钢筋混凝土框架结构的整体概率地震需求分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震动(Earthquake Motion)、地震需求(Seimsic Demand)和抗震能力(Seimsic Capacity)是“基于性能的地震工程”(Performance-Based Earthquake Engineering, PBEE)理论的三块基石。工程结构的地震需求与地震动参数之间的关系称为地震需求模型,由于地震发生的随机性和地震动的随机过程性,以及工程结构自身参数的随机性,因此结构的地震需求模型本质是随机的,研究结构地震需求与地震动参数之间概率关系的学科称为“概率地震需求分析(Probabilsitic Seismic Demand Analysis, PSDA)”,相应的关系称为“概率地震需求模型( Probabilsitic Seismic Demand Model, PSDM)”。
     工程结构的概率地震需求分析是结构抗震可靠度分析、结构地震易损性分析以及结构地震风险分析的基础,同时也是采用全概率方法进行结构概率抗震性能设计和概率抗震性能评定的重要组成部分;另外,概率地震需求分析的结果也可以为地震损失估计和防震减灾决策提供科学的依据。因此,对重大土木工程结构和基础设施系统进行概率地震需求分析,不仅具有重要的理论意义,而且具有重要的工程实用价值。
     本文在美国太平洋地震工程研究中心(Pacific Earthquake Engineering Research Center, PEER)提出的新一代“基于性能的地震工程”概率决策框架之下,分别以地震动的峰值参数(PGA、PGV、PGD)和谱参数(Sa、Sv、Sd)作为概率地震需求分析的输入变量,以结构的最大层间位移角、最大顶点位移角和等效单自由度位移延性系数作为整体地震需求参数,选取不同震中距和震级的100条实际地震纪录,以基于非线性纤维梁—柱单元的动力时程分析为工具,从只考虑地震动变异性与同时考虑结构参数变异性两个角度出发,分别建立钢筋混凝土框架结构基于对数线性回归模型和响应面模型的概率地震需求模型,结合场地的地震危险性,对结构的地震需求危险性和地震需求易损性进行系统深入的分析。研究结果表明:
     1.只考虑地震动变异性的地震需求模型与同时考虑地震动变异性和结构参数变异性的地震需求模型相比,分析结果偏于保守。
     2.地震动峰值参数与谱参数相比,回归分析的离散程度较大。
     3.通过使用对数线性回归模型和响应面模型来建立概率需求模型,发现分别得到的危险性曲线和易损性曲线有一定差异,说明概率地震需求分析依赖于对其选择的模型。
Earthquake motion, seismic demand and seismic capacity are three cornerstones of Performance-Based Earthquake Engineering (PBEE) theory. The relationships between seismic demand parameters of engineering structures and earthquake motion intensity measures are called seismic semand models. Since the seismic activity is random in nature, and the earthquake motion is a stochastic process; what’s more, the structural model and its parameters are random due to both aletory and epistemic uncertainities, therefore, the structural seismic semand model is also random in nature. Probabilistic Seismic Demand Analysis (PSDA) is the subject which sets up the probabilistic relationships of seismic demand parameters and earthquake motion intensity measures, and the results of PSDA is named Probabilistic Seismic Demand Models (PSDM).
     Probabilistic seismic demand analysis of engineering structures is the foundation of structural seismic reliability analysis, structural seismic fragility analysis and structural seismic risk analysis; meanwhile, it also is an important part of probabilistic performance-based seismic design and assessment of structures by using the full probability (level-3) method. On the other hand, the results of PSDA can also provide scientific basis for earthquake loss estimation and earthquake disaster mitigation decision-making. Therefore, it is very important to apply PSDA in civil engineering structures and infrastructure systems.
