几类高阶差分系统周期解的存在性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse理论)、不动点理论、重合度理论、Kaplan-Yorke藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下:
     首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述.
     其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型.
     在第二章中,我们讨论了一类高阶差分系统.首先,利用Morse理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的Morse指标和原点处的Morse指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解.然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用Morse理论结合Lyapunov-schmidt约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件.
     在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件.
     在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件.
     在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.
As an important banch of modern mathematics, differential equation and difference equation have been widely applied in the area of computer science, economy, neutral net, ecology and control theory, so it is meaningful for the study of the solution of differential equations and difference equations. In the last decades, many researchers have deeply studied the existence and multiplicity of periodic solutions of differential equations with different approaches, such as critical point theory(which includes minimax theory, geometrical index theory and Morse theory), fixed point theory, coincidence degree theory, the Kaplan-Yorke method and so on. Among these approaches, critical point theory is a powerful tool to deal with such problem. However, results on periodic solutions of difference equations by using critical point theory are very scare in the literature because of the difficulty of finding the suitable variation structure. In this dissertation, the existence of periodic solutions for some class of higher order difference equation(system) and of solutions for an elliptic system is studied by using critical point theory, and a series of new results are obtained. The contents of the dissertation are introduced as follows:
     Firstly, we sketch the development of methods of variation. The historical background and the recent development of elliptic equations(systems) and Hamil-tonian systems related to our problems are introduced. At the same time, the main contents of the dissertation are outlined.
     Secondly, we construct some class of higher order difference system, and chang the existence of periodic solutions of some higher order difference equation (systems) and of solutions for an elliptic system into the existence of critical points of corresponding functional on suitable function space after finding the suitable variation structure. We have developed the second order models.
     In chapter 2, we study a higher-order difference system in the case that the nonlinearity is asyptotically linear and superlinear by combining Morse theory with computation of critical point groups at first. We conclude the following results: In the case that the nonlinearity is asymptotically linear, the existence of nontrivial periodic solutions are obtained under the conditions of resonance or nonresonance if the Morse index at infinity different from the one at zero; In the case that the nonlinearity is superlinear, at least three nontrivial periodic solutions are obtained. Then, multiple and infinite many periodic solutions for the higher order difference system are obtained by using linking theory and symmetric mountain pass lemma respectively, and some results improve or extend the related results in the literatures.
     At last, by combining Morse theory with Lyapunov-schmidt reduction method and three critical points theory, multiple and infinitely many periodic solutions for the higher order difference system are obtained. The method of studying differential equation has been developed to that of difference equation.
     In chapter 3, The existence of nontrivial periodic solutions of a higher order functional difference equation is considered by linking theorem. Nontrivial periodic solutions are obtained.
     The existence of nontrivial periodic solutions of a higher order difference equation with resonance is considered in chapter 4. Some sufficient conditions of the existence of at least three or four nontrivial periodic solutions are obtained by using local linking and abstract angle conditions at infinity.
     In the last chapter we consider an elliptic system by using the generalized Mountain Pass Lemma, and some results improve or extend the related resultes in the literatures.
