过表达Cx43的骨髓间充质干细胞移植治疗心梗后心衰的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:构建含有增强型绿色荧光蛋白(EGFP)基因和大鼠缝隙连接蛋白43基因(Cx43)的重组慢病毒,并进行包装、纯化。
     方法:用RT-PCR技术获得大鼠的Cx43基因,并将其连接到含有EGFP基因的慢病毒表达载体pGC-FU中,重组获得慢病毒载体质粒pGC-FU-Cx43,采用限制性内切酶酶切法和DNA测序鉴定构建的载体是否正确。将pGC-FU-Cx43与辅助包装质粒载体(pHelper1.0、pHelper2.0)一起共转染293T细胞,包装生产病毒并测定其滴度。
     结果:酶切证实目的基因Cx43已经定向连入目的载体,测序结果显示,所构建的pGC-FU-Cx43重组慢病毒质粒序列与目标序列完全一致。最终获得的病毒滴度为2x109 TU/ml。
     结论:成功构建并包装获得较高滴度的含有EGFP基因和目的基因Cx43的重组慢病毒pGC-FU-Cx43,为后续的体外及在体研究奠定基础。
     目的:分离、培养、扩增大鼠BMSC,并转染重组慢病毒pGC-FU-Cx43,观察BMSC中Cx43的表达及细胞间通讯功能的变化。
     方法:用密度梯度离心法结合贴壁培养法分离、纯化培养大鼠BMSCs,选取P3代细胞,以流式细胞仪鉴定其表面标记。重组慢病毒pGC-FU-Cx43转染P3代细胞,荧光显微镜观察EGFP的表达,以Western blot法检测转染后BMSC中Cx43的蛋白含量,以荧光漂白恢复技术(FRAP)检测转染后细胞间通讯功能的变化。
     结果:经分离、纯化得到细胞纯度较高的BMSC; pGC-FU-Cx43转染BMSC后,可见大量EGFP表达,目的蛋白Cx43的表达量明显增加,且细胞间通讯功能增强。
     结论:密度梯度离心法结合贴壁培养法可以有效地分离纯化BMSC。重组慢病毒pGC-FU-Cx43成功转染BMSC,目的蛋白的表达增加且细胞间通讯功能增强。
     目的:建立大鼠心肌梗死模型,观察移植过表达Cx43的BMSC对心梗后心衰的治疗作用。
     方法:120只SD大鼠随机分为四组,Sham组:假手术组,n=30; DMEM/F12组,注射DMEM/F12, n=30; EGFP组:移植转染EGFP基因的BMSC,n=30; Cx43组:移植转染Cx43基因的BMSC, n=30。采用结扎前降支的方法,建立心肌梗死模型,于梗死后30min,行细胞移植。移植后四周,超声心动图检测心脏功能并取心脏组织检测各项指标。在Langendorff离体心脏灌注系统下行心脏电生理检查,诱发心动过速。
     结果:与DMEM/F12组相比,EGFP组和Cx43组心功能明显改善,心肌梗死面积缩小,胶原纤维含量降低。尤以Cx43组上述心脏重构指标改善更明显。RT-PCR和Western blot显示DMEM/F12和EGFP组大鼠心肌组织Cx43表达明显降低;移植Cx43转染BMSC后,Cx43表达量增加。激光共聚焦显示EGFP组和Cx43组有BMSC存活,并可见BMSC与宿主心肌组织间有缝隙连接形成。电生理检查显示,DMEM/F12组室性心律失常的诱发率明显增高,EGFP组的心律失常的诱发率与DMEM/F12组无明显差异,Cx43组的心律失常诱发率较DMEM/F12组和EGFP组明显降低。
     结论:同种异体BMSC移植延缓心室重塑,改善心脏功能,且对可诱导的心律失常无明显影响;过表达Cx43的BMSC移植改善心肌梗死后心衰的效果更为明显,且可以明显降低可诱导的心律失常的发生。这可能是因为Cx43基因过表达可以改善缝隙连接重构,增加BMSC与宿主心肌细胞的电机械耦联。
Objective:To construct, package and purify the recombinant lentivirus carrying green fluorescent protein (GFP) gene and the rat connexin 43 gene (Cx43).
