电絮凝法深度脱氮除磷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生活污水虽属于浓度相对较低有机废水,但其中有机高分子物质和氮、磷等其他养分的含量都还很高。随着人类对环境资源开发利用活动的日益增加,使大量含氮、磷营养物质的生活污水、工业废水排入江河湖泊中,增加了水体氮、磷负荷,导致水体富营养化。因此开发城市二级污水处理厂的脱氮除磷工艺迫在眉睫。
     电絮凝技术是近年发展起来的颇具竞争力的水处理技术,与传统方法相比,具有高效、稳定和无需投加化学药剂等显著特点。但由于能耗的问题,并未引起足够的重视。本文通过电絮凝法对二级处理出水进行深度处理,探讨其脱氮除磷的效果。
     试验采用双铝极板,以NH3-N、TP和COD的去除率等为指标,分别通过改变电解时间、极板间距、电流密度、原水pH值等参数,研究各参数对处理效果的影响;采用正交试验法获得处理的最佳运行工况。
     电解时间太短,絮凝效果较差,电解的时间过长,电流效率会降低,也会使电耗、铝耗及处理成本增大。电解时间应该控制在30 min之内为宜;中性及弱碱性条件下,电絮凝法的处理效果最好;随着电流密度的增大,对COD,NH3-N,TP的去除率都增大,但考虑能耗的关系,电流密度可控制在7.82-15.6A/m2;极板间距的增加,COD去除率下降,试验中的极板间距对磷的去除率影响不是很大,氨氮的去除率随着电极间距的增大而减小,实际应用中考虑到电耗及其他因素,电极间距可控制在1.0-2.0cm范围内。
     对单因素分析的电解时间,原水pH值、极板间距、电流密度这4个影响因素进行正交试验,最终经过综合平衡,得出实验的最佳方案为原水pH值8.0,极板间距为1.5 cm,电流密度为15.6 A/m2,电解时间为25 min。
     实验通过称量电解前后电极材料的净重差来计算处理1 m3水所消耗的电极材料量,结果铝电极消耗量为2.5 g/m3;根据电絮凝过程的电流、电压和电解时间来计算电絮凝处理二级处理出水的电能消耗,结果电絮凝法处理二级处理出水电耗为4度/吨。本文利用电絮凝法对城市污水处理厂二级处理出水进行处理,试验结果为COD去除率可达70%以上,TP去除率达到70%以上,NH3-N去除率达30%以上。电絮凝法深度处理后COD和TP含浓度都达到了GB18918-2002一级A类标准。
Although Domestic wastewater belongs to organic wastewater of relatively low concentration, the content of organic polymer material and nitrogen, phosphorus and other nutrients are also in high levels. As the increasing of activicies of environmental resource development by human, a large number of domestic wastewater, industrial wastewater contained nitrogen and phosphorus nutrients are discharged into the rivers and lakes, increasing the load of water nitrogen and phosphorus, which the direct consequence is eutrophication. Therefore the development of urban secondary wastewater treatment plant's nitrogen and phosphorus removal process is imminent.
     Electrolytic flocculation technology is a water treatment technology developed in recent years and possesses the distinctive feature of efficiency, stability and no auto-adding chemical agents compared with traditional methods. However we don't pay sufficient attention to it due to the issue of energy consumption. In this paper, we use electric flocculation to deeply treat the outlet of secondary treatment and explore its effect of nitrogen and phosphorus removal.
     The test uses dual aluminum plate and study the effect of treatment by respectively changing the electrolysis time, plate distance, current density, pH value of raw water and other parameter, according to the indicators of the removal rate of NH3-N, TP and COD; orthogonal test method is used to obtain the best operating conditions of treatment.
     The effect of flocculation is poor because of the short electrolysis time; current efficiency will be reduced, and power consumption, aluminum consumption and processing costs are increasing due to the long electrolysis time. Electrolysis time should be controlled within 30 min; the effect of electrocoagulation is best within the neutral and alkaline conditions; with the increase of current density, the removal rates of COD, NH3-N, TP are also increased, the current density can be controlled in 7.82-15.6A/m2 considered the energy consumption; COD removal rate is decreased with the increase in plate spacing, plate spacing on the impact of phosphorus removal rate is not great, ammonia nitrogen removal rate is increased as the electrode spacing decreased, the electrode spacing can be controlled within the limits of 1.0-2.0cm as the other factors are taken into account in actual applications.
