强激光脉冲在等离子体中的非线性传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着超短超强激光脉冲的迅猛发展和“快点火”研究的深入,超短超强激光脉冲与等离子体相互作用成为当前激光等离子体领域的一个研究热点。本文的研究目的是:利用一维粒子模拟方法,对强激光脉冲在等离子体中的非线性传输特性进行研究。
     首先,我们研究了激光脉冲在等离子体中的压缩和分裂。通过数值求解一维非线性薛定谔方程,我们研究了圆偏振入射激光脉冲在初始密度范围为1/4到略低于1倍临界密度的等离子体中的自压缩和分裂现象。研究发现提高等离子体密度和入射激光强度以及减小脉冲宽度可以在更短的传输距离获得有效的激光脉冲压缩,压缩后的脉冲半高宽度可达到初始脉冲半高宽度的1/35,甚至更小。这种压缩是激光脉冲在等离子体中形成高阶孤子的过程中产生的,可以获得比在稀薄等离子体中更好的压缩比例。数值计算的结果给出了该情况下激光脉冲在等离子体中自压缩后形成的高阶孤子分裂。另外我们利用一维粒子数值模拟程序也观察到了脉冲的压缩和分裂现象,得到了与数值计算一致的结果。
     其次,我们从理论上研究了两束交叉传播的激光束与等离子体相互作用产生的电子和离子密度调制。然后用一维粒子模拟程序研究了两束激光脉冲产生的干涉场激发的等离子体布拉格光栅。研究表明等离子体初始密度、脉冲强度和宽度共同影响等离子体布拉格光栅的演化。这种布拉格光栅的密度峰值可以达到初始等离子体密度的8倍以上,并且可以维持几皮秒的时间。
     当继续增大激光脉冲的强度时,我们在等离子体中发现了电磁孤子的形成。两束反传播的激光脉冲在等离子体中经历了一个受激拉曼散射不稳定的过程,在非线性区域,由于散射光频率低于周围的等离子体频率,因此散射光能量的一部分被囚禁在等离子体中。然后,囚禁的激光场的有质动力将电子从高激光场区排开,随后由于电子和离子的分离产生的静电场开始拉走离子,形成几乎没有等离子体的密度空泡,电磁场被捕获在空泡内。此时,等离子体光栅已经形成并且具有很高的峰值密度,因此很容易囚禁形成的电磁孤子,所以我们获得的电磁孤子是一个单周期的准稳态结构,能够在等离子体中保持上千个时间周期。研究发现,等离子体初始密度、激光脉冲宽度和强度,以及等离子体温度以及离子运动共同影响电磁孤子的产生和演化。
     本文分为五章。第一章为综述,简单介绍了激光与等离子体相互作用的研究背景和进展、研究内容、特点以及研究方法等。第二章介绍了激光脉冲在等离子体中的压缩和分裂现象。第三章研究了两束交叉传播的激光脉冲与等离子体相互作用形成的等离子体光栅。第四章研究利用两束交叉传播的激光脉冲在等离子体中形成等离子体光栅来产生相对论电磁孤子。第五章为总结与展望。
In recent years,with the development of Chirped Pulse Amplification technique, laser pulses with focused intensities I≈1018-22W/cm2 and pulse widthτ<1ps are available in many laboratories. The study of the interaction of ultrashort intense laser pulses with plasmas,which is motivated primarily by the fast ignition scheme of inertial confinement fusion,has received more and more attention. This thesis is devoted to studying those issues relevant to the interaction of ultrashort intense laser pulses with plasmas.
     We study self-compression and splitting of a circularly polarized laser pulse propagating in plasmas with its density window from 1/4 critical to slightly below critical density by solving the nonlinear Schrodinger equation numerically. It is demonstrated from the numerical calculation that effective self-compression of laser pulse can be achieved in even shorter distance by increasing both the background plasmas density and intensity of the laser pulse, or decreasing the width of pulse. The full-width at half maximum of the compressed pulse can reach even 1/35 of the initial one’s, and even smaller. It has been found that this kind of self-compression appears in the process of formation of a high-order soliton when a laser pulse propagates in plasmas, so that we can gain more effective compression ratio than that in thin plasmas. We also obtain the splitting of a high-order soliton formed after self-compression of a laser pulse propagating in plasmas from the result of the numerical calculation in this kind of situation. The phenomenon of self-compression and splitting is also observed by using one-dimension particle-in-cell simulations and we get the consistent result with the numerical calculation.