     Methods:The rat Cx43 gene was amplified by RT-PCR and connected to the lentiviral expression vector pGC-FU, which is carrying the EGFP gene, to construct the lentiviral vector plasmid pGC-FU-Cx43. Restriction digestion analysis and DNA sequencing was used to verified the correction. The viral particles were generated by cotransfection of 293T cells with the pGC-FU-Cx43 and two packaging vector (pHelper1.0, pHelper2.0) and the virus titer was determined by counting the percentage of GFP positive cells.
     Result:The insert orientation of the Cx43 gene in the lentiviral vector plasmid pGC-FU-Cx43 was verified by restriction digestion analysis.
     Target Cx43 sequences was confirmed by the bulk sequencing. The final titer obtained was 2x109TU/ml.
     Conclusion:The pGC-FU-Cx43 recombinant lentivirus carrying GFP gene and Cx43 gene with high viral titer was constructed and packaged successfully and would pave the way for the further study in vitro and in vivo.
     Objective:Transfecting pGC-FU-Cx43 recombinant lentiviral into amplified rat BMSC to observe the Cx43 expression level and the function change of intercellular communication in BMSC.
     Methods:Rat BMSCs were isolated and purified by density gradient centrifugation and adherent cell culture. Flow cytometry was used to identify the surface markers in P3 cells. After transfection of pGC-FU-Cx43 recombinant lentiviral into P3 cells, the expression of EGFP was observed by fluorescence microscope, the level of Cx43 protein in BMSC was determined by western blot assay and the changes of cell communication was measured by FRAP assay.
     Results:High purity BMSC was obtained after isolation and purification. Increased EGFP expression was observed, expression level of Cx43 protein was significantly increased, and communication between cells was remarkably enhanced in pGC-FU-Cx43 transfected BMSC.
     Conclusion:The combination of density gradient centrifugation and adherent cell culture method can isolate BMSC efficiently. pGC-FU-Cx43 recombinant lentiviral was transfected into BMSC successfully to increase the expression of target protein and enhance the communication between cells.
     Objective:The goal of the present study was to explore the effect of transplantation of bone marrow mesenchymal stem cells over-expressing Cx43 on heart failure in post-infarction rats.
     Methods:120 rats were randomly divided into four groups:sham group consisting of 30 rats, DMEM/F12 group consisting of 30 rats injected with DMEM/F12, EGFP group consisting of 30 rats transplanted EGFP transfected BMSC, and Cx43 group consisting of 30 rats transplanted Cx43 transfected BMSC. Myocardial infarction models were built by ligating the anterior descending branch and then the cells were transplanted after 30 minutes. The rats were sacrificed and heart function was measured by echocardiography after 4 weeks. Cardiac electrophysiology examination was operated in the Langendorff isolated heart perfusion system and then tachycardia arrhythmia was induced.
     Results:Compared with DMEM/F12 group, heart function was improved significantly, myocardial infarct size reduced and collagen fiber content was decreased significantly in EGFP group and in Cx43 group especially. After myocardial infarction, expression of Cx43 in myocardial tissue reduced significantly, but increased after transplantation of BMSC over-expressing Cx43. Survival BMSC and the formation of gap junction between BMSC and the host myocardium could be found using confocal laser both in EGFP group and Cx43 group. Electrophysiological examination showed that arrhythmia prone to be induced in DMEM/F12 group. There was no significant difference in EGFP group and DMEM/F12 group. The rate of arrhythmia induced in Cx43 group was lower than that in DMEM/F12 group and EGFP group.
     Conclusion:Transplantation of allogeneic BMSC attenuated ventricular remodeling, improved cardiac function, and had no significant impact on induced arrhythmia. Furthermore, heart function after myocardial infarction could be improved significantly. and the rate of arrhythmia induced could be reduced significantly in Cx43 group transplanted BMSC which over-expressed Cx43. This effect may result from the overexpression of Cx43 gene which can improve gap junction remodeling, and increase electro-mechanical coupling between BMSC and the host myocardial cells.
引文
[1]Ramani GV,Uber PA, Mehra MR.Chronic Heart Failure:Contemporary Diagnosis and Management. Mayo Clin Proc,2010; 85(2):180-195.
    [2]Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med.2002;347(18):1397-1402.
    [3]George Wyse D,Gersh BJ.Heart Disease and Stroke Statistics--2010 Update:A Report From the American Heart Association.Circulation,2010; 121(7):e46-e215.