     These four influencing factors of the electrolysis time, pH value of the raw water, plate spacing, current density in single factor analysis are carried out by orthogonal test, and in final comprehensive balance, we obtain the best test solution of pH value of raw water 8.0, plate spacing 1.5 cm, current density 15.6A/m2, electrolysis time 25min.
     The test calculates the consumption volume of the electrode material by handling 1m3 of water through weighing before and after experiment electrode material's net weight, and finally the aluminum electrode's consumption is 2.5g/m3; we use the electric current, voltage and electrolysis time in flocculation process to calculate the power consumption of the outlet of secondary treatment by electrocoagulation, which is 5 degrees/ton finally. The test use electrocoagulation to deal with the outlet of secondary treatment in urban wastewater treatment plant, the final of test are COD removal rate reached more than 70%, TP reached over 70%, NH3-N above 30%. COD and TP concentration after deeply treated have reached the GB18918-2002 first-class A level standard by electrocoagulation.
引文
[1]舒俭民主编.全球环境问题[M].贵阳:贵州科技出版社,2001,9,174-178.
    [2]肖锦主编.城市污水处理及回用技术[M].北京:化学工业出版社.2002,5,1-5.
    [3]OECD. Eutrophication of Waters of Monitoring, Assessment and Control[A]. OECD Cooperative Program on Monitoring of Inland Waters (Eutrophication Control)[C]. Environment Directorate, OECD, Paris,1982.
    [4]唐云梯.实用环保数据大会[M].武汉:湖北人民出版社,1993,50-55.
    [5]杨祯奎.水域的富营养化及其防治对策[M].北京:中国环境科学出版社,1989,71-73.
    [6]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社,2007,354-367.
    [7]国家环境保护总局.全国环境统计公报(2002年)[EB/OL]. http// www.Zhb.Gov.cn/649371571659472896/20030625.Shtml.2003-06-30.
    [8]赵银慧,朱建平.从城考结果看城市污水处理的发展趋势[J].中国环境监测,2002,18(1):3-5.
    [9]桑义敏,尹炜.CASS工艺在处理低温生活污水中的应用研究[J].环境工程,2002,20(2):16-18.
    [10]刘旭东,张健.A/O一体式曝气生物滤池处理生活污水[J].工业安全与环保,2002,28(5):14-17.
    [11]何全,陈迎.SBR法处理城市生活污水的工艺实验研究[J].医药工程设计,2002,23(1):43-45.
    [12]孙振世,陆芳.我国城市污水处理厂运行状况及加强监督对策[J].中国环境管理,2003,5.
    [13]Grady C P Leslie, Daigger Glen T, Henry C. Biological Wastewater Treatment[M]. New York:Marcel Dekker Inc,1999.
    [14]杨俊,谭远友,曾庆福.城市生活污水深度处理及绿化回用研究[J].武汉可惜学院学报,2003,16(5):21-25.
    [15]黄海林.微滤深度处理生活污水的中试研究[J].化学工业与工程,2006,23(4):370-373.
    [16]周松颖.城镇生活污水深度处理实验研究[J].环境保护科学,2006,32(1):37-39,43.
    [17]付国楷.潜流人工湿地深度净化二级处理出水研究[J].中国给水排水.2007,23(13):31-35.
    [18]林衍,朱金秀.应用生态土壤深度处理技术脱氮除磷的研究[J].西安科技大学学报,2005,25(1):28-31.
    [19]郭雪琳,王成瑞.无土栽培吊兰深度处理生活污水的研究[J].水处理技术,2008,34(6):72-75.
    [20]陈凤祥,曹长兰,宋丽.复合流人工湿地对生活污水深度处理的应用研究[J].广东科技,2007,(8):115-116.
    [21]刘贵云,李承勇,奚旦立.河道底泥陶粒对生活污水中NH3-N的深度处理试验研究[J].东华大学学报:自然科学版,2003,29(5):100-103.
    [22]潘涌璋,饶斌.沸石对猪场废水深度脱氮除磷的效果研究[J].家畜生态学报,2005,26(3):47-49.