引文
[1]Chen M P,Yu J S,Qian X Z.On the stability of a delay differential population model.Nonlinear Analysis:Theory,Methods and Applications,1995,25(2):187-195
    [2]Huang L H,Chen Y M,Wu J H.Boundedness of solutions for a class of nonlinear planar systems.Tohoku Mathematical Journal,2002,54:393-417
    [3]Joseph,So W H,Yu J S.Glabal attractivity for a population model with time delay.Proceedings of the American Mathematical Society,1995,123(9):2687-2694
    [4]阮炯.具有非对称权阵的Hopfleld连续神经网络的稳定性分析.复旦学报(自然科学版),1992,31(2):227-232
    [5]Wang Z C.A necessary and sufficient condition for the oscillation of higher-order neutral equations.Tohoku Mathematical Journal,1989,41:575-588
    [6]Yosida Y.Functional Analysis.Berlin:Springer-Verlag,1995
    [7]Chert G,Hsu S,Zhou J.Snap-back repellers as a cause of chaotic vibration of the wave equation with an Del Pol bounderary condition and energy injection at the middle of the span.Journal of Mathematics and Physics,1998,39:6459-6488
    [8]刘秉正.非线性动力学与混沌基础.长春:东北师范大学出版社,1994
    [9]Lin W,Ruan J,Zhao W.On the mathematical clarification of the snap-back-repeller in high-dimensional systems and chaos in a discrete neural network model.Journal of Bifurcation Chaos,2002,12:1129-1140
    [10]Li T Y,Yorke J A.Period three implies chaos.American Mathematical Monthly,1975,82:985-992
    [11]Marotto F R.Snap-back repellers imply chaos in R~n.Journal of Mathematical Analysis and Applications,1978,63:199-223
    [12]Wu J H.Stable phase-locked periodic solutions in a delay differential system.Journal of Differential Equations,2003,194:237-286
    [13]Wang Z C,Tang X H.On the oscillation of neutral differential difference equations with 'integerally small' coefficients.Journal of Differential Equations,2001,17(2):173-186
    [14]Agarwal R P.Difference Equations and Inequalities:Theory,Methods and Appli-cations.New York:Marcel Dekker,1992
    [15]Elady S N.An Introduction to Difference Equations.New York:Springer-Verlag,1999
    [16]Kocic V L,Ladas G.Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Boston:Kluwer Academic Publishers,1993
    [17]Wang J L,Chen L N,Jing Z J.Chaos and asymptotical stability in discrete-time recurrent neural networks with generalized input-output function.Science in China (series A),2001,44(2):193-200
    [18]Chen Y M,Zhou Z.Global attractivity and oscillation in a nonlinear periodic delay difference equation.Computers and Mathematics with Applications,2003,45:943-950
    [19]Erbe L H,Yu J S.Global stability of a linear nonautonomous delay difference equations.Journal of Differential Equation Applications,1995,1:151-161
    [20]Hatsunaga H,Hara T,Sakata S.Global attractivity for a nonlinear difference equa-tion with variable delay.Computers and Mathematics with Applications,2001,41:543-551
    [21]Zhang Q,Zhou Z.Global attractivity of a nonautonomous discrete logistic model.Hokkaido Mathematical Journal,2000,29:37-44
    [22]Zhou Z,Zhang Q.Uniform stability of nonlinear difference systems.Journal of Mathematical Analysis and Applications,1998,225:486-500
    [23]周展,庾建设.非自治时滞差分方程的线性化渐近稳定性.数学年刊,A辑,1998,19(3):301-308
    [24]周展,庾建设.非自治中立型时滞差分方程的稳定性.数学学报,1999,42(6):1093-1102
    [25]Zhou Z,Wu J.Attractive periodic orbits in nonlinear delayed discrete-time neural networks with delayed feedback.Journal of Differential Equation Applications,2002,8:467-483
    [26]Zhou Z.Periodic orbits on discrete dynamical systems.Computers and Mathe-matics with Applications,2003,45:1155-1161
    [27]Yu J S.Asymptotic stability for a linear difference equation with variable delay.Computers and Mathematics with Applications,1998,36(10-12):203-210
    [28]Tang X H,Yu J S.Oscillation of nonlinear delay difference equations.Journal of Mathematical Analysis and Applications,2000,249:476-491
