水稻种子的脱水和贮藏耐性及其生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要探讨了常规水稻ZR02的种子和杂交水稻株1 S/ZR02和金23A/ZR02的种子在发育过程中的生物学性状变化,采用硅胶脱水(快干)和室内自然风干(慢干)对种子进行脱水处理,通过测定脱水前后种子的萌发率、简化活力指数、电解质渗漏率、可溶性蛋白、可溶性糖、SOD酶等的变化,比较了它们的脱水耐性形成的规律和差异、在不同含水量状态下贮藏(硅胶干燥贮藏和室内开放贮藏)一段时间后两类种子抗老化能力的差异及其生理机制。
     结果表明,常规水稻ZR02与杂交水稻株1 S/ZR02和金23A/ZR02的种子从开花至成熟的全生长期均约17 d,随发育过程的进行,颖果的颜色从绿色→黄绿色→黄色转变。种子含水量在发育过程中呈现相似的规律性下降变化,5 DAA-9 DAA是其快速下降期,此后下降速率明显放缓,三个品种的种子在发育过程中鲜重和干重的变化较为一致,5 DAA-13 DAA是其快速增长期,至17 DAA时趋于恒定。因此种子采收不宜早于17 DAA。
     三个水稻的7 DAA种子开始有萌发能力,此后随发育进程其萌发能力逐渐升高。不同发育时期新鲜种子的萌发率相对较低,无论快干还是慢干至含水量0.11 g H2O·g-1DW时,其萌发能力明显提高;同一发育时期的种子(特别是发育前期成熟度不高的种子)慢干和快干至相同含水量时,慢干更有利于提高种子的萌发能力。
     三个水稻的成熟种子快干和慢干至平衡含水量(分别为0.04 gH2O·g-1DW和0.11 g H20·g-1DW)时,其萌发率和简化活力指数都比脱水前的高;同时,在脱水过程中,无论常规水稻还是杂交水稻的种子,当处于同一含水量水平时,皆是慢速脱水的种子比快速脱水的种子的萌发率高。说明水稻种子能忍耐深度脱水,是正常性种子。但杂交水稻与常规水稻的种子的脱水耐性存在差异:最初轻度的快速脱水(至0.25gH2O·g-1DW)对常规水稻种子的萌发率的影响很小;而两个杂交水稻种子的萌发率有较大程度的下降,随着脱水程度的加大,种子萌发率又不断提高。慢速脱水和快速脱水至平衡含水量时,常规水稻种子的萌发率几乎相等,而快速脱水的两个杂交水稻种子的萌发率明显低于慢速脱水的种子。
     相关生理指标的测定结果表明,慢干较快干更有利于种子内可溶性蛋白和可溶性糖的形成,且使SOD活性保持在较高的水平。11DAA以前的种子,脱水处理后种子浸泡液的电解质渗漏率明显升高,而11 DAA以后的种子,相同的脱水处理使种子浸泡液的电解质渗漏率的上升幅度明显变小,说明在11 DAA以前种子的脱水耐性形成之初始阶段,脱水对细胞膜的伤害较大。另外,脱水会导致种子中丙二醛含量明显升高,其升高的幅度与种子发育过程负相关,进一步证明脱水耐性是在发育过程逐渐形成的。
     三个水稻的成熟种子在室内开放贮藏或硅胶干燥贮藏3个月再经历15d的老化处理后,萌发试验的结果表明,常规水稻ZR02比两个杂交水稻株1 S/ZR02和金23A/ZR02的种子更抗老化;两个杂交水稻的不同发育时期种子的抗老化能力也有差异,但皆以17 DAA种子的抗老化能力最强。对15 DAA种子老化前后的部分生理指标的测定分析发现,老化导致种子中可溶性糖,可溶性蛋白和SOD活性都下降,而且杂交水稻种子比常规水稻种子下降幅度更大。
This thesis mainly investigated seeds of conventional rice ZR02 and hybrid rice Zhu1S/ZR02 and Jin23A/ZR02 of the changes of biological characteristics during development, and with dehydration by silica gel in a closed glass container (rapid dehydration, RD) and natural air on the indoor platform (slow dehydration, SD), the germination percentage, simplified vigor index, electrolytic conductivity of seed-soaked solution, content of soluble sugars and soluble proteins and the activity of SOD etc of seeds were measured to evaluate the formation of desiccation tolerance of rice seeds and compare the difference of the desiccation tolerance between seeds of conventional rice and hybrid rice, the difference of anti-aging ability of seeds which were stored at different condition (with dry silica or indoor open condition), and investigated the relative physiological mechanism.
