质子交换膜燃料电池阴极水分布及排水可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)“水淹”问题严重影响了电池性能、稳定性及其耐久性。通过对流场水分布及其排水过程的研究将有助于理解电池排水机制,为改进流场和优化电池操作模式提供一定的理论指导,对促进PEMFC技术的发展和产业化具有十分重要的意义。
     设计单流道可视化PEM单池以研究液态水在流道内的传递行为。采用首次液态排水时间和平均液态排水间隔时间等参数对流道照片进一步处理以获取流道排水过程的相关量化信息。
     结合可视化技术与压降测量作为流道内液态水的检测手段,采用平均压降波动评价流道排水状况。发现流道存在特征流速,此时流道内液态水积累最严重。只有大于该流速值,提高流速才能缓解流道内的液态水积累。分析特征流速成因及流道尺寸、扩散层表面特性、电流密度和不同反应气体对其影响,给出流道特征流速的经验公式,计算值与实际电池运行结果符合良好。
     设计120 cm~2可视化PEM单池,研究了阴极直条流场内的液态水分布及其传递行为。通过测量不同位置流道压降,说明反应气体分配不均为流场水分布不均的主要成因。
Water flooding has great influence on the performance, stability and durability of proton exchange membrane fuel cells (PEMFCs). The study of water distribution and removal would be helpful to the understanding of discharging mechanism in fuel cells and give theoretical guidance to the optimization of the flow field and operation style. Therefore, the issue is crucial for the development, application and industrialization of PEMFCs.
     A transparent PEM single cell with single straight channel in the cathode was designed to study water transportation in the cathode channel. To get the quantified information of the water removal, two parameters - time of the first liquid water discharging and mean interval time between adjacent water dischargings were introduced to further process the channel photos.
     The combination of visualization technique and pressure-drop monitor was used as the diagnostic tool to detect liquid water in the cathode channels of PEMFCs. The mean fluctuation of pressure-drop was introduced to evaluate the flow channel discharging. It was found that there was a characteristic gas velocity,at which liquid water accumulation in the flow channel was the most. And the amount of maintained water in the channel increased until gas velocity above the critical value. As well as the cause of the phenomena, effects of channel dimension, surface property of the gas diffusion layer, current density anddifferent gas on the characteristic velocity were studied. An empirical expression for the critical velocity was developed and the calculated results were in accord with the experiments.
     A transparent PEM single cell with 120 cm~2 active area was designed to study water behavior in the straight flow field. The pressure-drop values of different channels proved that uneven reactant distribution was the main cause of the uneven water distribution in the flow field.
引文
[1] http:// www.kjzg.com.cnnewverbrowarticle.phparticleid =900.mht
    [2] 赵惠富.污染气体 Nox 的形成和控制.北京:科学出版社,1993:16-18
    [3] 刘天齐.环境保护.北京: 化学工业出版社,2000:27-29
    [4] 李乃朝,衣宝廉.离子交换膜燃料电池汽车. 电化学,1997(3):125-131
    [5] 衣宝廉.质子交换膜型燃料电池(PEMFC)——国内外状况与主要技术问题.电源技术,1997(21):80-85
    [6] 衣宝廉.燃料电池现状与未来. 电源技术,1998(22):216-221
    [7] 张华民等.质子交换膜燃料电池的发展现状.当代化工,2001(30):7-11
    [8] 袁学庆等.质子交换膜燃料电池在无缆水下机器人上的应用研究.机器人,2003(25):123-126
    [9] Rongzhong Jiang, Deryn Chu.Stack design and performance of polymer electrolyte membrane fuel cells.Journal of Power Sources,2001(93):25–31
    [10] A. Boudghene Stambouli, E. Traversa. Fuel cells, an alternative to standard sources of Energy. Renewable and Sustainable Energy Reviews,2002(6):297–306
    [11]Sergei Gamburzev, A. John Appleby.Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2002(107): 5–12
    [12]Reuel Shinnar .The hydrogen economy,fuel cells,and electric cars. Technology in Society,2003(5):455-476
