典型黑土区水土保持林土壤结构与可蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了系统的阐述不同林型水土保持林,及同一林型水土保持林在不同恢复年限的动态变化,对土壤结构特征和土壤可蚀性的影响。本文首先以典型黑土区不同林型的主要人工林地土壤为研究对象,通过对土壤容重、非毛管孔隙/毛管孔隙(NCP/CP).广义土壤结构指数(GSSI).土壤水稳性团聚体特征、土粒静水崩解能力、有机质含量的测定计算与对比分析研究了不同林型水土保持林对土壤结构性特征及对土壤可蚀性的影响规律。在此基础上选取结构较好、可蚀性较低的落叶松人工林,以林龄分别为8a、21a、30a、37a、52a为研究对象,通过结构性指标和不同粒级有机碳的含量与贮量的计算与分析,研究了不同林龄落叶松人工林土壤结构性特征及其有机碳的动态变化特征。
     研究结果表明:0-30cm土层范围内,不同林型的水土保持林中,水曲柳林和落叶松林在降低土壤容重方面略好于樟子松林和云杉林,林地土壤的平均NCP/CP值均显著高于撂荒地(p<0.05),增加幅度范围为59.75%-128.82%,土壤透气性、透水性能力提高,并以落叶松林提高幅度最大;各林地的平均GSSI值均显著高于撂荒地(p<0.05),增加幅度范围为2.98%-4.36%,说明林分可以有效改善土壤结构,使其能够更加接近旱地土壤理想结构,以水曲柳林和云杉林改良效果相对较强,但实现趋近理想土壤结构的途径、即相态的变化方式有所不同。林分对土壤水稳性团聚体组成的影响主要表现为提高较大粒级团聚体的比例,显著增加PA0.25、降低团聚体破坏率(p<0.05);林地土壤水稳性指数显著提高(p<0.05),增加幅度达4.46-7.92倍;林地内表层土壤有机质含量较耕地相对提高了32.6%-62.7%,差异显著(p<0.05);可以认为水土保持林能够有效降低土壤可蚀性,并以阔叶水曲柳林的作用效果最为显著。
     不同林龄落叶松人工林,土壤容重平均变化范围为1.06-1.19 g·cm-3,随林龄的增加人工落叶松林可以显著降低土壤容重(P<0.05);NCP/CP平均变化范围为0.03-0.11,仅37a生人工林提高效果显著(P<0.05);土壤GSSI值的变化范围为73.19-94.61,37a和52a生林分的差异不显著而与其他人工林林分的差异显著(P<0.05)。可以认为,在典型黑土区通过落叶松人工林的培育能够改善土壤结构,但这种影响并不是随着林龄增加而无限度的增强,37a是明显改善土壤结构的临界年龄。
     通过对土壤干团聚体组成、不同粒级团聚体有机碳含量及有机碳贮量的测定、计算与分析,研究了不同林龄落叶松人工林土壤团聚体有机碳分配特征及其动态变化规律。结果表明:在0-30cm土层范围内,各粒级团聚体组成比例随粒级从大到小呈“八”型分布,2-5mm粒级团聚体所占比例均最大且与其他粒级存在显著性差异(P<0.05)。表层土壤各粒级团聚体有机碳含量均大于下层土壤,表层土壤中各粒级团聚体有机碳平均变化范围为32.17-48.75g/kg,下层土壤中的变化范围28.82-33.53g/kg,并均以2-5mm粒级团聚体有机碳含量最低。团聚体有机碳贮量随林龄的变化表现为大粒级团聚体(5-10mm)有机碳贮量的降低和小粒级有机碳贮量的增加。表层土壤有机碳贮量大于下层土壤有机碳贮量,但均以2-5mm粒级团聚体有机碳贮量最高,故可以认为土壤有机碳贮量的变化主要取决于各个粒级团聚体组成比例而不是各个粒级团聚体有碳含量。研究结果为进一步评价人工林植被恢复对土壤有机碳的影响提供了理论依据和参考。
In order to explain the effect of different water and soil conservation forest types and the dynamic change of the same one in different forest restoration on character of soil structure and soil erodibility. Soil structural characters of different types of forests in black soil area were studied by measuring and analyzing the soil bulk density, NCP/CP, GSSI. We also investigated the effects of different stands on soil structure characters of soil water-stable aggregates, capacity of soil collapse, and organic matter content in this study were studied by measuring and analyzing. Base on this experiment, a study on 8、21、30、37 and 52-year-old larch plantations in typical black soil region was undertaken to examine soil structural characteristics and dynamic changes of plantations. The characters of soil structural and dynamic change of organic carbon in Larch Plantations were studied by measuring and analyzing the structural indicators and organic carbon content in different size aggregates.