     The results showed that the whole growth time of seeds of three varieties conventional rice ZR02, hybrid rice Zhu1S/ZR02 and Jin23A/ZR02 was all about 17 d. The caryopsis color changed from green to yellowish green then to yellow with ongoing development. The moisture content of seeds showed a similar downward tendency during development, but it rapidly declined at 5 DAA-9 DAA (days after anthesis), and then slowly declined down, the fresh and dry weight of seed of the three varieties during development showed a consistent changing mode:5 DAA-13 DAA was the rapid growth period, and went to a constant level at 17 DAA, therefore seed harvesting should not be earlier than 17 DAA.
     At 7 DAA, seeds of all three rice varieties began to have the ability to germinate when they were placed in suitable germination condition. The germination percentage of fresh seeds was relatively lower, either rapid or slow dehydration was obviously able to enhance the germination of seeds when dehydrated to moisture content of 0.11 g H2O·g-1DW. When the seeds with the identical developing stage dehydrated to the same moisture content with SD and RD separately, those with SD treatment improved the germination percentage and simplified vigor index by a greater extent, especially the ones having not developed to maturity yet.
     Dehydrated to the equilibrium moisture content 0.04 g H2O·g-1DW and 0.11 g H2O·g-1DW by RD and SD separately, the germination percentage and simplified vigor index of the mature seeds (21 DAA) of all three rice varieties were higher than the initial value of fresh seeds. Meanwhile, when the seeds dehydrated to the identical moisture content, no matter conventional rice or hybrid rice, those ones with SD showed the higher germination percentage than that with RD. These results demonstrated that rice seeds are orthodox which are able to tolerate extreme dehydration. On the other hand, there exists difference of the desiccation tolerance between conventional and hybrid rice seeds:firstly, the initial gentle dehydration with RD (to 0.25 g H2O·g-1DW) had only slight influence on the germination of conventional seeds, but reduced the germination percentage of seeds of two hybrid rice by a distinct extent, although it would go up again as the moisture content went down with the continuing dehydration; secondly, dehydrated to the equilibrium moisture content by RD and SD separately, seeds of the conventional rice had almost the same germination percentage, while the germination percentage of seeds of two hybrid rice with RD was obviously lower than that of ones with SD.
     To analyze the physiological mechanism to seed desiccation tolerance, some relative physiological indices such as the content of soluble sugar, soluble protein and MDA, as well as the SOD activity were measured. Compared with RD, SD was more conducive for seed to accumulate soluble protein and soluble sugar, and remain the SOD activity at a high level. Moreover, SD was able to increase the SOD activity of mature seeds. The electrolytic conductivity of seed-soaked solution of the seeds after dehydration treatment was significantly higher than that of fresh ones before 11 DAA. However, to the seeds after 11 DAA, the identical dehydration made the electrolytic conductivity of seed-soaked solution to get increased very slightly. So the seeds before 11 DAA should be at the initial phase of the formation of seed desiccation tolerance, dehydration on seeds more easily injured cell membrane which resulted in the membrane permeability ascending. In addition, dehydration led to MDA content in seeds to increase significantly, and the upgrade degree was negative to seed development level, but the seeds of the identical development stage at SD produced lower content of MDA than the ones at RD. These results demonstrated that the desiccation tolerance of rice seeds gradually formed as seed developed.
     After 3 months of preservation in indoor open condition or in dry silica gel in closed condition, followed by artificial aging for 15 days, seeds of conventional rice ZR02 were more anti-aging than those of two hybrid rice Zhu1S/ZR02 and Jin23A/ZR02 did. While comparing to the anti-aging capacity of seeds of two hybrid rice with different degree of development, after the same preservation and artificial aging as above,17 DAA ones showed the highest. Analyses of physiological indices to 15 DAA seeds before and after aging treatment indicated that aging led to rice seeds to reduce the content of soluble sugar and soluble protein and the activity of SOD significantly, and the reduce degree in hybrid rice seeds was greater than that in conventional rice ones.