    [13]Sossina M. Haile.Fuel cell materials and components.Acta Materialia,2003(51):5981-6000
    [14] M.Y. Kariduraganavar, R.K. Nagarale, A.A. Kittur and S.S. Kulkarni.Ion-exchange membranes: preparative methods for electrodialysis and fuel cell application. Desalination, 2006(197):225-246
    [15] Praveen K. Cheekatamarla and C.M. Finnerty. Reforming catalysts for hydrogen generation in fuel cell applications. Journal of Power Sources, 2006(160): 490-499
    [16] Jung-Ho Wee and Kwan-Young Lee. Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. Journal of Power Sources, 2006(157): 128-135
    [17] A.Biyikoglu. Review of proton exchange membrane fuel cell models. International Journal of Hydrogen Energy, 2005(30): 1181–1212
    [18] 衣宝廉.燃料电池——原理、技术、应用.北京:化学工业出版社,2003:1-4
    [19] Jianlu Zhang, Zhong Xie and Jiujun Zhang, etc. High temperature PEM fuel cells. J. Power Sources, 2006(160): 872-891
    [20] Kamaruzzaman Sopian and Wan Ramli Wan Daud. Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy, 2006(31): 719-727
    [21] G. F. McLean, T. Niet, S. Prince-Richard and N. Djilali. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002(27): 507-526
    [22] Hansan Liu, Chaojie Song, Lei Zhang, Jiujun Zhang, Haijiang Wang and David P. Wilkinson. A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources, 2006(155): Pages 95-110
    [23] 姚思童,司秀丽,杨军,刘虹.燃料电池的工作原理及其发展现状. 沈阳工业大学学报,1998(77):42-45
    [24] 衣宝廉.质子交换膜型燃料电池(PEMFC)——国内外状况与主要技术问题.电源技术,1997(21):80-85
    [25] 钟家轮.质子交换膜燃料电池的发展与展望.电池工业,1999(4):23-25
    [26] 陆虎瑜.质子交换膜燃料电池系统开发及应用进展. 电工电能新技术,1999(2):18-22
    [27] 郝德利,韩立明,薛金生,平晓山,刘崇刚.质子交换膜燃料电池技术进展.电源技术,2001(25):436-440
    [28]Mehta, V. and Cooper. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 2003(114): 32–53
    [29]Sossina M. Haile. Fuel cell material and components. Acta material, 2003(51): 5981-6000
    [30]S. Litster and G. McLean. PEM fuel cell electrodes. Journal of Power Sources, 2004(130): 61-76
    [31]Xianguo Li and Imran Sabir. Review of bipolar in PEM fuel cell : flow-field design. International Journal of Hydrogen Energy, 2005(30): 359-371
    [32]Allen Hermann, Tapas Chaudhuri and Priscila Spagnol. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005(30): 1297-1302
    [33]Kamaruzzaman Sopian and Wan Ramli Wan Daud. Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy, 2006(31): 719-727
    [34]Jung-Ho Wee. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews, In press ( doi:10.1016 /j.rser. 2006. 01.005)
    [35] Bin Wang. Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 2005(152): 1-15
    [36] M, Wakizoe, O.A. Velev, S. Srinivasan. Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochimica Acta, 1995, 40(3): 335-344
    [37] E.A. Ticianelli, C.R. Derounin, A. Redono, et al. Methods to advance technology of proton exchange membrane fuel cells. J. Electrochem. Soc., 1988, 135: 2209-2214
    [38] I. D. Raistrick, Electrode assembly for use in a solid polymer electrolyte fuel cell. U.S. Patent 4876115, 1989-10
    [39] E.A. Ticianelli, C.R. Derounin, S. Srinivasan. Location of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. J. Electroanal. Chem., 1988(251): 275-295
    [40] K. Kordesch, G. Simader. Fuel Cells and Their Applications. VCH, Weinheim, 1996
    [41] M.S. Wilson, S. Gottesfeld. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J. of Applied Electrochem., 1992 (22): 1-7