    [23]陈繁忠,李穗中.废水净化的电化学技术进展[J].重庆环境科学,1997,19(6):19-22.
    [24]谢光炎.废水净化的电化学方法进展[J].给水排水,1998,24(1):64-68.
    [25]张莹,龚泰石.电絮凝技术的应用与发展[J],安全与环境工程,2009,16(1):38-43
    [26]Vik E A, Calson D A, Eikum A S. Electrocoagulation of Potable Water [J]. Water Res., 1984,18(11):1355-1360.
    [27]孙境蔚.电絮凝技术在废水处理中的应用[J].泉州师范学院学报(自然科学),2006,24(6):55-59.
    [28]S H Lin, M L Chen. Treatment of textile wastewater by electrochemical methods for reuse, Water Res,31(1997):868-876.
    [29]Mohammad Y M, Paul M, Jewel A G, Mehemet k, Jose P, David L C. Fundamentals, present and future perspectives of electroagulation[J]. Journal of Hazardous Materials, 2004,114:119-210.
    [30]冯玉杰,李晓岩,尤宏.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [31]Naumczy K J, Szpyrkowicz L, Zilio-Grandi F. Electrochemical treatment of textile wastewater[J]. Wat.Res. Tech,1996,34(11):17-24.
    [32]潘怀玉,杨岳平,徐新华.电凝聚气浮法处理餐饮废水试验研究[J].云南环境科学,2001,20(3):43-46.
    [33]林辉,甘复兴,田芳.脉冲电絮凝法处理餐饮废水的研究[J].武汉大学学报,2003,49(6):720-724.
    [34]Chen X M. Separation of pollutants from restaurant wastewater by electrocoagulation[J]. Separation and Purification Technology,2000,19:65-76.
    [35]孙金勇,庄云龙.电絮凝法处理生活废水的研究[J].江苏环境科技,2004,17(2):13-15.
    [36]国家环境保护总局.中国环境公报2000[M].北京:化学工业出版社,2001.
    [37]谢翼飞,李旭东.光催化与生化组合工艺联合处理染料废水研究[J].给水排水,2003,29(10):52-54.
    [38]Gianluca C, Nicola R. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation[J]. Wat Res.,2000, (8):19-20.
    [39]Mehmet K. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J]. Hazardous Materials,2003,100:163-178.
    [40]Daneshvar N, Ashassi S H, Kasiri M B. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections[J]. Journal of hazardous materials,2004,112:55-62.
    [41]滕华妹.电凝聚-砂滤法处理制革染色废水[J].环境科学与技术,1999,(4):31-33.
    [42]乐波.直流电絮凝法处理印染废水的研究[J].高电压技术,2005,31(10):49-51.
    [43]杨岳平,宋爽.电絮凝法处理毛纺染色废水[J].环境保护,2000,(8):19-20.
    [44]Kumar P R, Chaudhari S, Khilar K C, Mahajan S P. Removal of arsenic from water by electrocoagulation[J]. Chemosphere,2004,55:1245-1252.
    [45]刘峥.钛-铁双阳极电絮凝法去除电镀废水中的铬(Ⅵ)[J].工业水处理,2007,27(10):51-54.
    [46]王蓉沙,邓皓.电絮凝法处理油田污水[J].环境科学研究.1999,12(4):30-32.
    [47]王车礼,任连锁.电絮凝处理油田废水初步研究[J].油气田环境保护,2002,12(3):19-21.
    [48]刘海军.电絮凝处理含油废水试验研究[J].水科学与工程技术,2008,(1):30-32.
    [49]王业耀,袁彦肖,田仁生.焦化废水处理技术研究进展[J].工业水处理,2002,22(7):1-4.
    [50]陈长松,李天增,张宝林.A/O工艺处理焦化废水的工程实践[J].环境科学与技术,2006,29(10):85-86.
    [51]程宇婕.电絮凝-过滤法去除源水中微量有机物[J].环境科学与技术,2007,30(8):86-87.
    [52]MACHOY M A. Fluorine in toxicology, medicine, and environment protection[J]. Fluorine,1999,32(4):248-250.
    [53]WANG X C. Fluoride contamination of groundwater and its impact on human heath in Inner Mongolia[J]. J Water STR-Aqua,1999,48(4):146-453.
