几类变分不等式与互补问题的算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变分不等式与互补问题广泛应用于阐述与研究机械,工程,物理,金融,最优控制数学模型以及交通运输中出现的各种平衡模型等。因此,研究其快速数值解法是十分有意义的。近几十年来,变分不等式与互补问题在数值解法方面取得了巨大的进展,这方面的研究成果层出不穷。本文讨论了求解几类变分不等式与互补问题的有效算法。
     实际中出现的科学问题往往计算规模大,而且精度要求高。这就要求我们能够设计出新的更有效的算法来解决这些问题。随着并行计算机的出现,并行计算成为解决这类问题的一种很重要的手段。多重分裂方法是并行求解线性或非线性方程组的重要数值计算方法之一。其特点是将原问题转化为几个子问题进行并行求解。本文将这类方法推广到求解对称仿射二阶锥互补问题(SOCCP)。我们在进行矩阵分裂时考虑了矩阵的特殊结构,诸如稀疏性,块结构性。在每一次迭代过程中,每个处理器分别处理一个由分裂得到的子问题,然后再将每个处理器得到的结果加权相加作为下一次迭代的初始值。在子问题的求解中,我们使用了似MAOR方法。数值结果表明多重分裂方法用于求解对称仿射SOCCP是十分有效的。
     区域分解法是上世纪八十年代崛起的新算法。其思想是将计算区域分为若干子区域,将原问题的求解转化为相应子区域上子问题的求解。它是求解变分不等式与互补问题的一类重要算法。本文探讨了求解带M—函数的非线性互补问题的两水平加性Schwarz算法。这种方法基于某种判断准则,将计算区域分为两个子区域。一个子区域上含有障碍子问题,而在另一个子区域上仅需求解非线性方程组。我们得到算法的有限步收敛性结论。数值实验表明该算法是十分有效的。
     根据不同的解的等价最优性条件,对于一般T—单调算子的单边及双边障碍问题,我们提出了不同的有效集算法。这两种算法的本质都是基于某种策略,将区域分解为有效和非有效的两个部分。然后在非有效集上求解一个简化的非线性方程组。和PSOR及Schwarz算法不同的是,有效集算法不需要求解额外的线性或非线性子问题。我们将这类算法和PSOR及Schwarz算法做了比较,算例表明有效集算法是非常高效的。
     近年来,变分不等式已经开始向各个方向推广,出现了诸如广义变分不等式,混合变分不等式,广义似变分不等式等。其中很重要的一类推广是变分不等式系统。我们考虑了一类广义似变分不等式系统(SGVLIP)的数值解,提出和SGVLIP相关的逼近问题,证明了逼近问题解的存在性。基于这些逼近问题,构造了求解SGVLIP的算法,证明了SGVLIP解的存在唯一性以及算法的收敛性。针对一类非线性变分不等式系统(SNVI),我们研究了其相关辅助问题,建立了辅助问题解的存在性定理。基于这些辅助问题,构造了求解SNVI的算法,证明了SNVI解的存在性以及算法的收敛性。最后,我们讨论了Banach空间中混合非线性变分不等式系统(SMNVI)的数值算法。我们先引入适定次可微泛函的η—逼近映射的概念,利用η—逼近映射的性质,提出了求解SMNVI的一些迭代算法,并证明了算法的收敛性。
Variational inequality and complementarity problems have a lot of applications in many fields, such as mechanism, engineering, physics, finance, optimal control theory mathematical models and equilibrium models arised from traffic transportation. Hence, it is meaningful to study the efficient numerical methods for solving variational inequality and complementarity problem. In the past decades, great progress has been made in the study of numerical algorithms and this kind of research emerges in endlessly. In this thesis, we construct and analyze some efficient numerical methods for solving variational inequality and complementarity problem.