    [42] 韩明, 于景荣, 邵志刚等, 一种超低铂担载量膜电极三合一组件的制备方法. 中国专利, 申请号: 99 1 13160.6, 1999 – 08
    [43] S. Hirano, J. Kim, S. Srinivasan. High performance proton exchange membrane fuel cells with sputter-depoited Pt layer electrodes. Electrochimica Acta, 1997, 42(10): 1587-1593
    [44] E.J. Taylor, E.B. Anderson, N.R.K. Vilambi. Preparation of high-platinum- utilization gas diffusion electrodes for proton exchange membrane fuel cells. J. Electrochem Soc., 1992(139): L45-L46
    [45] 侯明,吴金锋,衣宝廉,韩明.PEM燃料电池流场板.电源技术,2001(25):294-298
    [46] 衣宝廉, 张恩俊, 韩明, 一种薄金属板模具冲压冲剪成型的燃料电池双极板. 中国专利, 申请号: 99 1 13181.9, 1999 – 08
    [47] T.R. Ralph. Proton exchange membrane fuel cells. Platinum Metals Review, 1997,41(3): 102-131
    [48] J. J. baschuk and X.Liu. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J. Power Sources, 2000(86): 181-196
    [49] Gibb R Peter, et al, “Fuel Cell Fluid Flow Field Plate and Methods of Making Fuel Cell Flow Field Plates”, WO:00/41260, 2000
    [50] Tabatabaian Mehrzad, et al, “Differential Pressure Fluid Flow Field for Fuel Cells”, US: 6586128, 2003
    [51] Jefferson YS Yang, et al, “Anode stream recirculation system for a fuel cell”, US: 2002/0150801, 2002
    [52] Naoto Kashiwagi, et al, “Fuel Cell Power Plant”, US:2002/0136942, 2002
    [53] 黄志尧,金宁德,李海青. 层析成像技术在多相流检测中的应用. 化学反应工程与工艺,1996(12):395-405
    [54] 裴宇阳,唐国有,郭之虞.中子照相技术及其应用.现代仪器,2004(5):17-23
    [55] A.B.Geiger, A.Tsukada, E.Lahmann, P.Vontobel, A.Wokaun and G.G.Scherer. In situ investigation of two-phrase flow patterns in flow fields of PEFC using neutron radiograrhy. Fuel Cells, 2002(2) : 92-98 [ 56 ] Renaut Nosdale, Gerard Gebel and Michel Pineri. Water profile determination in a running proton exchange membrane fuel cell using small-angle neutron scattering. Journal of Membrance Science, 1996(118) : 269-277
    [57] R. Satija, D.L. Jacobson, M. Arif and S.A. Werner. In situ neutron imaging technique for evaluation of water management systems in operating PEM fuelcells. Journal of Power Sources, 2004(129): 238–245
    [58] I.A. Schneider, D. Kramer, A. Wokaun and G.G. Scherer. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy. Electrochemistry Communications, 2005(7): 1393–1397
    [59] A. Turhan, K. Heller, J.S. Brenizer and M.M. Mench. Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging. Journal of Power Sources, 2006(160):1195-1203
    [60] N. Pekula, K. Heller, P.A. Chuang, A. Turhan, M.M. Mench, J.S. Brenizer and K. Unlu. Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging. Nuclear Instruments and Methods in Physics Research A, 2005(542): 134–141
    [61] T.A. Trabold a, J.P. Owejan, D.L. Jacobson, M. Arif and P.R. Huffman. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography : Part 1 – Experimental method and serpentine flow field results. International Journal of Heat and Mass Transfer, 2006(49 ): 4712–4720
    [62] J.P. Owejan, T.A. Trabold, D.L. Jacobson, D.R. Baker, D.S. Hussey and M. Arif. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography : Part 2 – Transient water accumulation in an interdigitated cathode flow field. International Journal of Heat and Mass Transfer, 2006(49): 4721–4731
    [63] Denis Kramera, Jianbo Zhangc, Ryoichi Shimoic, Eberhard Lehmannb, Alexander Wokauna, Kazuhiko Shinoharac, and G¨unther G. Scherera. In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells byneutron imaging Part A. Experimental, data treatment, and quantification. Electrochimica Acta, 2005(50):2603-2614