     Under the probabilistic decision-making framework of the new generation of PBEE proposed by Pacific Earthquake Engineering Research Center (PEER), this study uses the peak value parameters (PGA, PGV and PGD) and spectrum parameters (Sa, Sv and Sd) of earthquake motion intensity measures as the input variables of PSDA, and takes the Inter-Storey Displacement Angle (ISDA), Roof Displacement Angle (RDA) and equivalent single-degree of freedom displacement ductile coefficient (μd) as the global seismic demand parameters of structures. 100 actual seismic motion records are selected according to different epicentral distances and magnitudes, and then the dynamic time history analysis based on nonlinear fibre beam-column elements is used as the computational tool for PSDA. From the two viepoints of only considering earthquake motion variations and simultaneously considering structural parameter variations as well as earthquake motion variations, two PSDMs of the reinforced concrete frame structures, namely logarithm linear regression model and response surface model, are set up. Combined with Probabilistic Seismic Hazard Analysis (PSHA) results of the site, the hazard and fragility of the global seismic demand are analyzed thoroughly and systematically.The main conclusions of this thesis are as follows:
     1. Compared with the case of simultaneously considering structural parameter variations and earthquake motion variations, the case of only considering earthquake motion variations is more conservative than the former.
     2. Compared with the results of PSDA based on peak value parameters of earthquake motion, the results PSDA based on spectrum parameters is better.
     3. It is found that threre is a certain difference in PSDMs based on logarithm linear regression model and response surface model. It is indicated by the hazard curves and the fragility curves that PSDA depends on PSDMs.
引文
1 Mackie K. Fragility-Based Seismic Decision Making for Highway Overpass Bridges. Ph.D. Dissertation. Berkeley. Department of Civil and Environmental Engineering of UC Berkeley, 2005.
    2楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估.自然灾害学报. 2005, 10.
    3李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用.北京:科学出版社,2004.12.
    4 Ghiocel D.M et al. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects. Reliability Engineering and System Safety, 1998, 62 197~214.
    5 Ozaki M., et al. Improved response factor methods for seismic fragility of reactor building. Nuclear Engineering and Design, 1998; 185: 277~291.
    6 Bhargava K., Ghosh A.K., and Ramanujama S. Seismic response and fragility analysis of a water storage structure. Nuclear Engineering and Design, 2005; 235:1481~1501.
    7 Cho S.G., Joe Y.H. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea. Nuclear Engineering and Design, 2005; 235:1867~1874.
    8 Hwang H.H.M., Low Y.K. Seismic reliability analysis of plane frame structures. Probabilistic Engineering Mechanics, 1989; 4(2):74~84.
    9 Hwang H.H.M., Low Y.K., and Hsu H.-M. Seismic reliability analysis of flat-plate structures. Probabilistic Engineering Mechanics, 1990; 5(1):2~8.
    10 Hwang H.H.M., Jaw J.-W. Probabilistic damage analysis of structures. Journal of Structural Engineering, ASCE 1990; 116(7):1992~2007.
    11 Seya H, Talbott M. and Hwang H.H.M. Probabilistic seismic analysis of a steel frame structure Probabilistic Engineering Mechanics, 1993; 8(2):127~136.
    12 Hwang H.M, Huo J.-R. Generation of hazard-consistent fragility curves Soil Dynamics and Earthquake Engineering, 1994; 13:345~354.
    13 Ellingwood B.R. Earthquake risk assessment of building structures.Reliability Engineering and System Safety, 2001; 74:251~262.
    14 Song J.-L., Ellingwood B.R. Seismic reliability of special moment steel frames with welded connections: II. Journal of Structural Engineering, ASCE 1999; 125(4):372~384.
    15 Rosowsky D.V., Ellingwood B.R. Performance-based engineering of wood frame housing: Fragility analysis methodology. Journal of Structural Engineering, ASCE 2002; 128(1):32~38.
    16 Kim J.H., Rosowsky D.V. Fragility analysis for performance-based seismic design of engineered wood shearwalls. Journal of Structural Engineering, ASCE 2005; 131(11):1764~1773.
    17 Wen Y.K., Ellingwood B.R. The role of fragility assessment in consequence-based engineering. 9th International Conference on Applications of Stochastic and Probability in Civil Engineering (ICASP9), Der Kiureghian, Madanat & Pestana (eds), Millpress, Rotterdam, 2003:1573~1579.
    18 Sasani M., Der Kiureghian A. Seismic fragility of RC structural walls: Displacement approach. Journal of Structural Engineering, ASCE 2001; 127(2):219~228.