     Many problems arised in science and engineering are often large scale, and require high precision. Hence, we need to design some new and more efficient algorithms for such problems. With the use of parallel computer, it is a very important way to solve those problems in parallel. Multisplitting method is an important theoretical tool for solving linear or nonlinear equations in parallel. Its feature is to decompose a large scale problem into several subproblems and solve those subproblems in parallel. In Chapter 2, we extend this method for solving symmetrical affine second order cone complementarity problem (SOCCP). The multisplitting method we constructed for SOCCP exploits particular features of matrices such as the sparsity and the block structure. In each iteration of the method, each processor deals with a subproblem obtained from one matrix splitting respectively. After that, the results from each processor are summed with weight as the initial value for the next iteration. Moreover, we consider an MAOR-like method to solve the subproblems. Numerical results showed that multisplitting is effective for solving symmetrical affine SOCCP.
     Domain decomposition method was developed in 1980s. Its main point is to divide the domain into several small subdomains, and to solve the subproblems in related subdomains. It is a very important numerical method for solving variational inequality and complementarity problem. In Chapter 3, we develop and analyze a two-level additive Schwarz method for nonlinear complementarity problem (NCP) with an M-function. Based on certain criterion, this method divides the domain into two subdomains which contain obstacle subproblem and nonlinear equations subproblem, respectively. The advantage of this method is that it offers the possibility of making use of fast nonlinear solvers for the genuinely nonlinear obstacle problems. We prove that this method converges in finite number of iterations. Numerical results show that the method is efficient.
     According to different optimality conditions of the solution, we study different active set strategies for unilateral and bilateral obstacle problems with a T-monotone operator in Chapter 4. Based on certain criterions, active set strategies can decompose the index set into active set and inactive set, then solve a reduced nonlinear system in inactive set. Contrary to the PSOR and Schwarz methods, no additional linear or nonlinear subproblem solvers are needed. In numerical experiments, we compare active set strategies with PSOR and Schwarz method, and numerical results indicate that active set strategies are valid.
     In recent years, variational inequality has been extended to various directions, such as generalized variational inequality, mixed variational inequality, generalized variational-like inequality and so on. One of the most important extension is system of variational inequalities. In Chapter 5, we consider a system of generalized variational-like inequalities problems (SGVLIP). Firstly, some approximate problems related to SGVLIP are proposed. The existence theorem of solution of approximate problems is obtained. Then algorithms based on these approximate problems are constructed for the SGVLIP and the convergence of the algorithms are also discussed. In Chapter 6, we study a kind of system of nonlinear variational inequalities (SNVI) and its related auxiliary problems in real Hilbert space. Existence theorems for SNVI and the auxiliary problems are established. Furthermore, by exploiting existence theorem, algorithms for SNVI are constructed and the convergence of the algorithm is discussed. In Chapter 7, we consider the numerical solution of system of mixed nonlinear variational inequalities (SMNVI) in Banach space. The definition ofη—proximal mapping for a proper subdifferentiable functional is introduced. Using the properties ofη—proximal mapping, some iterative algorithms for solving SMNVI are constructed and convergence theorem is also established.
引文
[1]韩渭敏,程晓良.变分不等式简介一基本理论、数值分析及应用.北京:高等教育出版社,2007
    [2]Signorini A.Sopra alcune questioni di elastostatica.Atti Della Societa Per Il Progresso Della Scienza,1933
    [3]Fichera G.Porblemi elastostatici con vincoli uniaterali:il problema di Signorini com ambigue condizioni al contorno.Memorie Accademia Nazionale Lincei,1964,8(7):91-140
    [4]Lions J L,Stampacchia G.Variational inequalities.Communications on Pure and Applied Mathematics,1967,20:493-519
    [5]Lemke C,Howson J.Equilibrium points of bimatrix games.Journal of the Society for Industrial and Applied Mathematics,1964,12:423-431