    [4]Lloyd-Jones DM, Larson MG, Leip EP, et al.Lifetime risk for developing congestive heart failure:the Framingham Heart Study. Circulation. 2002;106:3068-3072.
    [5]Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ. Res. 2005,96,151-163.
    [6]Leri A, Kajstura J, Anversa P. Cardiac Stem Cells and Mechanisms of Myocardial
    Regeneration.Physiol Rev,2005,85:1373-1416.
    [7]Zwi L, Caspi O, Arbel G, et al. Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells. Circulation,2009; 120:1513-1523.
    [8]Dimmeler S, Burchfield J, Zeiher AM. Cell-based therapy of myocardial infarction. Arterioscler Thromb Vasc Biol.2008;28:208-216.
    [9]Murry CE, Reinecke H, Pabon LM. Regeneration gaps:observations on stem cells and cardiac repair. J Am Coll Cardiol.2006;47:1777-1785.
    [10]Segers VF, Lee RT. stem-cell therapy for cardiac disease.nature,2008;451:937-942.
    [11]Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol.2003;41:1078-1083.
    [12]Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury:phase I clinical study with 12 months of follow-up. Am Heart J.2004;148:531-537.
    [13]Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure:clinical experience with six-month follow-up.J Am Coll Cardiol. 2003;42:2063-2069.
    [14]Perin E, Geng Y, Willerson JT et al. Adult stem cell therapy in perspective. Circulation.2003; 107:935-938.
    [15]Chen H-SV, Kim C,Mercola M, et al. Electrophysiological Challenges of Cell-Based Myocardial Repair. Circulation.2009; 120:2496-2508
    [16]Peters NS, Wit AL. Gap junction remodeling in infarction:does it play a role in arrhythmogenesis? J Cardiovasc Electrophysiol.2000; 11:488-490.
    [17]Kehat I, Gepstein A, Spira A, et al. Highresolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes:a novel in vitro model for the study of conduction. Circ Res.2002;91:659-661.
    [18]Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006; 113:1832-1841.
    [19]Kehat I, Khimovich L, Caspi 0, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol.2004;22:1282-1289.
    [20]Teunissen BE, Bierhuizen MF. Transcriptional control of myocardial connexins. Cardiovasc Res.2004;62:246-255.
    [21]Leobon B, Garcin I, Menasche P, et al.Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A. 2003;100:7808-7811.
    [22]Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia.Nature,2007,450,819-824.
    [23]Wang D, Shen W, Zhang F,et al. Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biol Int,2010,12;34(4):415-23.
    [24]Mills WR, Mal N, Kiedrowski MJ, et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol,2007,42(2):304-314.
    [25]Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol,2006,290:H2196-H2203.
    [1]Kanno S, Saffitz JE.The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol.2001;10(4):169-77.
    [2]Takamatsu T.Arrhythmogenic substrates in myocardial infarct. Pathol Int.2008; 58(9):533-43.
    [3]Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med.2006:203:87-97.
    [4]Song YN, Zhang H, Zhao JY, et al. Connexin 43, a new therapeutic target for cardiovascular diseases.Pharmazie.2009;64(5):291-5.
    [5]Severs N J. Rothery S, Dupont E, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech,2001; 52:301-322.
    [6]Jongsma H J, Wilders R.Gap junctions in cardiovascular disease.Circ Res.2000; 86:1193-1197.
    [7]Beyer EC, Kistler J, Paul DL, et al. Antisera directed against connexin43 peptides react with a 43-kd protein localized to gap junctions in myocardium and other tissues. J Cell Biol.1989; 108:595-605.
    [8]Delmar M, Michaels DC, Johnson T, Jalife J. Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle. Circ Res.1987; 60:780-5.
    [9]Gutstein DE, Morley GE, Tamaddon H, et al.Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin 43.Circ Res.2001;88(3):333-339.
    [10]Severs NJ, Bruce AF,Dupont F,et al.Remodelling of gap junctions and connexin expression in diseased myocardium.Cardiovasc Res.2008; 80(1):9-19.
    [11]Beardslee A, Lemer L, Tadros N, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia.Circ Res.2000;1987(8):656-662.
    [12]Smith JH,Green NS,Petens NS, et al. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol.1991;139(4):801-821.
    [13]Dupont E, Matsushita T, Kaba R, et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol.2001; 33:359-371.
    [14]Kitamura H, Ohnishi Y, Yoshida A, et al. Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol.2002; 13:865-870.