    [29]Elaydi S N,Zhang S.Stability and periodicity of difference equations with finite delay.Funkcialaj Ekvac,1994,37:401-413
    [30]Agarwal R P,Popenda J.Periodic solutions of first order linear difference equa-tions.Mathematics and Computer Modelling,1995,22:11-19
    [31] Agarwal R P, Zhang W. Periodic solutions of difference equations with general periodicity. Computers and Mathematics with Applications, 2001, 42(3-5): 719-727
    [32] Fan M, Wang Q. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems. Discrete and Continuous Dynamical Systems, 2004, 4(3)B: 563-574
    [33] Morse M. Relations between the critical points of a real function of n- independent variables. Transactions of the American Mathematical Society, 1925, 27: 345-396
    [34] Morse M. The calculus of variables in the large. Amer. Math. Soc. Colloq., vol 18, Amer. Soc. Providence, 1934
    [35] Lusternik L, Schnirelmann L. "Methodes topologiques dans les problems variationels," Paris: Hermann, 1934
    [36] Palasis R S. Morse theory on Hilbert manifolds. Topology, 1963, 2: 299-240
    [37] Gromoll D, Meyer W. On differentiate functions with isolated critical points. Topology, 1969, 8: 361-369
    [38] Lazzo M. Nonlinear differential problems and Morse theory. Nonlinear Analysis, 1997, 30: 169-176
    [39] Han Z Q. Computations of critical groups and applications to some differential equations at resonance. Nonlinear Analysis, 2007, 67: 1847-1860
    [40] Amann H. Saddle points and multiple solutions of differential equations. Mathematiche Zeitschrift, 1979, 169: 127-166
    [41] 张恭庆.临界点理论及其应用.上海:上海科学技术出版社,1986
    [42] Struwe M. Variational Method, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. second edition. Berlin: Heidelberg Springer,1996
    [43] Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhauser, 1993
    [44] Amann H, Zehnder H. Nontrivial solutions for a class of resonance problems and applications to nonlinear differential equations. Ann. Scuola anaorm. Sup. Pisa(4),1980, 7: 539-603
    [45] Conely C, Zehnder E. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Communications on Pure and Applied Mathematics, 1984, 37: 207-253
    [46] Liu J Q. A Morse index for a saddle point. Journal of Systems Science and Mathematical ScienceSyst, 1989, 2: 32-39
    [47] 陆文端.微分方程中的变分方法(修订版).北京:科学技术出版社, 2003
    [48] Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations. Journal of Mathematical Analysis and Applications, 1974,48: 317-324
    [49] Hale J K , Mawhin J. Coincidence degree and periodic solutions of neutral equations. Journal of Differential Equations, 1974, 15: 295-307
    [50] Brezis H, Nirenberg L. Remarks on finding critical points. Communications on Pure and Applied Mathematics, 1991,XLIV: 936-963
    [51] Struwe M. Variational Methods. Berlin: Springer, 1990
    [52] Landesman E M, Lazer A C. Nonlinear pertubations of linear eigenvalues problem at resonance. J. Math. Mech., 1970, 19, 602-623
    [53] Rabinowitz. Some minimax theorems and applications to nonlinear PDF. Nonlinear Analysis Academic Press, 1978, 161-177
    [54] Brezis H, Nirenberg L, H~1 verse C~1 local minimizers. C. R. Aca. Sci. Paris, 1993, 317: 465-475
    [55] Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with strong resontance at infinity. Nonlinear Analysis: Theory, Methods and Applications, 1983, 7: 981-1012
    [56] Areoya D, Costa D G. Nontrivial solutions for a strongly resonant problem. Differential Equations, 1995, 8: 151-159
    [57] Figueiredo D G, Miyagaki O H. Semilinear elliptic equations with the primitive of the nonlinearity away from the spectrum. Nonlinear Analysis: Theory, Methods and Applications, 1991, 17: 1201-1219