     Results showed that, in 0-30cm soil, the bulk densities of Manchurian ash and Dahurian larch plantations were lower than that of Mongolian Scots pine and Korean spruce stands, Average NCP/CP of different plantations was all higher than that of abandoned land (P<0.05) increased from 59.75% to 128.82% relatively, Soil aeration and permeability were enhanced, especially in Dahurian larch plantation. Average GSSI of different plantations was higher than abandoned land too(P<0.05), with the increased range of 2.98%-4.36%. So soil and water conservation plantations can promote soil approaching ideal soil structure, Manchurian ash and Korean spruce stands performed better than the others. However they have different ways of changing three phases to be close to ideal soil three phase, or ideal soil structure, the percentage of larger size aggregates of the four stands all get increased, PA0.25 and PAD0.25 was significantly increased and decreased separately(P<0.05).Soil water stability index in stands was significantly enhanced, with 4.46-7.92 times more than that in tillage(P<0.05).Organic matter content of top soil in forest land was relatively increased from 32.6% to 62.7% compared with tillage significantly(P<0.05).Thus we conclude that soil and water conservation forests can reduce soil erodibility, especially for the Manchurian Ash plantation.
     During soil depth of 0-30cm in different forest age larch plantations in typical black soil region, bulk density variation among different plantations was 1.06-1.19 g·cm-3, and it could decrease obviously with plantation age increasing(P<0.05).Ratio of NCP/CP were observed between 0.03 and 0.11, only which in 37-year-old larch plantations improved significantly (P<0.05). Values of GSSI changed from 73.19 to 95.82 with the maximum belonging to natural secondary forest. There was no significant difference of GSSI between natural secondary forest and 37-yare-old plantation, and neither was between natural secondary forest and 52-yare-old plantation. However there would be dramatically variation between natural secondary forest and the plantation with age of 8a、21a、and 30a (P<0.05). We confirm that larch plantation can improve soil structure, but this kind of amelioration could not lastingly increase with plantation aging.37 years old larch plantation was indicated as the critical age in this study.
     A study was undertaken to examine soil organic carbon distribution characteristics of aggregates and dynamic changes of plantations by measuring and analyzing composition of dry aggregates, organic carbon content and organic carbon storage of different aggregate size fraction. Results showed that during soil depth of 0-30cm, the composition proportion of aggregates was distribution in shape of "∧"with decreasing size fraction. The percentage of 2-5mm size fraction accounted the largest proportion and existed significant difference from those of other size fractions (P<0.05). The organic carbon contents of all different size aggregates in topsoil, range of 32.17-48.75g/kg, were higher than those in subsoil, range of 28.82-33.53g/kg. Lowest organic carbon content was found in 2-5mm aggregate and which was significant different from those of other size fraction aggregates (P<0.05). The changing trend of organic carbon storage during soil profile was very similar to that of dry aggregate distribution among larch plantations with different ages. The soil organic carbon storage in topsoil was higher than that in subsoil. Organic carbon storage in 2-5mm aggregate was also the highest in all size fractions. we concluded that changes of organic carbon storage in soil aggregates were mainly determined by the composition of soil aggregates, but for the organic carbon contents. It presents a theoretical basis for further researches and assessments on SOC of larch plantation.