    [15]Yamada KA, Rogers JG, Sundset R, et al. Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol.2003;14:1205-1212.
    [16]Stahlhut M, Petersen JS, Herman JK, et al.The Antiarrhythmic Peptide Rotigaptide (ZP123) Increases Connexin 43 Protein Expression in Neonatal Rat Ventricular Cardiomyocytes. Cell Commun Adhes.2006; 13(1-2):21-27.
    [17]Roell W, Lewalter T, Sasse P, et al.Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature.2007; 450, (7171):819-824.
    [18]Walther W, Stein U. Viral vectors for gene transfer:a review of their use in the treatment of human diseases. Drugs.2000; 60:249-71.
    [19]Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol.1997; 15:871-5.
    [20]Goldman MJ, Lee PS, Yang JS, et al. Lentiviral vectors for gene therapy of cystic fibrosis. Hum Gene Ther.1997; 8:2261-8.
    [21]Federico M. Lentiviruses as gene delivery vectors. Curr Opin Biotechnol.1999; 10(5):448-453.
    [22]Kafri T, Van PH, GageFH, et al. Lentivirus vectors:regulated gene expression. Mol Ther.2000; 1(6):516-521.
    [1]Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular position statement.Cytotherapy.2006:8:315-317.
    [2]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature.2002; 418:41-49.
    [3]Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002; 1:92-100.
    [4]Chen F, Hui JH, Chan WK, Lee EH. Cultured mesenchymal stem cell transfers in the treatment of partial growth arrest. J Pediatr Orthop.2003; 23:425-429.
    [5]Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A.2002; 99: 2199-2204.
    [6]Bae JS, Han HS, Youn DH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells.2007; 25:1307-1316.
    [7]Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stem cells:switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005; 23:392-402.
    [8]Keilhoff G, Goihl A, Langnase K, et al. Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol.2006; 85:11-24.
    [9]Marion NW, Mao JJ. Mesenchymal stem cells and tissue engineering. Methods Enzymol.2006; 420:339-361.
    [10]Segers VFM, Lee R.stem-cell therapy for cardiac disease.Nature,2008 (451): 937-942
    [11]Kehat I, Gepstein L.Electrophysiological Coupling of Transplanted Cardiomyocytes.Circ Res.2007;101:433-435.
    [12]Severs NJ, Bruce AF, Dupont E, et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res.2008;80:9-19.
    [13]Chen H-SV, Kim C,Mercola M, et al. Electrophysiological Challenges of Cell-Based Myocardial Repair. Circulation.2009; 120:2496-2508
    [14]Song YN, Zhang H, Zhao JY, et al. Connexin 43, a new therapeutic target for cardiovascular diseases.Pharmazie.2009;64(5):291-5.
    [15]Da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci.2006;119:2204-2213.
    [16]Barrilleaux B, Phinney DG, Prockop Darwin,et al.Review:ex vivo engineering of living tissues with adult stem cells. Progress and challenges in ex vivo tissue engineering with adult stem cells.Tissue Eng.2006; 12:3007-3019.
    [17]Friedenstein AJ, Chailakhyan RK, Gerasimov UV.Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet.1987 May; 20(3):263-72.
    [18]Kumar S,Chanda D,Ponnazhagan S.Therapeutic potential of genetically modified mesenchymal stem cells.Gene Ther.2008;15(10):711-715.
    [19]Cloter DC,Class R,Digirolamo CM,et al.Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA.2000; 97(7):3213-3218.
    [20]Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci.2000; 113:1161-1166.
    [21]Sottile V, Halleux C, Bassilana F, et al. Stem cell characteristics of human trabecular bone-derived cells. Bone.2002; 30:699-704.
    [22]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999; 284:143-147.
    [23]Stagg J, Galipeau J. Immune plasticity of bone marrow derived mesenchymal stromal cells. Handb Exp Pharmacol.2007; 180:45-66.
    [24]El-Badri NS, Wang BY, Good RA. Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exper hematol.1998;26:110-114.
    [25]Chateauvieux S, Ichante JL, Delorme B, et al. Molecular profile of mouse stromal mesenchymal stem cells. Physiol Genomics.2007; 29:128-138.
    [26]Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve.1995;18:1417-1426
    [27]Kopen GC.Prockop DJ.Phinney DG.Marrow stromal cells migrate throughout forebrain and cerebellum,and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA.1999;96(19):10711-10716.