     Solutions of electron and ion density gratings at the linear stage are given. Deep plasma gratings produced by the ponderomotive force of the interference of the two intersecting laser pulses are investigated. Dependence of the plasma gratings on the plasma densities, durations and intensities of the laser pulses are studied with 1D Particle-in-cell (PIC) simulations. It is found that the density peaks of such gratings can be 8 times of the initial plasma density and last a few picoseconds.
     Consider two counter-propagating laser pulses in plasmas, the interaction between the pulses and plasma creates modulation of the electronic and ionic density in plasmas and leads to the Stimulated Raman scattering instability and then results in the localized stable, long-living entities called relativistic electromagnetic solitons. The laser pulses experience stimulated Raman scattering instability and a part of the scattered electromagnetic energy is trapped inside an empty density cavity in which there almost not exist any plasma substantial, therefore allows for trapping relativistic electromagnetic solitons. Dependence of the formation of relativistic electromagnetic solitons on the ion motion, plasma temperature and length, plasma densities, intensities and durations of laser pulse are studied by particle-in-cell simulations.
     The thesis is organized as follows. The first chapter gives a brief introduction of research background and developing process of interaction of laser pulse with plasma. In the second chapter, we investigate self-compression and splitting of laser pulse in plasmas. Then, in the third chapter, Plasma Bragg gratings generated in the interaction of two counter-propagating laser pulses with plasmas is explored.
     Chapter four presents our result of the formation of relativistic electromagnetic solitons with plasma Bragg gratings induced by two counter-propagating laser pulses. As the conclusion, in the last chapter, we briefly summarize the total subject and give an expectation for the future work.
引文
[1]张秋菊,激光在等离子体中传输的数值模拟和理论研究[D],北京,中国科学院物理所,2004
    [2] M. D. Perry and G. Mourou, Terawatt to Petawatt Subpicosecond Lasers [J], Science, 1994, 264(5161), 917-924
    [3] R. E. Kidder. Laser compression of matter: optical power and energy requirements [J], Nucl. Fusion, 1974, 14(6), 797-803
    [4] K. A. Brueckner, and S. Jorna, Laser-driven fusion [J], Rev. Mod. Phys., 1974, 46(2), 325-367
    [5] J. Nuckolls, The early days of accelerator mass spectrometry [J], Phys. Today., 1982, 35(1), 25-32
    [6]张家泰,激光等离子体相互作用物理与模拟[M],郑州,河南科学技术出版社,1999
    [7] S. Augst, D. Strickland, D. Meyerhoff, S. L. Cin, J. Eberly, Tunneling ionization of noble gases in a high-intensity laser field [J], Phys. Rev. Lett., 1989, 63(20), 2212-2215
    [8] M. Perry, A. Szoeke, O. Landen, E. Campbell, Nonresonant multiphoton ionization of noble gases: Theory and experiment [J], Phys. Rev. Lett., 1988,60(12), 1270-1273
    [9] P. B. Corkum, N. H. Burnett, F. Brunell, Above -threshold ionization in the long wavelength limit [J], Phys. Rev. Lett., 1989, 62(11), 1259-1262
    [10] N. H. Burnett, P. B. Corkum, Cold-plasma production for recombination extreme ultraviolet lasers by optical-field-induced ionization [J], J. Opt. Soc. Am. B., 1989, 6(6), 1195-1199
    [11] W. Leemans, C. Clayton, W. Mori, K. Marsh, A. Dyson, C. Joshi, Plasma physics aspects of tunnel-ionized gases [J], Phys. Rev. Lett., 1992, 68(3),321-324
    [12] A. Offenberger, W. Blyth, A. Dangor, A. Djaoui, M. Key, Z. Najmudin, S. Wark, Electron temperature of optically ionized gases produced by high intensity 268 nm laser radiation [J], Phys. Rev. Lett., 1993, 71(24), 3983-3986
    [13] R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. E. Geusic, Above-threshold ionization with subpicosecond laser pulses [J], Phys. Rev. Lett, 1987,59(10), 1092-1095
    [14] Y. Nagatasa, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, K. Toyoda, Soft-x-ray amplification of the Lyman-αtransition by optical-field-induced ionization [J], Phys. Rev. Lett., 1993, 71(23), 3774-3777