    [64] Jianbo Zhanga, Denis Kramerb, Ryoichi Shimoia, Yoshitaka Onoa, Eberhard Lehmannc, Alexander Wokaunb, Kazuhiko Shinoharaa and G¨unther G. Schererb. In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging Part B. Material variations. Electrochimica Acta, 2006 (51) :2715–2727
    [65] D.J. Ludlowa, C.M. Calebrese, S.H. Yu, C.S. Dannehyd, D.L. Jacobson, D.S. Hussey e, M. Arif e, M.K. Jensen a and G.A. Eisman. PEM fuel cell membrane hydration measurement by neutron imaging. Journal of Power Sources, 2006 (162): 271–278
    [66] K. W. Feindel, L. P.-A. LaRocque, S. H.Bergens, D. Starke and R. E. Wasylishen. In situ observations of water production and distribution in an operating H2/O2 PEM Fuel Cell assembly using 1H NMR microscopy. J. Am. Chem. Soc., 2004(126): 11436-11437
    [67] M. Saito, N. Arimura, K. Hayamizu and T. Okada. Mechanisms of Ion and Water Transport in Perfluorosulfonated Ionomer Membranes for Fuel Cells. J. Phys. Chem. B, 2004(108): 16064-16070 [ 68 ] M.M. Mench, Q.L. Dong, C.Y. Wang. In situ water distribution measurements in a polymer electrolyte fuel cell. Journal of Power Sources,2003(124):90-98 [ 69 ] P.Argyropoulous, K.Scott and W.M.Taama.Carbon dioxide evolution patterns in direct methanol fuel cell. Electrochemical acta, 19999(24): 3575-3854
    [70]T.Bewer, T.Beckmann, H.Dohle, J.Mergel and D.Stolten. Novel method forinvestigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. Journal of Power Sources, 2004(125): 1-9
    [71] G.Q.Lu and C.Y.wang. Electrochemical and flow characterization of a direct methanol fuel cell. Journal of Power Sources, 2004(134): 33-40
    [72] H.Yang, T.S.Zhao and Q.Ye. In stiu visualization study of CO2 gas bubble behavior in DMFC anode flow field. Journal of Power Sources, 2005(139): 79-90
    [73] H. Yang, T.S. Zhao and P. Cheng. Gas–liquid two-phase flow patterns in a miniature square channel with a gas permeable sidewall. International Journal of Heat and Mass Transfer,2004(47): 5725–5739
    [74] Tüber K, Pocza D, Hebling C.Visualization of water buildup in the cathode of a transparent PEM fuel cell.Journal of Power Sources, 2003(2): 403-414
    [75] Alex Hakenjos, Harald Muenter, Ursula Wittstadt, Christopher Hebling .A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. Journal of Power Sources, 2004(131): 213-216
    [76] X.G.Yang, F.Y.zhang, A.L.Lubawy, etc. Visualization of liquid water transport in a PEFC.ECS, 2004(7): A408-A411
    [77] F.Y.zhang, X.G.Yang, C.Y.wang.Liquid water removal from a polymer electrolyte fuel cell.ECS, 2006(153): A225-A232
    [78] Xuan Liu, Hang Guo and Chongfang Ma. Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells. Journal of Power Sources, 2006(156): 267-280
    [79] Lixin You and Hongtan Liu. A two-phase flow and transport model for the cathode of PEM fuel cells. Journal of Colloid and Interface Science, 2006(300) : 673–687
    [80] Z. H. Wang, C. Y. Wang and K. S. Chen. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources, 2001(94): 40-50. [ 81 ] S. Um, C.Y. Wang. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. Journal of Power Sources,2004 (125) :40–51
    [82] B.R. Sivertsen, N. Djilali. CFD-based modelling of proton exchange membrane fuel cells . Journal of Power Sources,2005 (141):65–78.