    [6]Cottle R W.Nonlinear programs with positively bounded Jacobians.Ph.D.Dissertation,Department of Mathematics,University of California Berkeley,CA,1964
    [7]Strang G,Fix G J.An Analysis of the Finite Element Method.New Jersey:Prentice-Hall,1973
    [8]Falk R S.Error estimates for the approximation of a class of variational inequalities.Mathematics of Computation,1974,28:963-971
    [9]Elliott C M,Janosky V.An error estimate for a finite-element approximation of an elliptic variational inequality formulation of a Hele-Shaw moving-boundary problem.IMA Journal of Numerical Analysis,1983,3:1-9
    [0]Hua D Y,Wang L H.A mixed finite element method for the unilateral contact problem in elasticity.Science in China Series A:Mathematics,2006,49(4):513-524
    [11]华冬英,王烈衡.弹性力学中单边接触问题的混合有限元法.中国科学A辑数学,2006,36(5):508-520
    [12]Wang L H.On the quadratic finite element approximation to the obstacle problem.Numerische Mathematik,2002,92(4):771-778
    [13] Manfred D, Tilo S. On finite element approximation of a second order unilateral variational inequality. Numerical Functional Analysis and Optimization, 1992, 13:243-247
    [14] Patrick H. The Mortar finite element method for Bingham fluids. ESAIM: Mathematical Modelling and Numerical Analysis, 2001, 35: 153-164
    [15] Belgacem F B, Renard Y. Hybrid finite element methods for the Signorini problem.Mathematics of Computation, 2003, 72: 1117-1145
    [16] Belgacem F B. The Mortar finite element method with Lagrange multipliers. Numerische Mathematik, 1999, 84: 176-197
    [17] Goldstein A A. Convex programming in Hilbert space. Bulletin of the American Mathematical Society, 1964, 70: 709-710
    [18] Levitin E S, Polyak B T. Constrained minimization problems. USSR Computational Mathematics and Mathematical Physics, 1996, 6: 1-50
    [19] Auslender A. Optimization Methodes Numeriques. Paris: Masson, 1976
    [20] Bakusinskii A B, Polyak B T. On the solution of variational inequalities. Soviet Mathematics Doklady, 1974, 15: 1705-1710
    [21] Bruck R E. An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bulletin of the American Mathematical Society, 1975,81: 890-892
    [22] Sibony M. Methods iteratives pour lesequations et inequations aux derivees partielles nonlineares de type monotone. Calcolo, 1970, 7: 65-183
    [23] Korpelevich G M. The extragradient method for finding saddle points and other problems. Matecon, 1976, 12: 747-756
    [24] Khobotov E N. Modification of the extragradient method for solving variational inequalities and certain optimization problem. USSR Computational Mathematics and Mathematical Physics, 1987, 27: 120-127
    [25] Marcotte P. Application of Khobotovs algorithm to variational inequalities and network equilibrium problems. Information Systems and Operational Research,1991, 29: 258-270
    [26] Sun D. An iterative method for solving variational inequality problems and complementarity problems. Numerical Mathematics: A Journal of Chinese Universities,1994, 16: 145-153
    [27] Iusem A N. An itertive algorithm for the variational inequality problem. Mathematical and Computational Applications, 1994, 13: 103-114
    [28] Sun D. A projection and contraction method for the nonlinear complementarity problem and its extensions. Mathematical Numerical Sinica, 1994, 16: 183-194
    [29] Sun D. A new step-size skill for solving a class of nonlinear projection equations.Journal of Computational Mathematics, 1995, 13: 123-140
    [30] Iusem A N, Svaiter B F. A variant of Korpelevichs method for variational inequalities with a new search strategy. Optimization, 1997, 42: 309-321
    [31] Solodov M V, Svaiter B F. A new projection method for variational inequality problems. SIAM Journal on Control and Optimization, 1999, 37: 756-776
    [32] Martinet B. Regularisation dinequations variationelles par approximations successives. Revue Francaise Automatique et Informatique Recherche Operationnelle,1970, 4: 154-158
    [33] Rockafellar R T. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 1976, 14: 877-898
    [34] Tseng P. On linear convergence of itertive methods for the variational inequality problem. Journal of Computational and Applied Mathematics, 1995, 60: 237-252
    [35] Farouq N E. Pseudomonotonoe variational inequalities: convergence of proximal methods. Journal of Optimization Theory and Applications, 2001, 109: 311-326
    [36] Kiwiel K C. Proximal minimization methods with generalized Bregman function.SIAM Journal on Control and Optimization, 1997, 35: 1142-1168.