引文
[1]Alanr. Townsend, Peter M. Vitousek, David J.Desmarais.Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry,1997,38,1-17
    [2]B. C. Ball, D. J. Campbell, J. T. Douglas,et al. Soil structural quality, compaction and land management.European Journal of Soil Science,2008,48(4):593-601
    [3]Bronick C J, Lal R. Soil structure and management.Geoderma,2005,124:3-22
    [4]C. Chenu, Y. Le Bissonnais, D. Arrouays. Organic Matter Influence on Clay Wet ability and Soil Aggregate Stability[J]. Soil Science Society of America Journal, 2000,64:1479-1486
    [5]D. D. Richter, D. Markewitz, S. E. Trumbore, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature,1999,400:56-58
    [6]Esteban G Jobbagy, Robert B. Jackson. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecology,2000,10,423-436
    [7]F. Bastida, J.L. Moreno, T. Herna'ndez, C. Garci'a.The long-term effects of the management of a forest soil on its carbon content, microbial biomass and activity under a semi-arid climate. Applied Soil Ecology,2007,37:53-62
    [8]Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems. New Phytologist,2000,147:13-31
    [9]Golchin, JM Oades, JO Skjemstad.Soil structure and carbon cycling. Australian Journal of Soil Research.1994,32(5):1043-1068
    [10]H. Neufeldt, D. V. S. Resck, M. A. Ayarza. Texture and land-use effects on soil organic matter in Cerrado Oxisols, Central Brazil. Geoderma,2002,107(3-4):151-164
    [11]Humberto Blanco-Canqui, Rattan Lal. Mechanisms of Carbon Sequestration in Soil Aggregates. Critical Reviews in Plant Sciences,2004,23(6):481-504
    [12]J. M. Tisdall, J.M.Oades. Organic matter and water-stable aggregates in soils. European Journal of Soil Science.2006,33(2):141-143
    [13]JB Passioura. Soil structure and plant growth. Australian Journal of Soil Research,1991, 29(6):717-728
    [14]Karlen D L, Mausbach.1997. Soil quality:a concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J.,61:4-10
    [15]Lal R.土壤侵蚀研究方法.水土保持学会,黄河水利委员会宣传出版中心译.北京:科学出版社,1991.137-146
    [16]Lawrence W. Martz. The variation of soil erodibility with slope position in a cultivated Canadian prairie landscape. Earth Surface Processes and Landforms,2006,17(6): 543-556
    [17]Letey J. The study of soil structure:Science or art. Aust. J. Soil Res,1991,29:699-77
    [18]Luitgard Schwendenmann, Elise Pendall. Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama:evidence from soil carbon fractionation and stable isotopes. Plant and Soil,2006,288:217-232
    [19]M. Annabi,S. Houot, C. Francou, et al. Soil aggregate stability improvement with urban composts of different maturities. Soil Science Society of America Journal,2007,71: 413-423
    [20]Pagliai M, Vignozzi N, Pellegrini S. Soil structure and effect of management practices. Soil Till. Res,2004,19:131-143
    [21]Prescott C E. Do rates of litter decomposition tell us anything we really need to know?. Forest Ecology and Management,2005,220:66-74