    [83] Shan-Hai Ge and Bao-Lian Yi. A mathematical model for PEMFC in different flow modes. Journal of Power Sources, 2003(124): 1-11
    [84] Hua Meng and Chao-Yang Wang. Large-scale simulation of polymer electrolyte fuel cells by parallel computing. Chemical Engineering Science, 2004(59):3331-3343
    [85] Q. Dong, J. Kull and M.M. Mench. Real-time water distribution in a polymer electrolyte fuel cell. Journal of Power Sources, 2005(139): 106-114
    [86] Peng Quan, Biao Zhou, Andrzej Sobiesiak and Zhongsheng Liu. Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode. Journal of Power Sources, 2005(152):131-145
    [87] Kui Jiao, Biao Zhou and Peng Quan. Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack. Journal of Power Sources, 2006(154): 124-137
    [88]Paul A.C. Chang, Jean St-Pierre, Jürgen Stumper and Brian Wetton. Flow distribution in proton exchange membrane fuel cell stacks. Journal of Power Sources, 2006(162): 340-355
    [89]F. Barreras, A. Lozano, L. Vali?o, C. Marín and A. Pascau. Flow distribution a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies. Journal of Power Sources, 2005(144): 54-66
    [90]A. G. Yiotis, A. K. Stubos, A. G. Boudouvis and Y. C. Yortsos. A 2-D pore-network model of the drying of single-component liquids in porous media. Advances in Water Resources, 2001(24): 439-460
    [91]K. Boomsma, D. Poulikakos and Y. Ventikos. Simulations of flow through open cell metal foams using an idealized periodic cell structure. International Journal of Heat and Fluid Flow, 2003(24): 825-834
    [92] E.B.V. Dussan, R.T.-P. Chow, J. Fluid Mech. 137 (1983) 1–29.
    [93] M. Mahe, M. Vignes-Adler, P.M. Adler. Adhesion of droplets on a solid Wall and detachment by a shear flow II. Rough substrates. J. Colloid Interface Science,1988(126): 329–336.
    [94] Ay Su,Fang-Bor Weng,Chun-Ying Hsu,Yen-Ming Chen. Studies on flooding in PEM fuel cell cathode channels. International Journal of Hydrogen Energy, 2006 (31): 1031 - 1039
    [95] A. Theodorakakos, T. Ous, M. Gavaises, J.M. Nouri, N. Nikolopoulos and H. Yanagihar. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Journal of Colloid and Interface Science, 2006 (300): 673–687
    [96]Ken S. Chenn,y, Michael A. Hickner and David R. Noble. Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface. International Journal of Energy Research, 2005(29):1113–1132
    [97] E.C. Kumbur, K.V. Sharp, M.M. Mench. Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel. Journal of Power Sources, 2006(121): 333-345
    [1] 衣宝廉. 燃料电池—原理·技术·应用. 北京: 化学工业出版社, 2003.160-162
    [2] 胡军. 质子交换膜燃料电池传递现象数值模拟. 中国科学院大连化物所, 博士后出站报告 2003-06-22
    [3] Duksu Hyun, Junbom Kim. Study of external humidification methode in proton exchange membrane fuel cell. Journal of Power Sources, 2004(126): 98-103
    [1] Tüber K, Pocza D, Hebling C.Visualization of water buildup in the cathode of a transparent PEM fuel cell.Journal of Power Sources, 2003(2): 403-414
    [2] Alex Hakenjos, Harald Muenter, Ursula Wittstadt, Christopher Hebling .A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding. Journal of Power Sources, 2004(131): 213-216
    [3] X.G.Yang, F.Y.zhang, A.L.Lubawy, etc. Visualization of liquid water transport in a PEFC.ECS, 2004(7): A408-A411
    [4] F.Y.zhang, X.G.Yang, C.Y.wang.Liquid water removal from a polymer electrolyte fuel cell. ECS, 2006(153): A225-A232
    [5] Xuan Liu, Hang Guo and Chongfang Ma. Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells. Journal of Power Sources, 2006(156): 267-280
    [6] Ay Su,Fang-Bor Weng,Chun-Ying Hsu,Yen-Ming Chen. Studies on flooding in PEM fuel cell cathode channels. International Journal of Hydrogen Energy, 2006 (31): 1031 – 1039