    [28]Brazelton TR, Rossi F MV, Keshet GI. From marrow to brain:expression of neuronal phenotypes in adult mice.Science.2000,290(5497):1775-1779.
    [29]Mezzey E.Chandross KJ.Harta G Turning blood into brain:cells bearing neuronal antigens generated in vive from bone marrow.Science.2000,290(5497):1779-1782.
    [30]Bayes GA, Salido M, SoleRistol F, et al. Host cells derived cardiomyocytes in sex-mismatch cardiac allografts.Cardiovasc Res.2002,56(3):404-410.
    [31]Wu G D, Bowdish M E, Jin Y S, et al.Contribution of Mesenchymal Progenitor Cells to Tissue Repair in Rat Cardiac Allografts Undergoing Chronic Rejection. J Heart Lung Transplant.2005,24(12):2160-2169.
    [32]Bilic-Curcic I, Kalajzic Z, Wang L,et al. Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant. Bone.2005,37(5):678-687.
    [33]Jerry C,O'Donoghue K,Fuente J,et al. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem cells.2005,23:93-102.
    [34]Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol.2006; 15:865-874.
    [35]Makkar RR, Lill Makkar, Chen PS. Stem cell therapy for myocardial repair:Is it arrhythmogenic? J Am Coll Cardiol.2003 (42):2070-2072.
    [36]Perin E, Geng Y, Willerson JT et al. Adult stem cell therapy in perspective. Circulation.2003; 107:935-938.
    [37]Reinecke H, MacDonald GH, Hauschka SD, et al. Electromechanical coupling between skeletal and cardiac muscle:implications for infarct repair. J Cell Biol. 2000;149:731-740.
    [38]Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest.2004;114:775-783
    [39]Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res.2005;97:159-167.
    [40]Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature.2007;450:819-824.
    [41]Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res.2008; 80:9-19.
    [42]Mills WR, Mal N, Kiedrowski MJ, et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol.2007;42:304-314.
    [43]Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006;113:1832-1841.
    [44]Pijnappelsa DA, Schalija MJ, van Tuyn J,et al.Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling。 Cardiovasc Res.2006;72 (2):282-291
    [1]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation.1990;81(4): 1161-1172.
    [2]Gersh BJ,Simarit RD,Behfar A, et al.Cardiac cell repair therapy:a clinical perspective.Mayo Clin Proc.2009;84(10):876-892.
    [3]Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-based myocardial repair. Circulation.2009;120(24):2496-2508.
    [4]Severs NJ, Bruce AF,Dupont F,et al.Remodelling of gap junctions and connexin expression in diseased myocardium.Cardiovasc Res,2008; 80(1):9-19.
    [5]Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D'Agostino RB, Kannel WB, Murabito JM, Vasan RS, Benjamin EJ, Levy D. Lifetime risk for developing congestive heart failure:the Framingham Heart Study. Circulation. 2002;106(24):3068-3072.
    [6]Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D'Agostino RB, Levy D, Kannel WB, Vasan RS. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation.2008;118(20):2057-2062.
    [7]Khand A, Gemmel I, Clark AL, Cleland JG. Is the prognosis of heart failure improving? J Am Coll Cardiol.2000;36(7):2284-2286.
    [8]Cleland JG, Clark AL. Delivering the cumulative benefits of triple therapy to improve outcomes in heart failure:too many cooks will spoil the broth. J Am Coll Cardiol. 2003;42(7):1234-1237.
    [9]Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data. Lancet.2006;367(9524):1747-1757.
    [10]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science.
    1998;282(5391):1145-1147.
    [11]Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev.2005;85(4):1373-1416.
    [12]Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001-2007.
    [13]Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med.1996;334(21): 1349-1355.
    [14]Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T. Gap junction alterations in human cardiac disease. Cardiovasc Res.2004;62(2):368-377.
    [15]Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T. Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res.1999;85(11):1046-1055.
    [16]Lampe PD, Cooper CD, King TJ, Burt JM. Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci.2006;119(Pt 16):3435-3442.
    [17]Smith JH, Green CR, Peters NS, Rothery S, Severs NJ. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol. 1991;139(4):801-821.
    [18]Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ, Kodama I. Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res.2000;86(8):871-878.
    [19]Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95(4):988-996.