    [22]Pu Mou,Timothy J.Fahey, Jeffrey W. Hughes. Effects of soil disturbance on vegetation recovery and nutrient accumulation following whole-tree harvest of a northern hardwood ecosystem.Applied Ecology,1993,30:661-675
    [23]R. J. Haynes, R. S. Swift. Stability of soil aggregates in relation to organic constituents and soil water content. European Journal of Soil Science,2006,28,73-83
    [24]Raymond WMiller, Roy L Donahue. Soils-An Introduction to Soils and Plant Growth (Sixth Edition). Prentice-Hall Inter-national,Inc.1971
    [25]Six J, Elliott T, Paustian K. Aggregate and soil organic matter dynamics under convention-al and no-tillage systems. Soil Science Society of America Journal,1999,63:1350-1358
    [26]W. M. Post, K. C. Kwon. Soil Carbon Sequestration and Land-Use Change:Processes and Potential.Global Change Biology,2000,6,317-328
    [27]Young I M,Crawford J W. Interactions and self-organization in the soil-microbe complex. Science,2004,304:1634-1637
    [28]安韶山,张玄,张扬等.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征.水土保持学报,2007,21(6):109-113
    [29]查轩,唐克丽,张科利,等.植被对土壤特性及土壤的侵蚀的影响研究.水土保持学报,1992,6(2):52-58
    [30]柴亚凡,王恩姮,陈祥伟等.植被恢复模式对黑土贮水性能及水分入渗特征的影响.水土保持学报,2008,22,(1):60-64,73
    [31]常庆瑞,安韶山,刘京.黄土高原恢复植被防止土地退化研究.水土保持学报,1999,5(4):6-9
    [32]陈立新.土壤试验实习教程.哈尔滨:东北林业大学出版社,2005,51-55
    [33]方华军,杨学明,张晓平等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布,生态学报,2006,26(9):2847-2854
    [34]龚子同.中国土壤系统分类:理论、方法、实践.北京:科学出版社,1999:474-479
    [35]郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究.水土保持学报,1992,6(3):48-51
    [36]侯喜禄,曹清玉.陕北黄土丘陵沟壑区植被减沙效益研究.水土保持通报,1990,10(2):33-40
    [37]胡婵娟,傅伯杰,靳甜甜,等.黄土丘陵沟壑区植被恢复对土壤微生物生物量碳和氮的影响.应用生态学报,2009,20(1):45-50
    [38]胡立峰,胡春胜,安忠民等.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响.水土保持学报,2005,19(6):186-189
    [39]黄礼隆.川西亚高山暗针叶森林涵养水源性能的初步研究.见:林业部科技司.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:400-412
    [40]霍琳,武天云,蔺海明,等.长期施肥对黄土高原旱地黑垆土水稳性团聚体的影响.应用生态学报,19(3):545-550
    [41]江忠善,刘志.降雨因素和坡度对溅蚀影响的研究.水土保持学报,1989,3(2):29-35
    [42]蒋定生,李新华.黄土高原土壤崩解速率变化规律及影响因素研究.水土保持通报,1995,15(3):20-27
    [43]蒋定生.黄土抗蚀性研究.土壤通报,1964,12(3):286-296
    [44]金峰,杨浩.土壤有机碳储量及影响因素研究进展.土壤,2000,1(32):11-17
    [45]李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状.水土保持研究,2006,13(6):50-54
    [46]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验.长安大学学报(自然科学版),2007,27(1):23-26
    [47]李香兰,田积莹,张成娥.黄土高原不同林型对土壤物理性质影响的研究.林业科学1992,(12):53-61
    [48]李勇,吴钦孝,朱显谟,等.黄土高原根系提高土壤抗冲性能研究.水土保持学报,1990,4(1)1-5
    [49]李勇,武淑霞等.紫色土区刺槐林极系对土壤结构的稳定作用.土壤侵蚀与水土保持学报,1998,4(2):1-7
    [50]梁爱珍,晓平,杨学明.耕作方式对耕层黑土有机碳库贮量的短期影响.中国农业科学,2006,39(6):1287-1293
    [51]缭弛远,刘宝元,刘刚,等.东北典型黑土区剖面离境分布特征及可蚀性研究.水土保持学报,2008,2(3):18-23
    [52]刘晓冰,邢宝山.土壤质量及其评价指标.农业系统科学与综合研究,2002,18(2):109-112
    [53]刘毅,李世清,邵明安等.黄土高原不同土壤结构体有机碳库的分布.应用生态学报,2006, 17(6):1003-1008
    [54]罗承平,薛纪瑜.中国北方交错带生态环境脆弱性及其成因分析.干旱区资源与环境,1995,9(1):1-7
    [55]毛艳玲,杨玉盛,刑世和,等.土地利用方式对土壤水稳性团聚体有机碳的影响.水土保持学报,2008,22(4):132-137
    [56]孟凯,黄亚曦.黑土生态系统.北京:中国农业出版社,2006.