    19 Sasani M., Der Kiureghian A., and Bertero V.V. Seismic fragility of short period reinforced concrete structural walls under near-source ground motions. Structural Safety, 2002; 24(2-4):123~138.
    20 Gardoni P., Der Kiureghian A., and Mosalam K.M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, ASCE 2002; 128(10):1024~1038.
    21 Federal Emergency Management Agency(FEMA), Performance-based Seismic Design of Buildings, FEMA Report 283, September, 1996.
    22 Schotanus M.I.J., et al. Seismic fragility analysis of 3D structures. Structural Safety, 2004; 26(4):421~441.
    23 Rossetto T., Elnashai A. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures, 2003; 25(10):1241~1263.
    24 Dymiotis C., Kappos A.J., and Chryssanthopoulos M.K. Seismic reliability of RC frames with uncertain drift and member capacity. Journal of StructuralEngineering, ASCE 1999; 125(9):1038~1047.
    25 Dymiotis C., Kappos A.J., and Chryssanthopoulos M.K. Seismic reliability of masonry-infilled RC frames. Journal of Structural Engineering, ASCE 2001; 127(3):296~305.
    26 Dumova-Jovanoska E. Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil Dynamics and Earthquake Engineering, 2000; 19:455~466.
    27 Dimova S.L., Negro P. Seismic assessment of an industrial frame structure designed according to Eurocodes. Part 2: Capacity and vulnerability. Engineering Structures, 2005; 27(4):724~735.
    28 Dimova S.L., Elenas A. Seismic intensity parameters for fragility analysis of structures with energy dissipating devices. Structural Safety, 2002; 24(1):1~28.
    29 Curadelli R.O., Riera J.D. Reliability based assessment of the effectiveness of metallic dampers in buildings under seismic excitations. Engineering Structures, 2004; 26(13):1931~1938.
    30 Shinozuka M., et al. Statistical analysis of fragility curves. Journal of Engineering Mechanics, ASCE 2000; 126(12):1224~1231.
    31 Shinozuka M., et al. Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, ASCE 2000; 126(12):1287~1295.
    32 Kim S.-H., Feng M.Q. Fragility analysis of bridges under ground motion with spatial variation. International Journal of Non-Linear Mechanics, 2003; 38:705~721.
    33 Kim S.-H., Shinozuka M. Development of fragility curves of bridges retrofitted by column jacketing. Probabilistic Engineering Mechanics, 2004; 19:105~112.
    34 Choi E., DesRoches R., and Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 2004; 26(2):187~199.
    35 Gardoni P., Der Kiureghian A., and Mosalam K.M. Probabilistic Models and Fragility Estimates for Bridge Components and Systems. PEER Report 2002/13.
    36 Mackie K., Stojadinovic B. Fragility curves for reinforced concrete highwayoverpass bridges. 13th World Conference on Earthquake Engineering, Vancouver, B.C. Canada, August 1-6, 2004, Paper No. 1553.
    37 Lupoi A., Franchin P., and Schotanus M.I.J. Seismic risk evaluation of RC bridge structures. Earthquake Engineering and Structural Dynamics, 2003; 32: 1275~1290.
    38 Tekie P.B., Ellingwood B.R. Seismic fragility assessment of concrete gravity dams. Earthquake Engineering and Structural Dynamics, 2003; 32:2221~2240.
    39 Torres-Veraa M.A., Canas J.A. Lifeline vulnerability study in Barcelona, Spain. Reliability Engineering and System Safety, 2003; 80:205~210.
    40 Hwang H.M., Huo J.-R. Seismic fragility analysis of electric substation equipment and structures. Probabilistic Engineering Mechanics, 1998; 13(2):107~116.
    41尹之潜.地震灾害与损失预测方法.北京:地震出版社,1995.
    42尹之潜.地震损失分析与设防标准.北京:地震出版社,2004.
    43张令心,江近仁,刘洁平.多层住宅砖房的地震易损性分析.地震工程与工程振动, 2002; 22(1):49~55.