    [7] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld. Water flow in the gas diffusion layer of PEM fuel cells. Journal of Electrochemical Society, 1991 (138): 2334–2342
    [1] J. J. baschuk and X.Liu. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J. Power Sources, 2000(86): 181-196
    [2] F. Barbir, H. Gorgun and X. Wang. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells.J. Power Sources 141 (2005): 96–101
    [3] Wensheng He, Guangyu Lin and Trung Van Nguyen. Diagnostic Tool to Detect Electrode Flooding in Proton-Exchange-Membrane Fuel Cells. AIChE Journal, 2003(49): 3221-3228
    [4]Y.H. Cai, J. Hu, H.P.Ma, B.L.Yi, H.M. Zhang. Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell. J. Power Sources, 2006(161): 843–848
    [5] F.Y.zhang, X.G.Yang, C.Y.wang. Liquid water removal from a polymer electrolyte fuel cell. ECS, 2006(153): A225-A232
    [6] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld. Water flow in the gas diffusion layer of PEM fuel cells. Journal of Electrochemical Society, 1991 (138): 2334–2342
    [1] A. Kumar and R. G. Reddy. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. J. Power Sources, 2003(113): 11–18
    [2] Dilip Natarajan and Trung Van Nguyen. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J. Power Sources, 2003(115): 66–80
    [3] Hui-Chung Liu, Wei-Mon Yan, Chyi-Yeou Soong and Falin Chen. Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell. J. Power Sources, 2005(142): 125–133
    [4] Young-Gi Yoon, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang and Chang-Soo Kim. Effects of channel and rib widths of flow field plates on the performance of a PEMFC. International Journal of Hydrogen Energy, 2005(30):1363-1366
    [5] E. Birgersson, M. Vynnycky. A quantitative study of the effect of flow-distributor geometry in the cathode of a PEM fuel cell. J. Power Sources, 2006(153): 76–88
    [6] Gen Inoue, Yosuke Matsukuma and Masaki Minemoto. Effect of gas channel depth on current density distribution of polymer electrolyte fuel cell by numerical analysis including gas flow through gas diffusion layer. J. Power Sources, 2006(157) 136–152
    [7] Dewan Hasan Ahmed and Hyung Jin Sung. Effects of channel geometrical configuration and shoulder width on PEMFC performance at high currentdensity. Journal of Power Sources, 2006(162): 327-339
    [8] Wei-Mon Yan, Hsin-Sen Chu, Jian-Yao Chen, Chyi-Yeou Soong and Falin Chen. Transient analysis of water transport in PEM fuel cells. Journal of Power Sources, 2006(162): 1147-1156
    [9] Wei-Mon Yan, Ching-Hung Yang, Chyi-Yeou Soong, Falin Chen and Sheng-Chin Mei. Experimental studies on optimal operating conditions for different flow field designs of PEM fuel cells. J. Power Sources, 2006(160): 284–292
    [10] Ay Su,Fang-Bor Weng,Chun-Ying Hsu,Yen-Ming Chen. Studies on flooding in PEM fuel cell cathode channels. International Journal of Hydrogen Energy, 2006 (31): 1031 - 1039
    [11] A. Theodorakakos, T. Ous, M. Gavaises, J.M. Nouri, N. Nikolopoulos and H. Yanagihar. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Journal of Colloid and Interface Science, 2006 (300): 673–687
    [12] Ken S. Chenn,y, Michael A. Hickner and David R. Noble. Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface. International Journal of Energy Research, 2005(29):1113–1132
    [13] E.C. Kumbur, K.V. Sharp, M.M. Mench. Liquid droplet behavior and instability in a polymer electrolyte fuel cell flow channel. Journal of Power Sources, 2006(121): 333-345
    [14] Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena. 北京:化学工业出版社,2002
    [15] F.Y.Zhang, X.G.Yang, C.Y.Wang. Liquid water removal from a polymerelectrolyte fuel cell. ECS, 2006(153): A225-A232
    [16] 刘光启,马连湘,刘杰. 化学化工物性数据手册—无机卷,北京:化学工业出版社,2002,3-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700