Materials. J. Power Sources, 2005, 146(1~2): 736~740
    32 N. Yabuuchi, T. Ohzuku, Electrochemical Behaviors of LiCo 1/3Ni1/3Mn1/3O2 in Lithium Batteries at Elevated Temperatures. J. Power Sources, 2005, 146(1~2): 636~639
    33 F. Yu, J. J. Zhang, et al. Crystal Structure and Electrochemical Performance of Lithium Ion Battery Cathode Materials. Progress in Chemistry. 2010, 22(1): 9~18.
    34 C. Yu, S. B. Yang, et al. Research Progress on Modification of Lithium Iron Phosphate Used as Cathode for Lithium Ion Batteries. New Chemical Materials. 2009, 37: 12~14
    35吴宇平,戴晓兵,马军旗等.锂离子电池——应用与实践.化学工业出版社. 2004, 7-9
    36 W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins. A Room Temperature Study of the Binary Lithium–silicon and the Ternary Lithium–chromium–silicon System for Use in Rechargeable Lithium Batteries. J. Power Sources, 1999, 81~82: 237~242
    37 J. J. Huang, Z. Y. Jiang. The Preparation and Characterization of Li4Ti5O12/carbon nano-tubes for Lithium Ion Battery. Electrochim. Acta. 2008, 53: 756~7759
    38 H. Q. Gao, H. Q. Wang, Q. Y. Li, Development of Super High Capacity Negative Electrode Materials for Lithium Ion Batteries. Mining and Metallurgical Engineering, 2005(25): 57~61
    39 M. Winter, J. O. Besenhard, Electrochemical Lithiation of Tin and Tin-based Inter Metallics and Composites. Electrochim.Acta, 1999, 45(1~2):31~50
    40 J. O. Besenhard, J. Yang, M. Winter, Will Advanced Lithium-alloy Anodes have a Chance in Lithium-ion Batteries. J. Power Sources, 1997, 68(1): 87~89
    41 J. Yang, Y. Takeda, Imanishi N, et al. Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries.J. Electrochem. Soc. 1999, 146: 4009~4013
    42 Y. Liu, J. Y. Xie, J. Yang. Morphology-stable Alloy/C Composites for Lithium Insertion. J.Power Sources, 2003, 119~121:572~575
    43吴国良.锂离子电池负极材料的现状与发展.电池, 2001, 31(2):54~57
    44杨春芳,翟秀静,张爱梨等,锂离子电池负极材料锡基氧化物的研究,黄金学报. 2001, 3(3): 180~183
    45 E. Ferg, R. J. Gummow, A. Dekoek, et al. Akinetict Two-phase and EquilibriumSolid Solutionin Spinel Li4+xTi5O12. Adv. Mater. 2006, 18(23): 3169~3173
    46 T. Ohzuku, A. Ueda, N. Yamamoto, et al. Zero-strain Insertion Material Li[Li1/3Ti5/3]O4 or Rechargrable Lithium Cells. J. Electrochem. Soc. 1995, 142(5): 1431~1435
    47高剑,姜长印,应皆容等,锂离子电池负极材料钛酸锂的研究进展,电池, 2005, 35(5): 390~392
    48 S. I. Pyun., S. W. Kim, Lithium Transport through Li1+y[Ti2-yLiy]O4(y=0;1/3) Electrodes by Analyzing Current Transients Upon Large Potential Steps. J. Power Sources, 1999, 81~82:248~254
    49 T. Yuan, K. Wang, et al. Cellulose-assisted Combustion Synthesis of Li4Ti5O12 Adopting Anatase TiO2 Solid as Raw Material with High Electrochemical Performance. J. Alloys. Compd. 2009, 477(1-2): 665~672
    50 M. M. Rahman, J. Z. Wang, et al. Basic Molten Salt Process-A New Rroute for Synthesis of Nancrystalline Li4Ti5O12–TiO2 Anode Material for Li-ion Batteries Using Eutectic Mixture of LiNO3–LiOH–Li2O2. J. Power Sources. 2010, 195(13): 4297~4303
    51 G. F. Yan, H. S. Fang, H. J. Zhao, et al. Ball Milling-assisted Sol–gel Route to Li4Ti5O12 and Its Electrochemical Properties. J. Alloys. Compd. 2009,470(1~2):544~547
    52 N. A. Alias, M. Z. Kufian, L. P. Teo, et al. Synthesis and Characterization of Li4Ti5O12. J. Alloys. Compd. 2009, 486(1~2): 645~648
    53 S. H. Huang, Z. Y. Wen, X. J. Zhu, et al. Preparation and Electrochemical Performance of Ag Doped Li4Ti5O12, Electrochem. Commun. 2004, 6: 1093~1097
    54 S. Z. Ji, J. Y. Zhang, W. W. Wang, et al. Preparation and Effects of Mg-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery.Mater. Chem. Phys. In Press. doi:10.1016/j.matchemphys.2010.05.006
    55 Y. L. Qi, Y. D. Huang, D. Z. Jia, et al. Preparation and Characterization of Novel Spinel Li4Ti5O12?xBrx Anode Materials. Electrochim. Acta. 2009, 54(21): 4772~4776
    56 T. F. Yi, J. Shu, Y. R. Zhu, et al. High-performance Li4Ti5?xVxO12 (0≤x≤0.3) as an Anode Material for Secondary Lithium-ion Battery. Electrochim. Acta. 2009, 54(28): 7464~7470
    57 X. Li, M. Z. Qu, Z. L. Yu. Structural and Electrochemical Performances of Li4Ti5?xZrxO12 as Anode Material for Lithium-Ion Batteries. Journal of Alloys. Compd. 2009, 487(1~2): L12~L17
    58 L. X. Yang, L. J. Gao. Li4Ti5O12/C Composite Electrode Material Synthesized Involving Conductive Carbon Precursor for Li-ion Battery. J. Alloys. Compd. 2009, 485(1~2): 93~97
    59 X. Li, M. Z. Qu, Y. J. Huai, et al. Preparation and Electrochemical Performance of Li4Ti5O12/Carbon/Carbon Nano-Tubes for Lithium Ion Battery. Electrochim. Acta. 2010, 55(8): 2978~2982
    60 S. C. Yin, H. Grondey, P. Strobel. et al. Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3. J. Am. Chem. Soc. 2003, 125(34): 10402~10411
    61赖春艳,李慧,李蔚萍.流变相法制备LiFe1-xMgxPO4/C正极材料.海电力学报. 2010, 26 (1): 50~52
    62刘粤惠,刘平安. X射线衍射分析原理与应用.北京:化学工业出版社. 2003: 200~220
    63 T.-K. F. George, T. L. Lu. Morphological Characterization of LiFePO4/C Composite Cathode Materials Synthesized Via a Carboxylic Acid Route. J. Power Source. 2008, 178(2): 807~814
    64罗文斌.锂离子电池正极材料LiFePO4的合成与改性研究.中南大学硕士学位论文. 2005: 45~46
    65 L. Z. Xiong, Q. Z. He. Wet Method PreParation and Characterzation of Li4Ti5O12/Graphite Composite. The Chinese Journal of Nonferrous Metals.2008.18:36~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700