    [20]Kehat I, Gepstein L. Electrophysiological coupling of transplanted cardiomyocytes. Circ Res.2007;101(5):433-435.
    [21]Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol. 2000;149(3):731-740.
    [22]Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA.2003;100(13):7808-7811.
    [23]Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, Li RA, B OR, Marban E. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res.2005;97(2):159-167.
    [24]Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, Abraham MR. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation.2006;113(15):1832-1841.
    [25]Mills WR, Mal N, Kiedrowski MJ, Unger R, Forudi F, Popovic ZB, Penn MS, Laurita KR. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol.2007;42(2):304-314.
    [26]Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation.2005;112(8):1128-1135.
    [27]Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, Kodama M, Ishibashi-Ueda H, Kangawa K, Kitamura S, Nagaya N. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol.2007;42(1):88-97.
    [28]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science.1999;284(5411):143-147.
    [29]Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, Ypey DL, Atsma DE. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res.2008;103(2):167-176.
    [30]Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, Heldman AW, Hare JM. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A.2009; 106(33): 14022-14027.
    [31]Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature.2004;428(6983):664-668.
    [32]Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res.2008;103(11):1204-1219.
    [33]Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res.2004;94(5):678-685.
    [34]Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation.2001; 104(9):1046-1052.
    [35]Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M. In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol. 2007;42(2):441-448.
    [36]Kalvelyte A, Imbrasaite A, Bukauskiene A, Verselis VK, Bukauskas FF. Connexins and apoptotic transformation. Biochem Pharmacol.2003;66(8):1661-1672.
    [37]Krysko DV, Mussche S, Leybaert L, D' Herde K. Gap junctional communication and connexin43 expression in relation to apoptotic cell death and survival of granulosa cells. JHistochem Cytochem.2004;52(9):1199-1207.
    [38]Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, Pennell DJ, Fox K, Pepper J, Poole-Wilson PA, Severs NJ. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation.1998;97(7):651-660.
    [39]Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation. 2009;119(13):1814-1823.
    [40]Ly HQ, Nattel S. Stem cells are not proarrhythmic:letting the genie out of the bottle. Circulation.2009;119(13):1824-1831.
    [1]Barile L, Messina E, Giacomello A, Marban E. Endogenous cardiac stem cells. Prog Cardiovasc Dis.2007;50(1):31-48.
    [2]Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res.2004;95(9):911-921.
    [3]Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-776.
    [4]Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104(35):14068-14073.
    [5]Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature.2008;453(7193):322-329.
    [6]Meluzin J, Janousek S, Mayer J, Groch L, Hornacek I, Hlinomaz 0, Kala P, Panovsky R, Prasek J, Kaminek M, Stanicek J, Klabusay M, Koristek Z, Navratil M, Dusek L, Vinklarkova J. Three-,6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol.2008;128(2):185-192.
    [7]Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B. Adult bone marrow-derived cells for cardiac repair:a systematic review and meta-analysis. Arch Intern Med.2007; 167 (10):989-997.
    [8]Cleland JG, Coletta AP, Abdellah AT, Nasir M, Hobson N, Freemantle N, Clark AL. Clinical trials update from the American Heart Association 2006:OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur J Heart Fail.2007;9(1):92-97.
    [9]Chen HS, Kim C, Mercola M. Electrophysiological challenges of cell-based myocardial repair. Circulation.2009;120(24):2496-2508.
    [10]Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation. 2009;119(13):1814-1823.
    [11]Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace.2007;9(3):167-171.
    [12]Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A.2003;100(13):7808-7811.
    [13]Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol. 2000;149(3):731-740.
    [14]Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, Doran R, Becher UM, Hwang SM, Bostani T, von Maltzahn J, Hofmann A, Reining S, Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, Salama G, Schrickel JW, Kotlikoff MI, Fleischmann BK. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature.2007;450(7171):819-824.
    [15]Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, Li RA, B OR, Marban E. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res.2005;97(2):159-167.
    [16]Fukushima S, Varela-Carver A, Coppen SR, Yamahara K, Felkin LE, Lee J, Barton PJ, Terracciano CM, Yacoub MH, Suzuki K. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation.2007; 115(17):2254-2261.
    [17]Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation.2005;111(17):2198-2202.
    [18]Makkar RR, Lill M, Chen PS. Stem cell therapy for myocardial repair:is it arrhythmogenic? J Am Coll Cardiol.2003;42(12):2070-2072.