引文
[1]Roberts, E.H. Predicting the storage life of seeds [J]. Seed Science & Technology,1973,1: 499-514
    [2]Ellis, R.H., Hong, T.D. and Roberts, E.H. An intermediate category of seed storage behavior? Ⅰ. Coffee [J]. J Exp Bot,1990,41:1167-1174
    [3]Hong, T.D., Ellis, R.H. A protocol to determine seed storage behaviour [A]. In:Engels, J.M.& Toll, J. eds. IPGR I Technical Bulletin No.1 [C]. International Plant Genetics Resource Institute, Rome, Italy,1996:1-51
    [4]Connor, K.F., Bonner, F.T. The effects of desiccation on seeds of Acer saccharinum and A-esculuspavia:recalcitrance in temperate tree seeds [J]. Trees,2001,15:131-136
    [5]田春娥,姜孝成.樟树种子脱水耐性和贮藏特性研究[J].种子,2009,(09):19-23
    [6]杨期和,叶万辉,宋松泉,殷寿华.种子脱水耐性及其与种子类型和发育阶段的相关性[J].西北植物学,2002,22(6):1518-1525
    [7]Bryant, G., Koster, K.L. and Wolfe, J. Membrane behaviour in seeds and other systems at low water content:the various effects of solutes [J]. Seed Science Research,2001,11:17-25
    [8]黄祥富,傅家瑞,黄尚志.种子脱水耐性的生理机制[J].种子,1998,(3):33-36
    [9]任晓米,朱诚,曾广文.与种子耐脱水性有关的基础物质的研究进展[J].植物学通报,2001,18(2):183-189
    [10]张明,卢昀,汪晓峰.脱水导致胞内溶质变化与植物耐干性的获得[J].植物生理与分子生物学学报,2007,33(1):9-17
    [11]傅家瑞,宋松泉.种子耐脱水性的研究(综述)[J].热带亚热带植物学报,2001,9(4):345-354
    [12]Fischer, W., Bergfeld, R., Plachy, C., Schaefer, R. and Schopfer, P. Accumulation of storage materials, precocious germination and development of desiccation tolerance seed maturation in mustard (Sinapis alba L.) [J]. Botan. Acta,1988,101 (4):344-354
    [13]杨晓泉,姜孝成,傅家瑞.花生种子耐脱水力的形成与可溶性糖累积的关系[J].植物生理学报,1998,24(2):165-170
    [14]Brenac, P., Horbowicz, M., Downer, S.M., Dickerman, A.M., Smith, M.E. and Obendorf. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.)seed development and maturation [J]. Plant Physic,1997,150 (4):481-488
    [15]罗银玲,宋松泉,何慧英,兰芹英.玉米发育过程中脱水耐性的变化[J].云南植物研究2005,27(3):301-309
    [16]Kermode, A.R. Regulatory mechanisms involved in the transition from seed development to germination [J]. Plant Sciences,1990, (2),155-195.
    [17]Eeswara, J.P., Allen, E.J. and Ellis, R.H. The influence of seed mature content and srorage temperature on the survival of neem(Azadirachata indica) Seed in Storage [J]. Seed Sci&Technol,1998,26:299-308
    [18]Nayal, J.S., Thapliyal, R.C., Rawat, M.M.S. and Phartyal, S.S. Desiccation tolerance and storage of neem(Azadirachta indica A. Juss) Seeds [J]. Seed Sci & Technol,2000,28 (3): 761-767
    [19]Farrant, J.M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plants [J]. Plant Ecology,2000,151(1):29-39
    [20]姜孝成,傅家瑞.黄皮种子在萌发过程中脱水敏感性变化的研究[J].种子,2001,(2):17-21
    [21]李文君,沈永宝.‘紫柄子银桂’桂花种子脱水耐性与抗氧化系统的关系[J].园艺学报,2009,36(2):279-284
    [22]金剑平,傅家瑞,姜孝成.不同发育时期黄皮种子脱水敏感性的研究[J].热带亚热带植物学报,1994,2(2):58-64
    [23]夏清华,陈润政,傅家瑞.不同发育时期荔枝种子的生理研究[J].中山大学学报.1993,32(1):80-84
    [24]宗梅,蔡永萍.种子脱水耐性与保护系统的相关性[J].园艺学报,2005,32(2):342-347