    [54]李向东.电絮凝法去除应用水中氟的研究[J].安全与环境学报,2006,6(2):33-35.
    [55]张道勇.双极铝电极电絮凝法去除地下水中氟的试验研究[J].水处理技术,2008,34(5):46-49.
    [56]陶澍,张声.饮用水中腐殖物质的研究[J].环境科学学报,1988,8(3):285-288.
    [57]李静波,等.电絮凝-微滤法去除水中腐殖酸的实验研究[J].内蒙古师范大学学报(自然科学汉文版),2007,36(3):338-341.
    [58]林阳,王秋泓.用电絮凝法处理乳品污水的实验研究[J].环境保护科学,2001,27(6):9-10.
    [59]陈希慧.电絮凝法处理纸业废水的研究[J].广西师范学院学报:自然科学版,2002,19(4):1-4.
    [60]Murugananthan M, Raju GB, Prabhakar S. Separation of pollutants from tannery effluents by electrocoagulation[J]. Separation Purification Technology,2004,40: 69-75.
    [61]王莉莉,刘丹,鄂铁军.电絮凝气浮处理城市生活垃圾渗滤液的试验研究[J].四川环境,2008,37(2):15-18.
    [62]高艳娇.生物接触氧化-电絮凝工艺处理垃圾渗滤液研究[J].环境科学与技术,2006,29(3):92-93.
    [63]罗亚田.电凝聚过程中消除电极钝化方法的研究进展[J].能源环境保护,2006,20(3):4-6.
    [64]陈雪明.电凝聚电解电压计算[J].上海环境科学,1997,16(10):27-28,41.
    [65]陈雪明.电凝聚能耗分析与节能措施[J].水处理技术,1997,23(3):165-168.
    [66]梅建辉.铁阳极交变低频脉冲电源处理甲基橙模拟废水般研究[J].江苏环境科技,2004,17(3):12-17.
    [67]何晓利.管式电凝聚法处理印染废水的特性研究[J].给水排水,2000,26(5):33-35.
    [68]李静波,赵璇,解明曙,等.电絮凝—微滤法去除水中腐殖酸的实验研究[J].内蒙古师范大学学报(自然科学汉文版),2007,36(3):338-341.
    [69]程宇婕,冯启言,李向东.电絮凝—微滤技术应用于给水处理的实验研究[J].能源环境保护,2008,22(4):28-31.
    [70]腾华妹,方建敏,刘健.电凝聚—砂滤法处理制革染色废水[J].环境科学与技术,1999,(4):31-33.
    [71]张素娟,曲久辉,刘会娟,等.电絮凝-催化氧化法去除染料工业废水COD的研究[J].环境污染治理技术与设备,2002,3(3):74-76,85.
    [72]Mills Donald. New Process For Electrocoagulation. American Water Works Association.2000,92(6):34-43.
    [73]CHEN GH, CHEN XM, YUE PI. Electrocoagulation and elec-troflotation of restaurant wastewater[J]. Journal of Environmental Engineering,2000,126(9):858-863.
    [74]王程远.电化学氧化法处理高浓度氨氮废水的研究[J].工业用水与废水,2008,39(3):59-61.
    [75]Mariner L, Lectz FB. Electro-oxidation of ammonia in wastewater[J]. J Appl Electrochem,1978,8:335-345.
    [76]White GC. The Handbook of Chlorination and Alternative Disinfectants[M]. (2nd ed). New York:Van Nostrand ReunhOld,1999,1153-1202.
    [77]陈金銮,施汉昌,徐丽丽.pH值对氨氮电化学氧化产物与氧化途径的影响[J].环境科学,2008,29(8):2277-2281.
    [78]Lin S H, Wu C L. Electrochemical removal of nitrite and ammonia for aquaculture[J], Wat Res,1996,30(3):715-721.
    [79]Vlyssides AG, Israilides CJ. Detoxification of tannery waste liquors with all electrolysis system [J], Environ Pollut,1997,97(1-2):147-152.
    [80]K Fytianos, E Voudrias, N Raikos, Modeling of phosphorus removal from aqueous and wastewater samples using ferric iron, Environ-mental Pollution,1998(101): 123-130.
    [81]孟凡昌,蒋勉.分析化学中的离子平衡[M],北京:科学出版社,1997,7,27-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700