    [58] Liu S B. Remarks on multiple solutions for elliptic resonant problems. Journal of Mathematical Analysis and Applications, 2007, 336:498-505
    [59] Tang C L, Wu X P. Existence and multiplicity of solutions of semilinear elliptic equations. Journal of Mathematical Analysis and Applications, 2001, 256: 1-12
    [60] Berestycki H, Figueriredo D G. Double resonance in semilinear elliptic prblems. Comm. Partial. Differential Equations, 1981, 6: 91-120
    [61] Goncalves J V, De Padua J C, Carriao P C. Variational elliptic problems at double resonance. Differential Integral Equations, 1996, 9: 295-303
    [62] Mizoguchi N. Asymptotically linear elliptic equations without nonresonance conditions. Journal of Differential Equations, 1994, 113: 150-160
    [63] Costa D G, Magalhaes C A. A variational approach to noncooperative elliptic systems. Nonlinear Analysis: Theory, Methods and Applications, 1995, 25: 699-715
    [64] Chang K C, Li S J, Liu J Q. Remarks on multiple solutions for asymptotically linear elliptic boundary value problems. Topological Methods Nonlinear Analysis, 1994, 3: 179-187
    [65] Xavier J B, Miyagaki O H. Remarks on a resonant problem with an unbounded nonlinearity. Journal of Mathematical Analysis and Applications, 1997, 209: 975-989
    [66] Li S J, Liu J Q. Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance. Houston J. Math. 1999, 25: 563-582
    [67] Costa D G, Oliveira A S. Existence of solution for a class of semilinear elliptic problems at double resonance. Bol. Soc. Bras. Mat. 1988, 99: 21-37
    [68] Li S J, Willem M. Applications of local linking to critical point theory. Journal of Mathematical Analysis and Applications, 1985, 189: 6-32
    [69] Hirano N, Nishimura T. Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities. Journal of Mathematical Analysis and Applications, 1993, 180: 566-586
    [70] Li S J, Zou W M. The computations of the critical groups with an application to elliptic resonant problema at a higher eigenvalue. Journal of Mathematical Analysis and Applications, 1999, 235: 237-259
    [71] Schechter M. Nonlinear elliptic boundary value problems at strong resonance. Amer. J. Math, 1990, 112: 439-460
    [72] Schechter M. A bounded mountain pass lemma without (PS) condition and applications. Transactions of the American Mathematical Society, 1992, 331: 681-703
    [73] Fei G H. Maslov-type index and periodic solutions of asymptotically linear systems which are resonant at infinity. Journal of Differential Equations, 1995, 121: 121-133
    [74] Chang K C. Solutions of asymptotically linear operator equations via Morse theory. Communications on Pure and Applied Mathematics, 1981, 34: 693-721
    [75] Su J B, Tang C L. Multiplicity results for semilinear elliptic equations with resonance at higher eigenvalues. Nonlinear Analysis, 2001, 44: 311-321
    [76] Zou W M. Multiple solutions for elliptic solutions with resonance. Nonlinear Analysis, 2002, 48: 363-376
    [77] Su J B. Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues. Nonlinear Analysis, 2002, 48(6): 881-895
    [78] Su J B. Existence and multiplicity results for classes of elliptic resonance problems. Journal of Mathematical Analysis and Applications, 2002, 273: 565-579
    [79] Su J B. Multiplicity results for asymptotically linear elliptic problems at resonance. Journal of Mathematical Analysis and Applications, 2003, 278: 397-408
    [80] Su J B, Zhao L G. An elliptic resonance problems with multiple solutions. Journal of Mathematical Analysis and Applications, 2006, 319:604-616
    [81] Castro A. Reduction Methods Via Minimax(Differential Equations Lecture Notes in Math). Berlin: Springer, 1982, 957: 1-20
    [82] Castro A, Cossio J. Multiple solutions for a nonlinear Dirichlet problem. SIAM Journal of Mathematical Analysis, 1994, 25: 1554-1561