    [15] C. Durfee and H. Michberg, Light pipe for high intensity laser pulses [J], Phys. Rev. Lett., 1993, 71(15), 2409-2412
    [16] A. Mcpherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. McIntyre, K. Boyer, C. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases [J], J. Opt. Soc. Am. B., 1987, 4(4), 595
    [17] J. J. Macklin, J. D. Kmetec, C. L. Gordon, High-order harmonic generation using intense femtosecond pulses [J], Phys. Rev. Lett., 1993, 70(7), 766~769
    [18] J. Kraus, K. schafer, K. Kulander et al., High-order harmonic generation from atoms and ions in the high intensity regime [J], Phys. Rev. Lett., 1992, 68(24), 3535-3538
    [19] D. Fittinghoff, P. Bolton, B. Chang, C. Kurlander, Observation of nonsequential double ionization of helium with optical tunneling [J], Phys. Rev. Lett., 1992,69(18), 2642-2465
    [20] X. Liu and D. Umstadter, Competition between ponderomotive and thermal forces in short-scale-length laser plasmas [J], Phys. Rev. Lett., 1992, 69(13), 1935-1938
    [21] R. Fedosejevs, G. Enright, M. Richardson, Supercritical Density Profiles ofCO2-Laser-Irradiated Microballoons [J], Phys. Rev. Lett.,1979, 43(22), 1664-1667
    [22]张杰,强场物理-一门崭新的学科[J],物理,1997,26(11),643-649
    [23] T. Tajima and J. M. Dawson, Laser Electron Accelerator [J], Phys. Rev. Lett., 1979, 43(4), 267-270
    [24] G. Z. Sun, Edward Ott, Y. C. Lee, and Parvez Guzdar, Self-focusing of short intense pulses in plasmas [J], Phys. Fluids., 1987, 30(2), 526
    [25] W. L. Kruer, The Physics of Laser Plasma Interaction [M], New York: Westview Press, 2001
    [26] A. T. Lin and J. M. Dawson, Stimulated Compton scattering of electromagnetic waves in plasma [J], Phys. Fluids., 1975, 18(2), 201
    [27] M. N. Rosenbluth, Parametric Instabilities in Inhomogeneous Media [J], Phys. Rev. Lett., 1972, 29(9), 565-567
    [28] C. S. Liu and M. N. Rosenbluth, Electron Temperature-Gradient Instability and Anomalous Skin Effect in Tokamaks [J], Phys. Rev. Lett., 1972, 29(22), 1489-1492.
    [29] K. Nishikawa and C. S. Liu, In Advances in Plasma Physic [M], New York: Wiley, 1976, 16, 3-81.
    [30] M. Borghesi, A. J. MacKinnon, L. Barringer, R. Gaillard, L. A. Gizzi, C. Meyer, and O. Willi, Relativistic Channeling of a Picosecond Laser Pulse in a Near-Critical Preformed Plasma [J], Phys. Rev. Lett., 1997, 78(5), 879-882
    [31] R. Wanger, S. Y. Chen, A. Maksimchuk, and D. Umstadter, Electron Acceleration by a Laser Wakefield in a Relativistically Self-Guided Channel [J], Phys. Rev. Lett., 1997, 78(16), 3125-3128
    [32] K. Krushelnick, A. Ting, C. I. Moore H. R. Burris, E. Esarey, P. Sprangle, and M. Baine, Plasma Channel Formation and Guiding during High Intensity Short Pulse Laser Plasma Experiments [J], Phys. Rev. Lett., 1997, 78(21), 4047-4050
    [33] V. Malka, E. De Wispelaere, F. Amiranoff, S. Baton, R. Bonadio, C. Coulaud, R. Haroutunian, A. Modena, D. Puissant, C. Stenz, S. Hüller, and M. Casanova,Channel Formation in Long Laser Pulse Interaction with a Helium Gas Jet [J], Phys. Rev. Lett., 1997, 79(16), 2979-2982
    [34] J. Fuchs, G. Malka, J. C. Adam, F. Amiranoff, S. D. Baton, N. Blanchot, A. Héron, G. Laval, J. L. Miquel, P. Mora, H. Pépin, and C. Rousseaux, Dynamics of Subpicosecond Relativistic Laser Pulse Self-Channeling in an Underdense Preformed Plasma [J], Phys. Rev. Lett., 1998, 80(8), 1658-1661
    [35] J. Mackinnon, M. Borghesi, A. Iwase, and O. Willi, Interaction of Intense Laser Pulses with Preformed Density Channels [J], Phys. Rev. Lett., 1998, 80(24), 5349-5352
    [36] S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Absorption of ultra-intense laser pulses [J], Phys. Rev. Lett., 1992, 69(9), 1383-1386
    [37] A. Pukhov and J. Meyer-ter-Vehn, Relativistic Magnetic Self-Channeling of Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation [J], Phys. Rev. Lett., 1996, 76(21), 3975 -3978
    [38] J. Fuchs, J. C. Adam, Experimental study of laser penetration in overdense plasmas at relativistic intensities. I: Hole boring through preformed plasmas layers [J], Phys. Plasmas., 1999, 6(6), 2563
    [39] P. Yeh, Optical Waves in Layered Media[M], New York: John Wiley & Sons, Inc., 1988, p123, p129.