    [25]Dasgupta, J., Bewley, J.D. and Yeung, E.C. Desiccation-tolerant and desiccation-intolerant stages during the development and germination of Phaseolus vulgaris seeds [J]. Experimental Botany,1982,33:1045-1057
    [26]Senaratna, T., Mckersie, B.D. and Stinson, R.H. Association between membrane phase properties and dehydration injury in soybean axes [J]. Phant Physiology,1984,76:759-762
    [27]Sun, W.Q., Irving, T.C. and Leopold, A.C. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance [J]. Physiologia Plantarum,1994,90:621-628
    [28]Leprince, O., Vander Werf, A., Deltour, R. and Lambers, H. Respiratory pathways in germining maize radicles correlated with desiccation tolerance and soluble sugars [J].Physiologic Plantarum,1992,84:581-588
    [29]Hendry, G.A.F., Finch-Savage, W.E., Thorpe, P.C., Atherton, N.M., Buckland, S.M., Nilsson, K.A. and Seel, W.E. Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus Tour L. [J]. New Phytologist,1992,122:273-279
    [30]宋松泉,傅家瑞.荔枝种子脱水敏感性与膜脂过氧化的研究[J].科学通报,1992,37:448-454
    [31]宋松泉,陈玲,傅家瑞.种子脱水耐性与LEA蛋白[J].植物生理学通讯,1998,(3):33-36
    [32]宋松泉,龙春林,殷寿华,兰芹英.种子脱水行为及其分子机制[J].云南植物研究,2003,25(4):465-479
    [33]姜孝成,傅家瑞,宋松泉,黄胜琴.种子的成熟脱水与耐脱水性[J].植物生理学通讯,1995,31(6):457-463
    [34]Anandarajah, K., McKersie, B.D. Manipulating the desiccation tolerance of dry somatic embryos of Medicago saliva L. with sucrose, heat shock and abscisic acid [J]. Plant Cell Reports,1990,9:451-455
    [35]Johnson, K.D., Hofte, H. and Chrispeels, M.J. An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter(GlpF) [J]. Plant Cell, 1990,2:525-532
    [36]周玉亮.种子脱水耐性的成因及其研究进展[J].中国种业,2006,(7):10-12
    [37]Kuo, T.M., VanMiddlesworth, J.F. and Wolf, W.J. Content of raffinose oligosaccharides and sucrose in various plant seeds [J]. Agricultural and Food Chemistry,1988,36:32-36
    [38]Blackman, S.A., Obendorf, R.L. and Leopold, A.C. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds [J]. Plant Physiol,1992,100:225-230
    [39]Gorecki, R.J., Brenac, P., Clapham, W.M., Willcott, J.B. and Obendorf, R.L. Soluble carbohydrates in white lupin(Lupinus albus Obendorf RL.cv. Ultra) seed matured at 13℃ and 28℃ [J]. Crop Science,1996,36:1277-1282
    [40]Sun, W.Q., Irving, T.C. and Leopold, A.C. The role of sugars, vitrification and membrane phase transition in seed desiccation tolerance [J]. Physiol Plant,1994,90:621-628
    [41]宋松泉,傅家瑞,陈润政.顽拗性种子的发育特性与脱水耐性[J].种子,1995,2:1-7
    [42]杨期和,宋松泉,叶万辉,殷寿华.种子脱水耐性与糖的关系[J].植物研究,2003,23(2):204-209
    [43]宋松泉,傅家瑞.种子脱水耐性与保护性系统的关系[J].种子,1998,(6):45-49
    [44]Vertucci, C.W., Farrant, J.M. Acquisition and loss of desiccation tolerance[A]. In Kigel, J., Galili, G. (eds). Seed Development and Germination [M]. New York:Marcel Dekker Inc, 1995,237-271
    [45]Came, D., Corbineau, F. Metabolic damage related to desiccation sensitivity [A]. In Ouedraoga, A.S., Poulsen, K., Stubsgaard, F. (eds). Intermediate/Recalcitrant Tropical Forest Tree Seeds [M]. Rome:IPGRI,1996,83-97.