    44于德湖,王焕定.配筋砌体结构地震易损性评价方法初探.地震工程与工程振动, 2002; 22(4):97~101.
    45 H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报, 2004(6):47~52.
    46张海燕.基于位移的概率地震需求分析与结构抗震设计研究.湖南大学博士学位论文(导师:易伟建), 2005, 3.
    47楼思展,叶志明,陈玲俐.框架结构房屋地震灾害风险评估.自然灾害学报, 2005; 14(5):99~105.
    48乔亚玲,闫维明,郭小东.建筑物易损性分析计算系统.工程抗震与加固改造, 2005; 27(4):75~79.
    49郭小东等.城市抗震防灾规划中建筑物易损性评价方法的研究.世界地震工程, 2005; 21(2):129~135.
    50姜淑珍,柳春光.城市交通系统易损性分析.工程抗震与加固改造, 2005; 27(增刊):237~241.
    51陶正如,陶夏新.基于地震动参数的建筑物震害预测.地震工程与工程振动, 2005; 24(2):88~94.
    52 Shome, N., Cornell, C. A., Bazzurro, P., and Caraballo, J. E. (1998).“Earthquakes, records, and nonlinear responses.”EERI Earthquake Spectra, 14(3), 467~500.
    53 Nilesh Shome. Probabilistic Seismic Demand Analysis of Nonlinear Structures. March 1999.
    54 Fatemeh Jalayer, C. Allin Cornell. A Technical Framework for Probability-Based Demand and Capacity Factor Design (DCFD) Seismic Formats, August, 2003.
    55 C.Allin Cornell, Fatemeh Jalayer.“Probabilistic basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines”.
    56 Nicolas Luco. Probabilistic Seismic Demand Analysis, SMRF Connection Fractures, and Near-Source Effects. June 2002.
    57 Jorge Eduardo Carballo Arevalo. Probabilistic Seismic Demand Analysis: Spectrum Matching and Design. March 2000.
    58 Dimitrios Vamvatsikos. Seismic Performance, Capacity and Reliability of Structures As Seen Through Incremental Dynamic Analysis. July 2002.
    59 Gee Like Yeo. Stochastic Characterizaton And Decision Bases Under Time-Dependent Aftershock Risk In Performance-Based Earthquake Engineering. February 2005.
    60 Barroso, Probabilistic Seismic Demand Analysis. September 1998.
    61 Dimitrios Vamvatsikos, C. Allin Cornell. Direct estimation of the seismic demand and capacity of MODF systems through Incremental Dynamic Analysis of an SDOF approximation.
    62 Nilesh Shome, C. Allin Cornell.“Structural Seismic Demand Analysis: Consideration of‘Collapse’”. 8th ACSE Specialty Conference on Probabilistic Mechanics and Structural Reliability.
    63 Polsak Tothong, Nicolas Luco.“Probabilistic seismic demand analysis using advanced ground motion intensity measures”. Earthquake engineering and structural dynamics.
    64 Ricardo A. Medina. Seismic Demand for Nondeteriorating Frame Structures and Their Dependence on Ground Motions.
    65 Maria Stoica, Ricardo A. Medina, Rlichard H. McCuen.“Improved probabilistic quantification of drift demands for seismic evaluation”.Structural Safety 29 (2007) 132~145.
    66 Ricardo A. Medina, Antonio B.Rigato.“Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions”. Engineering Structure.
    67 H. Krawinkler, R. Medina, B. Alavi.“Seismic drift and ductility demands and their dependence on ground motions”. Engineering Structures 25 (2003) 637~653.
    68 Hesameddin Aslani, Eduardo Miranda.“Probability-based seismic response analysis”. Engineering Structures 27 (2005) 1151~1163.
    69 Mehrdad Sasani, Armen Der Kiureghian, Vitelmo V. Bertero.“Seismic fragility of short period reinforced concrete structural walls under near-source ground motions”. Structural Safety 24 (2002) 123~138.
    70 Mackie K., Stojadinovic B. Probabilistic Seismic Demand Model for California Highway Bridges.Journal of Bridge Engineering, November, 2001.