    [40] I. Nebenzahl, A. Ron and N. Rostoker, Reflected phase-conjugate wave in a plasma [J], Phys. Rev. Lett., 1988, 60(11), 1030-1032
    [41] J. X. Ma, R. Q. Chen and Z. S. Xu, Nearly degenerate four-wave mixing in a plasma by the resonance of an electron-plasma wave [J], J. Opt. Soc. Am. B., 1991, 8(7), 1442-1446
    [42] G. P. Gupta and B. K. Sinha, Phase conjugation in the low reflectivity regime by nearly degenerate four-wave mixing in a homogeneous plasma [J], Phys. Plasmas, 1998, 5(6), 2252
    [43] A. A. Andreev, K. Y. Platonov and R. R. E. Salomaa, Backscattering of ultrashort high intensity laser pulses from solid targets at oblique incidence [J], Phys. Plasmas., 2002, 9(2), 581
    [44] Z. M. Sheng, J. Zhang, and D. Umstadter, Plasma density gratings induced by intersecting laser pulses in underdense plasmas [J], Appl. Phys. B., 2003, 77(6-7), 673-680
    [45] P. Zhang, N. Saleh, S. Chen, Z. M. Sheng and D. Umstadter, An optical trap for relativistic plasma [J], Phys. Plasmas., 2003, 10(5), 2093
    [46] Z. M. Sheng, K. Mima, Y. Sentoku, and K. Nishihara, Parametric instabilities of intense lasers from interaction with relativistic hot plasmas [J], Phys. Rev. E., 2000,61(4), 4362-4369
    [47] Z. M. Sheng, K. Mima, Y. Sentoku, M. S. Jovanovie, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn. Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma [J], Phys. Rev. Lett., 2002, 88(5), 055004
    [48] M. N. Rosenbluth, R. Z. Sagdeev, Handbook of Plasma Physics, North-Holland.
    [49] E. Esarey, P. Sprangle., J. Krall, A. Ting, Overview of plasma-based accelerator concepts [J], IEEE Trans. Plasma Sci., 1996, 24(2), 252-288
    [50] E. L. Clark,K. Krushelnick, J. R. Davies,M. Zepf, M. Tatarakis, F. N. Beg, A. Machacek, P. A. Norreys, M. I. K. Santala, I. Watts and A. E. Dangor, Measurements of Energetic Proton Transport through Magnetized Plasma from Intense Laser Interactions with Solids [J], Phys. Rev. Lett., 2000, 84(4), 670-673
    [51] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, and E. M. Campbell, Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids [J], Phys. Rev. Lett., 2000, 85(14), 2945-2948
    [52] A. L’Huillier and P. Balcou, High-order harmonic generation in rare gases with a 1-ps 1053-nm laser [J], Phys. Rev. Lett. 1993, 70(6), 774-777
    [53] P. Zeitoun, A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam [J], Nature (London) 2004, 431(7007), 426-429
    [54] P. Spr angle, E. Esarey, and A. Ting, Nonlinear interaction of intense laser pulses in plasmas [J], Phys. Rev. A, 1990, 41(8), 4463-4469
    [55] R Ruth, A Chao, P Morton, and P Wilson, A plasma wake field accelerator [J], Part. Accel., 1985, 17(3-4), 171-189
    [56] S. Weber, C. Riconda, and V. T. Tikhonchuk, Strong kinetic effects in cavity-induced low-level saturation of stimulated Brillouin backscattering for high-intensity laser-plasma interaction [J], Phys. Plasmas, 2005, 12(4), 043101
    [57] T. Brabec and F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics [J], Rev. Mod. Phys., 2000, 72(2), 545-591
    [58]盛政明,张杰,余玮,强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕货,2003,物理学报52(1), 125-134
    [59] J. Faure, Y. Glinec, J. J. Santos, and V. Malka, Observation of Laser-Pulse Shortening in Nonlinear Plasma Waves [J], Phys. Rev. Lett., 2005, 95(20), 205003
    [60] O. Shorokhov, A. Pukhov, Self-Compression of Laser Pulses in Plasma [J], Phys. Rev. Lett., 2003, 91(26), 265002
    [61] I. Nebenzahl, A. Ron, and N. Rostoker, Reflected phase-conjugate wave in a plasma [J], Phys. Rev. Lett., 1988, 60(11), 1030-1032