    [37] Iusem A N, Monterio R D. On dual convergence of the generalized proximal point method with Bregman distances. Mathematics of Operations Research, 2000, 25:606-624
    [38] Kaplan A, Tichatschke R. Proximal point approach and approximation of variational inequalities. Journal on Control and Optimization, 2000, 39: 1136-1159
    [39]Burachik R S,Scheimberg S.A proximal point method for the variational inequality problem in Banach spaces.SIAM Journal on Control and Optimization,2001,39:1633-1649
    [40]Solodov M V,Svaiter B F.A hybrid projection method for variational inequality problems.SIAM Journal on Control and Optimization,1999,37:765-776
    [41]Tseng P.Alternating projection-proximal methods for variational inequality problem.SIAM Journal on Optimization,1997,7:951-965
    [42]Yamashita N,Fukushima M.The proximal point algorithm with genuine superlinear convergence for the monotone complementarity problem.SIAM Journal on Optimization,2000,11:364-379
    [43]Dan H,Yamashita N,Fukushima M.A superlinearly convergent algorithm for the monotone nonlinear complementarity problem without uniqueness and nondegeneracy conditions.The Technical Report,Department of Applied Mathematics and Physics,Graduate School of Information,Kyoto University,Japan,2001
    [44]Tseng P.On linear convergence of iterative methods for the variational inequality problem.Journal of Computational and Applied Mathematics,1995,60:237-252
    [45]Machida N,Fukushima M,Ibaraki T.A multisplitting method for symmetric linear complementarity problems.Journal of Computational and Applied Mathematics,1995,62:217-227
    [46]Hayashi S,Yamaguchi T,Yamashita N,et al.A matrix-splitting method for symmetric affine second-order cone complementarity problems.Journal of Computational and Applied Mathematics,2005,175:335-353
    [47]Lions P L.On the Schwarz alternating method I,in proceedings of domain decomposition method,Edited by Glowinski R,Golub G H,Meurant G A,P(?)riaux J.SIAM,1988,1-40
    [48]周叔子,曾金平.一类非线性算子障碍问题的Schwarz算法.应用数学学报,1997,20(4):521-530
    [49]曾金平,周叔子.单障碍问题区域分解法的单调收敛性与收敛速度估计.计算数学,2002,24(4):395-404
    [50]吕涛,石济民,林振宝.区域分解法.北京:科学出版社,1992
    [51]许学军,沈树民.障碍问题的区域分解法.高校计算数学学报,1994,16:186-194
    [52]周叔子,丁立新.变分不等式的并行Schwarz算法.科学通报,1996,12:1069-1071
    [53]田敏,羊丹平.热传导方程二阶并行区域分解差分算法.山东大学学报,2006,41(5):12-19
    [54]储德林,胡显承.求解一般椭圆型方程的可加型多层网格Schwarz方法.应用数学学报,1994,17(3):334-346
    [55]Zeng J P,Zhou S Z.On monotone and geometric convergence of Schwarz algorithms for two-sided obstacle problems.SIAM Journal on Numerical Analysis,1998,35:600-616
    [56]Zhou S Z,Ding L X.A parallel Schwarz algorithm for variational inequalities.Chinese Science Bulletin,1996,41:1061-1064
    [57]Zeng J P,Wang L.Nonoverlapping domain decomposition method for solving obstacle variational inequalities.Mathematica Numerica Sinica,1997,4:421-430
    [58]Badea L,Wang J.An additive Schwarz method for variational inequalities.Mathematics of Computation,1999,69:1341-1354
    [59]Tang W P.Generalized Schwarz splittings.SIAM Journal on Scientific and Statistical Computing,1992,13:573-595
    [60]Douglas J,Huang C S.An accelerated domain decomposition iterative procedures based on Robin transmission conditions.BIT,1997,37:678-686
    [61]Douglas J,Huang C S.Accelerated domain decomposition iterative procedures for mixed methods based on Robin transmission conditions.Calcolo,1998,35:131-147
    [62]Zhou S Z,Zeng J P,Tang X.Generalized Schwarz algorithm for obstacle problems.Computers and Mathematics with Applications,1999,38:263-271