    [83] Li S J, Zhang Z T. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5: 489-483
    [84] Liu S B, Li S J. Critical groups, at infinity, saddle point reduction and elliptic resonant problems. Commun. Comtemp. Math., 2003, 5: 761-773
    [85] Costa D G, Magalhaes C A. A variational approach to subquadratic perturbations of elliptic systems. Journal of Differential Equations, 1994, 111: 103-122
    [86] Bartsch T, Li S J. Critical point theory for asymptotically quadratic functions with applications to problems at resonance. Nonlinear Analysis: Theory, Methods and Applications, 1997, 28: 419-441
    [87] Benci V. On critical point theory for indefinite functional in presence of symmetries. Transactions of the American Mathematical Society, 1982, 24: 533-572
    [88] Costa D G. Multiple solutions for a class of strongly indefinite problems. Mat. Contemp., 1998, 15:87-103
    [89] Li Y Q. A limit index theory and its application. Nonlinear Analysis: Theory, Methods and Applications, 1995, 25: 1371-1389
    [90] Benci V, Rabinowitz P H. Critical point theorem for indefinite functionals. Inventiones Mathematica, 1979, 52: 241-273 [91] Huang D W, Li Y Q. Multiplicity of solutions for a noncooperative p-Laplacian elliptic system in R~N. Journal of Differential Equations, 2005, 215: 206-223
    [92] Costa D G, Magalhaes C A. A unified approach to a class of strongly indefinite functionals. Journal of Differential Equations, 1996, 125: 521-547
    [93] Barsch T, Clapp M. Critical point theory for indefinite functionals with symmetry. Journal of Functional Analysis, 1996, 138:107-136
    [94] Hirano H. Infinitely many solutions for non-cooperative elliptic system. Journal of Mathematical Analysis and Applications, 2005, 311: 545-566
    [95] Fournier G, Lupo D, Ramos M, Willem M. Limit relative category and critical point theory. Dynamics Rep. 1994, 3: 1-24
    [96] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. Journal of Functional Analysis, 1973, 14 .349-381
    [97] Szulkin A. Cohomology and Morse theory for strongly indefinite functionals. Mathematische Zeitschrift, 1992, 209: 375-418
    [98] Guo Y X. Nonlinear solutions for resonant non-cooperative elliptic system. Communications on Pure and Applied Mathematics, 2000, 53(11):1335-1349
    [99] Guo Y X, Liu J Q. Morse theory for strong indefinite functional. Nonlinear Analysis, 2002, 48: 831-851
    [100] Guo Y X, Liu J Q, Zeng P A. A new morse index theory for strong indefinite functionals. Nonlinear Analysis, 2004, 57: 485-504
    [101] Ding Y H, Liu J Q. Periodic solutions of asymptotically linear Hamiltonian systems. Journal of Systems Science and Mathematical Science, 1989, 9: 30-39
    [102] Abbondandolo A. Morse Theory for Hamiltonian Systems. New York: CRC, 2001
    [103] Li S J, Liu J Q. Morse theory and asymptotically linear Hamiltonian systems. Journal of Differential Equations, 1989, 79: 53-73
    [104] Li S J, Szulkin A. Periodic solutions for a class of nonautonomous Hamiltonian systems. Journal of Differential Equations, 1994, 112(1): 226-238
    [105] Margheri A, Rebelo C. Maslov index. Poincare-Birkhoof theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. Journal of Differential Equations, 2002, 183: 342-367
    [106] Wu X P, Tang C L. Periodic solutions of nonautonomous second order Hamiltonian systems with even-type potential. Nonlinear Analysis, 2003, 55: 759-769
    [107] Fei G H, Kim S K, Wang T X. Periodic solutions of classical Hamiltonian systems without Palasis-Smale condition. Journal of Mathematical Analysis and Applications, 2002, 267: 665-678
    [108] Rabinowitz P H. Periodic solutions of Hamiltionian system. Communications on Pure and Applied Mathematics, 1979, 31:157-184