    71 Mackie K. Stojadinovic B. Seismic Demand for Performance-Baxed Design of Bridges. August, 2003.
    72 Mackie K. Stojadinovic B. Bridge abutment model sensitivity for probabilistic seismic demand evaluation.
    73 Yuyi Zhang, Gabridl Acero, Joel Conte , zhaohui Yang and Ahmed ELGAMAL. 13th world conference on earthquake engineering. August 1~6, 2004. Paper No.2978.
    74 S.K. Kunnath, R.E. Valles.“Evaluation of seismic damageability of a typical R/C building in Midwest United States”. Eleventh World Conference in Earthquake Engineering, Mexico, June 1996.
    75 Luciana R. Barroso, Steven Winterstein. Probabilistic seismic demand analysis of controlled steel moment-resisting frame structures.Earthquake Engng Struct. Dyn.2002; 31:2049~2066.
    76 Erol Kalkan, Sashi K. Kunnath.“Assessment of current nonlinear static procedures for seismic evaluation of buildings”. Engineering Structures 29 (2007) 305~316.
    77 Luis D. Decanini, Fabrizio Mollaioli.“An energy-based methodology for the assessment of seismic demand”, Soil Dynamics and Earthquake Engineering 21 (2001) 113~137.
    78 H. Moghaddam, I. Hajirasouliha.“An investigation on the accuracy of pushover analysis for estimating the seismic deformation of braced steel frames”, Journal of Constructional Steel Research 62 (2006)343~351.
    79 T.L. Karavasilis, N. Bazeos, D.E. Beskos.“Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames”. Engineering Structures 28 (2006) 9~22.
    80 Iunio I., Gaetano Manfredi.“Seismic risk of RC building classes”. Engineering Structures 29 (2007) 813~820.
    81 G.. Grandori, E. Guagenti, A. Tagliani.“Seismic hazard analysis: How to measure uncertainty?”Comuters and Structures 67 (1998) 47~51.
    82 J.J. Bommer, S.G. Scott, S.K. Sarma.“Hazard-consistence earthquake scenarios”. Soil dynamics and earthquake engineering 19 (2000) 219~231.
    83 S. Akkar, O.Ozen.“Effect of peak ground velocity on deformation demands for SDOF systems”.
    84 Howard Hwang, Jing Bo Liu and Yi-Huei Chiu. Seismic Fragility Analysis of Highway Bridges. Report. Center for Earthquake Research and Information. The University of Memphis. July 2001.
    85张海燕.基于位移的概率地震需求分析与结构抗震设计研究.湖南大学博士学位论文(导师:易伟建), 2005,3.
    86张菊辉.基于数值模拟的规则梁桥墩柱的地震易损性分析.硕士论文(导师:胡世德). 2006.
    87杨成.结构弹塑性地震反应分析的改进能力_需求曲线方法研究.硕士论文(导师:赖明,李英民).
    88常兆中.混凝土砌块结构非线性地震反应分析及基于性能的抗震设计方法.博士论文(导师:周锡元).
    89侯爱波.钢筋混凝土框架_剪力墙结构平面非线性地震反应分析.硕士论文(导师:汪梦甫).
    90方明霁.高层结构线弹性及弹塑性地震反应分析.硕士论文(导师:林皋).
    91王丹.钢框架结构的地震易损性及概率风险分析.硕士论文.哈尔滨工业大学. 2006.
    92胡晓琦.钢框架结构地震损伤可靠度分析与抗震性能设计研究.硕士论文.哈尔滨工业大学. 2005.
    93 Mackie K. Probabilistic Demand&Capacity Factor Design. Ph.D.Dissertation. Berkeley: Department of Civil and Environmental Engineering of UC Berkeley, 2005.
    94 Fatemeh Jalayer. Direct Probabilistic Seismic Anaysis: Implementing Non-linear Dynamic Assessments. Match 2003.
    95于晓辉.钢筋混凝土框架结构的整体概率抗震能力分析.硕士论文,哈尔滨工业大学. 2007.
    96 Peeranan Towashiraporn. Building Seismic Fragilities Using Response Surface Metamodels. August 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700