    [63]Li C L,J.Zeng J P,Zhou S Z.Convergence analysis of generalized Schwarz algorithms for solving obstacle problems with T-monotone operator.Computers and Mathematics with Applications,2004,48:373-386
    [64] Tarvainen P. Two-level Schwarz method for unilateral variational inequalities. IMA Journal of Numerical of Analysis, 1999, 19: 273-290
    [65] K(?)rkk(?)inen T, Kunisch K, Tarvainen P. Augmented Lagrangian active set methods for obstacle problems. Journal of Optimization Theory and Applications, 2003,119: 499-533
    [66] H(?)eber S, Wohlmuth B I. A primal-dual active set strategy for non-linear multi-body contact problems. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3147-3166
    [67] H(?)eber S, Mair M, Wohlmuth B I. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multi-body contact problems. Applied Numerical Mathematics, 2005, 54: 555-576
    [68] Hinterm(?)ller M, Ito K, Kunisch K. The primal-dual active set strategy as a semis-mooth newton method. SIAM Journal on Optimization, 2002, 13: 865-888
    [69] Kunisch K, R(?)sch A. Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM Journal on Optimization, 2002, 13: 321-334
    [70] Tone K. An active-set strategy in an interior point method for linear programming.Mathematical Programming, 1993, 59: 345-360
    [71] Erdmann B, Hoppe R, Kornhuber R. Adapative multilevel-methods for obstacle problems in three space dimensions. International Journal of Numerical Methods in Engineering, 1993, 36: 3187-3203
    [72] Hoppe R, Kornhuber R. Adaptive multilevel methods for obstacle problems. SIAM Journal on Numerical Analysis, 1994, 31: 301-323
    [73] Kirsten H, Tichatschke R. On a method of feasible directions for solving variational inequalities. Optimization, 1985, 16: 535-546
    [74] Huang N J, Bai M R, Cho Y J, et al. Generalized nonlinear mixed quasi-variational inequalities. Computers and Mathematics with Applications, 2000, 40 (2): 205-215
    [75] Noor M A. Some predictor-corrector algorithms for multivalued variational inequalities. Journal of Optimization Theory and Applications, 2001, 108 (3): 659-670
    [76]Noor M A.Mixed quasi variational inequalities.Applied Mathematics and Computation,2003,146:553-578
    [77]Huang N J,Deng C X.Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities.Journal of Mathematical Analysis and Applications,2001,256:345-359
    [78]Noor M A.Iterative methods for generalized variational inequalities.Applied Mathematics Letters,2002,15(1):77-82
    [79]Ding X P,Tan K K.Generalized variational inequalities and generalized quasivariational inequalities.Journal of Mathematical Analysis and Applications,1990,148(2):497-508.
    [80]Chan D,Pang J S.The generalized quasi-variational inequality problem.Mathematics of Operations Research,1982,7(2):211-222
    [81]代宏霞.一类广义非线性变分不等式组解的存在唯一性.四川大学学报,2004,41(1):1-4
    [82]李克俊.一类广义集值变分包含组的逼近算法.贵州师范大学学报,2003,21(2):4-7
    [83]任晓.一类广义非线性变分不等式组解的存在性及迭代逼近.四川大学学报,2003,40(3):411-414
    [84]郑莲,张清邦,胡本琼.用扰动逼近算法解广义混合拟-似变分不等式组.四川师范大学学报,2004,27(6):569-573
    [85]陈晓芳,邓传现.关于一类广义非线性变分不等式组的新逼近算法.四川大学学报,2001,38(6):813-817
    [86]周禄新,武周.变分不等式系统.南开大学学报,1994,4:102-104
    [87]李克俊.一类广义集值混合拟变分不等式组.西南师范大学学报,2003,28(1):42-47
    [88]刘江蓉.一类集值映象变分不等式组.武汉工业学院学报,2007,2:110-112
    [89]Konnov I V.Splitting-type method for systems of variational inequalities.Computers and Operations Research,2006,33:520-534
    [90]Huang Z Y,Noor M A.An explicit projection method for a system of nonlinear variational inequalities with different(γ,r)-cocoercive mappings.Applied Mathematics and Computation,2007,190:356-361