    [109] Rybicki S. Degree for S~1-equivariant strongly indefinite functional. Nonlinear Analysis, 2001, 43: 1001-1017
    [110] Radzki W, Rybicki S. Degenerate bifurcation points of periodic solutions of autonomous Hamiltonian systems. Journal of Differential Equations, 2004, 202: 284-305
    [111] Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations. in: Regined Conference Series in Mathematics 65, CBMS Providence RI, AMS, 1986,1-45
    [112] Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer-Verlag, 1989
    [113] Long Y M, Xu X J. Periodic solutions for a class of nonautonomous Hamiltonian systems. Nonlinear Analysis, 2000, 41(3-4): 455-463
    [114] An T Q, Long Y M. On the index theories for second order Hamiltonian systems. Nonlinear Analysis, 1998, 34(4)-.585-592
    [115] Abbondandolo A. Morse theory for asymptotically linear Hamiltonian systems. Nonlinear Analysis, 2000, 39: 997-1049
    [116] Su J B. Nontrivial periodic solutions of asymptotically linear Hamiltonian systems with Hamiltonian systemsresonant at infinity. Journal of Differential Equations, 1998, 145: 252-273
    [117] Szulkin A, Zou W M. Infinite dimensional cohomology groups and periodic solutions of asymptotically linear Hamiltonian systems. Journal of Differential Equations, 2001, 174: 369-391
    [118] Yu J S, Bin H H, Guo Z M. Multiple periodic solutions for discrete Hamiltonian systems. Nonlinear Analysis, 2007, 66: 1498-1512
    [119] Tang C L. Multiplicity of periodic solutions for second order systems with a small forcing term. Nonlinear Analysis: Theory, Methods and Applications, 1999, 38(4): 471-479
    [120] Guo Z M, Yu J S. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Science in China(series A), 2003, 46: 506-515
    [121] Guo Z M, Yu J S. The existence of periodic and subharmonic solutions to subquadratic second-order difference equations. Journal of the London Mathematical Society, 2003, 68: 419-430
    [122]Zhou Z,Yu J S,Guo Z M.Periodic solutions of higher-dimensional discrete systems.Proceedings of the Royal Society of Edinburgh,2004,134A:1013-1022
    [123]Guo Z M,Xu Y T.Existence of periodic solutions to a class of second-order neutral differential difference equations.Analysis Functionals Applicata,2003,5(1):13-19
    [124]Guo Z M,Xu Y T.Applications of a Zp index theory to periodic solutions for a class of functional differential equations.Journal of Mathematical Analysis and Applications,2001,257:189-205
    [125]Ahlbrandt C D,Peterson A C.The(n,n)-disconjucacy of a 2nth-order linear difference equation.Computers and Mathematics with Applications,1994,28(1-3):1-9
    [126]Peil T,Peterson.Asymptotic behavior of solutions of a two-term difference equation.Rocky Mountain J.Math.,1994,24:233-251
    [127]Anderson D.A 2nth-order linear difference equation.Computers and Mathematics with Applications,1998,2(4):521-529
    [128]Bin H H,Yu J S.Nontrivial periodic solutions for asymptotically linear resonant difference problem.Journal of Mathenatical Analysis and Applications,2006,322:477-488
    [129]Chang K Q.A variant of mountain pass lemma.Scientia Sinica,1983,26:1241-1255
    [130]Hu R H,Huang L H.Existence of periodic solutions of a class of higher order difference systems.Journal of Korean Mathematics Society,2008,45(2):405-423
    [131]胡蓉晖,黄立宏.一类高阶差分方程周期解的存在性.应用数学学报,2008,31(3):492-499
    [132]Migda M.Existence of nonoscillatory solutions of some higher order difference equation.Appl.Math.E-Notes,2004,4:33-39
    [133]Cai X C,Yu J S.Existence of periodic solutions for a 2nth-order nonlinear difference equation.Journal of Mathematical Analysis and Applications,2007,329:870-878
    [134]陈景良,陈向晖.特殊矩阵.北京:清华大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700