    [62] Y. Ping, I. Geltner, N. J. Fisch, G. Shvets, and S. Suckewer, Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam [J], Phys. Rev. E., 2000, 62(4), R4532-R4535
    [63] C. J. McKinstrie, J. S. Li, R. E. Giacone, and H. X. Vu, Two-dimensional analysis of the power transfer between crossed laser beams [J], Phys. Plasmas, 1996, 3(7), 2686
    [64] W. L. Kruer, S. C. Wilks, B. B. Afeyan, and R. K. Kirkwood, Energy transfer between crossing laser beams [J], Phys. Plasmas, 1996, 3(1), 382
    [65] L. Torner, J. P. Torres, and C. R. Menyuk, Stability of black solitons in media with arbitrary nonlinearity [J], Opt. Lett., 1996, 21(7), 462-464
    [66] M. F. Shih, M. Segev, Three-Dimensional Spiraling of Interacting Spatial Solitons [J], Phys. Rev. Lett., 1997, 78(13), 2551-2554
    [67] Q. L. Dong, Z. M. Sheng, Self-focusing and merging of two copropagating laser beams in underdense plasma [J], J. Zhang, Phys. Rev. E, 2002, 66(2), 027402
    [68] D. Umstadter, E. Esarey, and J. Kim, Nonlinear Plasma Waves ResonantlyDriven by Optimized Laser Pulse Trains [J], Phys. Rev. Lett., 1994, 72(8), 1224-1227
    [69] Z. M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, and J. Zhang, Generation of high-amplitude plasma waves for particle acceleration by cross-modulated laser wake fields [J], Phys. Plasmas, 2002, 9(7), 3147
    [70] D. Umstadter, J. K. Kim, and E. Dodd, Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves [J], Phys. Rev. Lett., 1996, 76(12), 2073-2076
    [71] Z. M. Sheng, K. Mima, Y. Sentoku, M. S. Jovanovic, T. Taguchi, J. Zhang, and J. Meyer-ter-Vehn, Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma [J], Phys. Rev. Lett., 2002, 88(5), 055004
    [72] L. Plaja, L. Roso, Analytical description of a plasma diffraction grating induced by two crossed laser beams [J], Phys. Rev. E., 1997, 56(6), 7142-7146
    [73] Q. J. Zhang, Z. M. Sheng, Y. Cang, and J. Zhang, Density modulation produced by ultrashort laser pulses and the phase reflection induced in underdense plasmas[J], Acta Phys.Sin., 2005, 54(9)(in Chinese), 4217-4222 .[张秋菊,盛政明,苍宇,激光脉冲诱导的等离子体密度调制及其产生的相位反射[J],张杰,2005,物理学报54(9), 4217-4222]
    [74] K. H. Lee, C. H. Pai, L. M. W in, L. C. Ha, J. Wang, and S. Y. Chen, Degenerate four-wave mixing mediated by ponderomotive-force-driven plasma gratings [J], Phys. Rev. E, 2007, 75(3), 036403
    [75] H. C. Wu, Z. M. Sheng, Q. J. Zhang, Y. Cang, and J. Zhang, Manipulating ultrashort intense laser pulses by plasma Bragg gratings [J], Phys. Plasmas, 2005, 12(11), 113103
    [76] H. C. Wu, Z. M. Sheng, and J. Zhang, Chirped pulse compression in nonuniform plasma Bragg gratings [J], Appl. Phys. L., 2005, 87(20), 201502
    [77] Z. M. Sheng, J. Zhang, and D. Umstadter, Plasma density gratings induced by intersecting laser pulses in underdense plasmas [J], Appl. Phys. B., 2003, 77(6-7), 673-680
    [78] S. V. Bulanov, T. Zh. Esirkepov, N. M. Naumova, F. Pegoraro, V. A. Vshivkov,Solitonlike Electromagnetic Waves behind a Superintense Laser Pulse in a Plasma [J], Phys. Rev. Lett., 1999, 82(17), 3440-3443
    [79] T. Zh. Esirkepov, F. F. Kamenets, S. V. Bulanov, N. M. Naumova, Low-frequency relativistic electromagnetic solitons in collisionless plasmas [J], JETP Lett.,1998, 68(1), 36-41
    [80] N. M. Naumova, S. V. Bulanov, T. Zh. Esirkepov, D. Farina, K. Nishihara, F. Pegoraro, H. Ruhl, A. S. Sakharov, Formation of Electromagnetic Postsolitons in Plasmas[J], Phys. Rev. Lett., 2001, 87(18), 185004
    [81] S. V. Bulanov, T. Zh. Esirkepov, F. F. Kamenets, N. M. Naumova, Fiz. Plazmy, 1995, 21, 584 [Plasma Phys. Rep., 1995, 21, 550]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700