    [91]Verma R U.Projection methods,algorithms,and a new system of nonlinear variational inequalities.Computers and Mathematics with Applications,2001,41:1025-1031
    [92]Ansari Q H,Yao J C.Systems of generalized variational inequalities and their applications.Applicable Analysis,2000,76(3):203-217
    [93]Noor M A,Noor K I.Projection algorithms for solving a system of general variational inequalities.Nonlinear Analysis:Theory,Methods and Applications,2009,70:2700-2706
    [94]Noor M A.Implicit dynamical systems and quasi variational inequalities.Applied Mathematics and Computation,2003,134(1):69-81
    [95]Verma R U.A system of generalized auxliary problems principle and a system of variational inequalities.Mathematical Inequalities and Applications,2001,4:443-453
    [96]Kazmi K R,Khan F A.Auxiliary problems and algorithm for a system of generalized variational-like inequality problems.Applied Mathematics and Computation,2007,187:789-796
    [97]李董辉,童小娇,万中.数值最优化.北京:科学出版社,2005
    [98]Fukushima M,Luo Z Q,Tseng P.Smoothing functions for second-order cone complementarity problems,SIAM Journal on Optimization,2002,12(2):436-460
    [99]Alizadeh F,Goldfarb D.Second-order cone programming,Mathematical Programming,2003,95(1):3-51
    [100]Hayashi S,Yamashita N,Fukushima M.Robust Nash equilibria and second-order cone complementarity problems.Journal of Nonlinear Convex Analysis,2005,6:283-296
    [101]Cvetkovi(?) L,Rapaji(?) S.How to improve MAOR method convergence area for linear complementarity problems.Applied Mathematics and Computation,2005,162:577-584
    [102]Harker R T,Pang J S.Finite-dimensional variational inequality and nonlinear complementarity problems:a survey of theory,algorithms and applications.Mathematical Programming,1990,48:161-220
    [103]Meyer G H.Free boundary problems with nonlinear source terms.Numerische Mathematic,1984,43:463-482
    [104]EUiott C M,Ockendon J R.Weak and Variational Methods for Moving Boundary Problems,Research Notes in Mathematics.London:Pitman,1982
    [105]Billups S C,Murty K G.Complementarity problems.Journal of Computational and Applied Mathematics,2000,124:303-318
    [106]Ferris M C,Mangasarian O L,Pang J S.Complementarity:Applications,Algorithms and Extensions.Dordrecht:Kluwer Academic Publishers,2001
    [107]Jiang Y J,Zeng J P.Additive Schwarz algorithm for the nonlinear complementarity problem with M-function.Applied Mathematics and Computation,2007,190:1007-1019
    [108]Luca T,Facchinei F,Kanzow C.A semismooth equation approach to the solution of nonlinear complementarity problems.Mathematical Programming,1996,75:407-439
    [109]Hoppe R.Multigrid algorithms for variational inequalities.SIAM Journal of Numerical Analysis,1987,24:1046-1065
    [110]Lions P L,Mercier B.Approximation num(?)rique des(?)quations de Hamilton-Jacobi -Bellman.RAIRO Analyse Num(?)rique,1980,14:375-387
    [111]Scarpini F.A numerical approach to the solution of some variational inequalities,Variational Inequalities and Complementarity Problems,Edited by Cottle R W,Giannessi F,and Lions J L.New York:John Wiley and Sons,1980,323-338
    [112]Noor M A.Generalized mixed quasi-variational-like inequalities.Applied Mathematics and Computation,2004,156:145-158
    [113]Cohen G.Auxiliary problem principle and decomposition of optimization problems.Journal of Optimization Theory and Applications,1980,32(3):277-305
    [114] Xia F Q, Huang N J. Algorithm for solving a new class of general mixed variational inequalities in Banach spaces. Journal of Computational and Applied Mathematics, 2008, 220: 632-642

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700