    [57]孟凯,张兴义.松嫩平原黑土退化的机及其生态复原.土壤通报,1998,29(3):100-102
    [58]牛德奎,郭晓敏.土壤可蚀性研究现状及趋势分析.江西农业大学学报,2004,26(6):936-940
    [59]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):618-621
    [60]邱仁辉,杨玉盛,俞新妥.不同栽植代数杉木林土壤结构特性的研究.北京林业大学学报,1998,20(4):6-11
    [61]沈慧,姜凤岐,杜晓军,等.水土保持林土壤抗蚀性能评价研究.应用生态学报,2000,11(3):345-348
    [62]沈慧,姜凤岐.水土保持林效益评价研究综述.应用生态学报,1999,10(4):492-496
    [63]史长婷,王恩姮,陈祥伟.典型黑土区水土林对土壤可蚀性的影响.水土保持学报,2009,23(3):25-28,33
    [64]史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀实验研究和侵蚀量测定问题.中国水土保持,1983,1(6):21-22
    [65]史东梅,吕刚,蒋光毅,等.马尾松林地土壤理化性质变化及抗蚀性研究.水土保持学报,2005,19(6):35-39
    [66]史冬梅等.紫色土丘陵区不同土地利用类型土壤抗冲性特征研究.水土保持学报,2007,21(2):24-27,35
    [67]水力电力部农林水利水土保持司.水土保持实验规范.北京:水力电力出版社,1988.
    [68]田积莹,黄必瑞.子午岭连家砭地区土壤物理性质与土壤抗蚀性能指标的初步研究.土壤学报,1964,12(3):286-296
    [69]王恩姮,柴亚凡,陈祥伟.大机械作业对黑土区耕地土壤结构性特征的影响.应用生态学报,2008,19(2):351-356
    [70]王恩姮,赵雨森,陈祥伟.基于土壤三相的广义土壤结构的定量化表达.生态学报,2009,29(4):2067-2032
    [71]王礼先.水土保持学.北京:中国林业出版社,1995,129-139
    [72]王孟本,李洪建.林分立地和林种对土壤水分的影响.水土保持学报,2001,15(6):43-46
    [73]王鹏程,肖文发,张守攻,等.三峡库区主要森林植被类型土壤渗透性能研究.水土保持学报,2007,21(6):51-55
    [74]王秋生.植被控制土壤侵蚀的数学模型及其应用.水土保持学报,1991,5(4):68-72
    [75]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析.地理学报,2000,55(5):533-544
    [76]吴建国,艾丽.土壤颗粒组分中氮含量及其与海拔和植被的关系.林业科学,2008,44(6):10-19
    [77]徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展.生态学报,2006,26(9):3137-3143
    [78]薛立,邝立刚,陈红等.不同林分土壤养分、微生物与酶活性的研究.土壤学报,2003,40(2):280-285
    [79]薛立,梁丽丽,任向荣等.华南典型人工林的土壤物理性质及其水源涵养功能.土壤通报2008,39(5):986-989
    [80]杨玉盛.不同利用方式下紫色土可蚀性的研究.水土保持学报,1992,6(3):52-58
    [81]曾德超.机械土壤动力学.北京:科学技术出版社,1995.108-115
    [82]张科利,蔡永明,刘宝元,等.黄土高原区土壤可蚀性及其应用研究.应用生态学报,2001,21(10):1687-1695
    [83]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算.土壤学报,2007,44(1):7-13
    [84]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工土壤物理性质的影响.生态学报,2006,26(11):3685-3695
    [85]张宪奎,金争平,史培军,候福昌等.黄河黄甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992
    [86]张宪奎,许靖华,卢秀琴等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1-9
    [87]张祖荣.植物根系提高土壤抗侵蚀能力的初步研究.渝西学院学报,2002,15(1):31-35
    [88]赵世伟,苏静,吴金水等.子午岭植被恢复过程中土壤团聚体有机碳含量的变化.水土保持学报,2006,20(3):114-117
    [89]周虎,吕贻忠,李保国.土壤结构定量化研究进展.土壤学报,2009,46(3):502-505
    [90]朱显谟,张相麟,雷文进.泾河流域土壤侵蚀现象及其演变.土壤学报,1954,2(4):209-222
    [91]朱显谟.黄土高原地区植被因素对水土流失的影响.土壤学报,1960,8(2):110-121
    [92]庄恒扬,刘世平,沈新平,等.长期少免耕对稻麦产量及土壤有机质与容重的影响.中国农业科学,1999,32(4):39-44
    [93]谭文峰,朱志锋,刘凡,等.江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点[J].自然资源学报,2006,21(6):973-980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700