    [19]Itabashi Y, Miyoshi S, Yuasa S, Fujita J, Shimizu T, Okano T, Fukuda K, Ogawa S. Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Cardiovasc Res.2005;67(3):561-570.
    [20]Fernandes S, Amirault JC, Lande G, Nguyen JM, Forest V, Bignolais O, Lamirault G, Heudes D, Orsonneau JL, Heymann MF, Charpentier F, Lemarchand P. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res.2006;69(2):348-358.
    [21]Coppen SR, Fukushima S, Shintani Y, Takahashi K, Varela-Carver A, Salem H, Yashiro K, Yacoub MH, Suzuki K. A factor underlying late-phase arrhythmogenicity after cell therapy to the heart:global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation. Circulation.2008;118(14 Suppl):S138-144.
    [22]Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res.1998;39(1):89-105.
    [23]Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, Abraham MR. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation.2006;113(15):1832-1841.
    [24]Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, Frantzen M, Takizawa K, Chen LS, Fishbein MC, Sharifi BG, Chen PS, Makkar R. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J Cardiovasc Electrophysiol. 2003; 14 (8):841-848.
    [25]Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol.2003;41(7):1078-1083.
    [26]Smits PC, van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, Maat AP, Serruys PW. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure:clinical experience with six-month follow-up. J Am Coll Cardiol.2003;42(12):2063-2069.
    [27]Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial:first randomized placebo-controlled study of myoblast transplantation. Circulation.2008; 117(9):1189-1200.
    [28]Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belem L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation.2004;110(11 Suppl 1):Ⅱ213-218.
    [29]Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kogler G, Wernet P, Muller HW, Kostering M. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease:the IACT Study. J Am Coll Cardiol.2005;46(9):1651-1658.
    [30]Briguori C, Reimers B, Sarais C, Napodano M, Pascotto P, Azzarello G, Bregni M, Porcellini A, Vinante O, Zanco P, Peschle C, Condorelli G, Colombo A. Direct intramyocardial percutaneous delivery of autologous bone marrow in patients with refractory myocardial angina. Am Heart J.2006;151(3):674-680.
    [31]Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C, Nienaber CA, Freund M, Steinhoff G. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg.2004;52(3):152-158.
    [32]Effect of metoprolol CR/XL in chronic heart failure:Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet. 1999;353(9169):2001-2007.
    [33]Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, Shusterman NH. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996;334(21):1349-1355.
    [34]MillsWR, Mal N, Kiedrowski MJ,et al. Stem cell therapy enhances electrical viability in myocardial infarction. J Mol Cell Cardiol.2007; 42(2):304-314.
    [35]Boyle AJ, Schulman SP, Hare JM, Oettgen P. Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation. 2006;114(4):339-352.
    [36]Oettgen P, Boyle AJ, Schulman SP, Hare JM. Cardiac Stem Cell Therapy. Need for Optimization of Efficacy and Safety Monitoring. Circulation.2006;114(4):353-358.
    [37]Rosen MR. Are stem cells drugs? The regulation of stem cell research and development. Circulation.2006;114(18):1992-2000.
    [38]Unzek S, Zhang M, Mal N, Mills WR, Laurita KR, Penn MS. SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant.2007;16(9):879-886.
    [39]Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896-908.
    [40]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell.2007; 131 (5):861-872.
    [41]Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med.2005;11(4):367-368.
    [42]Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest.2004;114(6):775-783.
    [43]Pedrotty DM, Klinger RY, Badie N, Hinds S, Kardashian A, Bursac N. Structural coupling of cardiomyocytes and noncardiomyocytes:quantitative comparisons using a novel micropatterned cell pair assay. Am J Physiol Heart Circ Physiol. 2008;295(1):H390-400.
    [44]Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407-414.
    [45]Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol.2004;22(10):1282-1289.
    [46]Li GR, Sun H, Deng X, Lau CP. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells.2005;23(3):371-382.
    [47]Beeres SL, Atsma DE, van der Laarse A, Pijnappels DA, van Tuyn J, Fibbe WE, de Vries AA, Ypey DL, van der Wall EE, Schalij MJ. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J Am Coll Cardiol. 2005;46(10):1943-1952.
    [48]Potapova I, Plotnikov A, Lu Z, Danilo P, Jr., Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res.2004;94(7):952-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700