    [46]伍贤进,宋松泉,钱春梅,陈玲,傅家瑞.脱水速率对-黄皮胚轴脱水敏感性及膜脂过氧化的影响[J].植物生理与分子学学报,2001,27(5):407-412
    [47]宋松泉,段咏新,傅家瑞.ABA对种子发育的调节[J].种子,1997,(5):36-42
    [48]彭业芳,傅家瑞.荔枝和龙眼种子发育过程中ABA含量及对外源ABA敏感性的变化[J].植物生理学报,1995,21(2):159-165
    [49]Farrant, J.M., Berjak, P. and Pammenter, N.W. Studies on the development of the desiccation-sensitive (recalcitrant) seeds of Avicennia marina (Forssk.) Vierh.:the acquisition of germinability and response tostorage and desiccation [J]. Annals of Botany,1993,71: 405-410
    [50]黄雪梅,傅家瑞,宋松泉.种子脱水耐性的成因及人工诱导[J].植物生理通讯,2000,36(5):464-469
    [51]宋松泉,傅家瑞.黄皮种子脱水敏感性与脂质过氧化作用[J].植物生理学学报,1997,23(2):163-168
    [52]向旭.黄皮种子脱水敏感性及自由基伤害机理的研究[D].广州:中山大学,1997
    [53]Dumet, D., Engelmann, F., Chabrillange, N., Dussert, S. and Duval, Y. Effect of various sugars and polyols on the tolerance to desiccation and freezing of oil palm polyembryonic cultures [J]. Seed Sci Res,1994,4:307-313
    [54]Lepage-Degivry, M.T., Garello, G. Onset of water stress tolerance in developing Helianthus annuus embryos [J]. Seed Sci Res,1991,1:221-227
    [55]Bradford, K.J., Chandler, P.M. Expression of "dehydrin-like" proteins in embryos and seedlingsof Zizania palustris and Oryza sativa during dehydration [J]. Plant Physiol,1992, 99:488-494
    [56]胡达明.杂交水稻种子的贮藏特性及其技术[J].Chinese Agricultural Science Bulletin,1997,3(5):72
    [57]陈良碧.杂交水稻种子生理特点与耐贮藏性研究[J].种子,1994,(4):19-24
    [58]张华林.杂交水稻种子特征特性及产后应用技术[J].农业科技通讯,2005,(03):24-25
    [59]范秀珍.杂交稻种子特征特性及生产应用技术[J].福建稻麦科技,2002,20(1):14-15
    [60]孙风龙.杂交水稻种子的贮藏特性和质变规律[J].种子科技,1992,(1):45
    [61]涂娥英,肖层林.杂交水稻种子特征特性研究[J].杂交水稻,1995,(3):15-18
    [62]程春伟,曾令伟.杂交稻种发芽率下降的原因[J].种子科技,1999,(1):41
    [63]陶用力.提高和保护杂交水稻种子活力的措施[J].作物研究,1991,5(1):36-37
    [64]杨孚初.“九二0”对杂交水稻种子质量的影响[J].Hybrid Rice,1998,14 (1):20-21
    [65]袁双孝.杂交水稻种子收贮阶段应注意的问题[J].种子科技,2009,(06):35
    [66]汤水波.杂交水稻种子安全贮藏于生活力的保持[J].福建农业,2001,(07):11
    [67]陈代国.杂交稻种子贮藏保管技术[J].种子科技,2002,(05):292
    [68]刘信.水稻种子耐干性机理和超干种子贮藏稳定性的研究[D].杭州:浙江大学,2003
    [69]宋松泉,程红焱,龙春林,姜孝成.种子生物学研究指南[M].北京:科学出版社,2005
    [70]徐本美,顾增辉.测定种子活力方法的探讨Ⅶ.玻板直立发芽法[J].种子,1983,(4):22-24
    [71]田春娥,姜孝成.樟树种子脱水耐性和贮藏特性研究[D].长沙:湖南师范大学,2009
    [72]李文君.桂花种子脱水耐性和休眠机理研究[D].南京:南京林业大学,2008
    [73]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003
    [74]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry.1976,72: 248-252
    [75]李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].北京:高等教育出版社,1999
    [76]Donhue, J.L., Okapodu, M.C., Cramer, C.L., Grabau, E.A. and Alscher, R.G. Response of antioxidants to paraquat in pea leaves [J]. Plant Physiol,1997,113:249-257
    [77]Hodges, D.W., DeLong, J.M., Forney, C.F. and Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocynin and other interfering compounds [J]. Planta,1999,207:604-611
    [78]陈志.湖南茶陵野生稻苗期耐冷性研究[D].长沙:湖南师范大学,2009
    [79]Bonner, F.T. Responses to drying of recalcitrant seeds of Quercus nigra L [J]. Annals of Botany,1996,78:181-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700