不同保护性耕作措施对土壤微生物数量及多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以传统耕作(T)为对照,应用土壤微生物学和土壤学的方法,研究了免耕秸秆覆盖(NTS)、免耕(NT)、秸秆还田(TS)三种保护性耕作措施下黄土高原西部旱作农业区小麦地和豌豆地耕层土壤微生物数量及多样性规律、土壤微生物特殊生理类群分布规律,结果表明:
     1.不同耕作措施对土壤真菌数量具有不同程度的影响,并呈现如下规律:
     (1)在不同季节和不同种植方式下,免耕处理的土壤真菌数量均高于翻耕处理,秸秆覆盖处理则显著高于传统耕作处理;
     (2)在各处理间,豌豆地土壤真菌总数均显著多于小麦地;
     (3)豌豆地土壤真菌总数,T处理与另外三种处理差异显著,且NTS处理与T处理达到极显著水平;
     (4)不同保护性耕作土壤真菌数量的季节性的变化不尽相同;在播种前,菌量上下层呈现明显的分层现象;而收获后,上层和下层却高低不定,交替出现高峰值。
     2应用本试验研究方法,免耕、秸秆覆盖和种植方式对土壤真菌群落结构的影响主要集中于优势属的组成:
     (1)就免耕覆盖比较,对于覆盖、种植方式、季节和土层深度各因子,表征土壤真菌群落结构多样性的Simpson(J)指数平均数大小排序是NTS >TS处理,NT>T处理,但变化不明显;Shannon(H`)指数受免耕的影响很大;
     (2)就豌豆地而言:三种保护性耕作措施土壤真菌群落均匀性均高于传统耕作;
     (3)与没有秸秆覆盖处理比较,秸秆覆盖处理表征土壤真菌群落结构多样性的Simpson(J)指数平均数大小排序是T     3土壤放线菌数量变化与土壤真菌数量变化趋势相似:
     (1)免耕处理条件下的放线菌数量无论是季节因素还是种植方式的影响都均高于翻耕处理条件下的放线菌数量;秸秆覆盖明显增加了土壤放线菌的数量;
     (2)在各处理间,豌豆地土壤放线菌总数均显著多于小麦地,种植方式对土壤放线菌数量的影响差异显著。
     4应用本试验研究方法,免耕、秸秆覆盖和种植方式对土壤放线菌群落结构的影响主要集中于优势属的组成:
     (1)种植方式对主要放线菌属无太大影响。就免耕覆盖比较,这对于种植方式、覆盖、季节和土层深度各因子,表征土壤放线菌群落结构多样性的Simpson(J)指数平均数大小排序是NTS >TS处理,NT>T处理。Shannon(H)指数受免耕的影响很大;
     (2)豌豆地:Shannon(H)指数NT处理比T处理在4月份增加了43.5%,7月份增幅
On basis of the principles of soil microbiology and pedology, an experiment was conducted to compare the effects of conventional tillage (T) and three conservation tillage practices on population, diversity and functional groups of soil microorganism of pea field and wheat field in semi-arid areas of the Loess Plateau. The three conservational tillage practices included conventional tillage with straw incorporated (TS), no-till with no straw cover (NT), no-till with stubble retention (NTS). The main research results are as the follows:
     1. Population of soil fungi was affected by the various tillage treatments to different extent as the follows.
     (1)Treatments of no-till resulted in greater population of soil fungi than the conventional tillage, which was not influenced by the changes of season and cultivable mode. The conventional tillage covered with straw further significantly increased soil fungi quantity.
     (2)Total quantity of soil fungi the pea field was consistently higher than the wheat field in all the tillage treatments.
     (3)The pea field:soil fungi total quantities of the three conservation tillage treatments were significantly higher than the T treatment, in which the effect of NTS reached the extremely remarkable evel.
     (4)The influence of the different conservation tillage varied on soil fungi population with seasonal changes. Before sowing, soil fungi population significantly existed stratification among the various layers of soil profile. After harvesting, however, the upper formation and the lower level height do not decide actually, appears the crest value in turn.
     2. Under conditions of this experiment, superiority community resulting from treatments of straw incorporated, no-till with no straw cover, and the cultivable mode was the major factor for influencing on soil fungi composition.
     (1)In treatment of No-till with stubble retention, soil fungi community structure multiple Simpson (J) index, though not very obvious, could be ranged as NTS >TS and NT>CT, which involved with factors such as cultivable mode, straw covering, season changes and soil depths. Shannon (H) index were remarkable affected by no-till with no straw cover.
     (2)As far as the pea field concerned , all the three conservation tillage methods resulted in better uniformity of soil fungi community in comparison with the traditional cultivation.
     (3)In comparison to no-till without stubble treatment, conventional tillage with straw incorporated attributed soil fungi community structure multiple Simpson (J) index were T
引文
1 巴尼特 H L,亨特 B B. 半知菌属图解[M]. 北京:科学出版社,1977.
    2 蔡燕飞,廖宗文. 土壤微生物生态学方法进展[J]. 土壤与环境. 2002, 11(2):167-171.
    3 东秀珠等,常见细菌鉴定手册 [M] 科学出版社,2001
    4 东秀珠等,常见细菌系统鉴定手册 ,科学出版社,2001
    5 范君华,刘明 2002,不同利用方式对土壤微生物区系和活性的影响。塔里木家垦大学学报,14 ( 1 ): 15-17
    6 高云超,朱文珊,陈文新1994,秸秆覆盖免耕土壤微生物生物量与养分转化的研究。中国农业科学,27( 6 ): 4 1-49
    7 高云超,朱文珊,陈文新. 耕作方法对土壤真菌数量和群落结构的影响,华南师范大学学报,2001,
    8 高云超,朱文珊,陈文新. 秸秆覆盖免耕对土壤细菌群落区系的影响,中国农业科学,北京,2000,19(3):27-32。
    9 郝文英.中国农业百科全书·土壤卷[M]. 北京:农业出版社,1996, 385-400.
    10 胡海波 张金池2001,岩质海岸防护林土壤微生物数量及其与酶活性和理化性质的关系。林业科学研究,15 (1): 88-95
    11 华中农业大学 南京农业大学 1999,微生物学[M],第四版。北京,中国农业出
    12 姜成林,徐丽华,郭光远. 云南若干地区土壤放线菌区系及资源考察 V.高寒山区的放线菌[J].微生物学报,1998,28(3):198-205。
    13 姜成林,徐丽华. 云南高原湖泊放线菌区系及资源的研究[J]. 微生物学报,1989,29(1):7-14。
    14 蒋先军,黄昭贤等. 硅酸盐细菌代谢产物对植物生长的促进作用[J]. 西南农业大学学报, 2000, 22 (2): 116-119.
    15 李春俭等. 微生物产生的生长调节物质与植物的生长[J]. 世界农业, 1995, 8:42-43.
    16 李阜棣,喻子牛,何绍江1996,农业微生物学实验技术[M]。北京:中国农业出版社,305-306
    17 李录久,杨哲峰.秸秆直接还田对当季作物产量效应[J].安徽农业科学,2000,28(4):450-457.
    18 李晓林,周文龙等. VA 菌根菌丝对紧实土壤中磷的吸收[J]. 土壤学报, 1994, 31(增刊): 195-202.
    19 李仲强,谭周进, 夏海鳌 2001,耕作制度对土壤微生物区系的影响。南京农业科学,2: 24-25
    20 刘巽浩,高旺成,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001.
    21 刘志恒,现代微生物学,科学出版社,2002.
    22 陆家云,植物病原真菌学,中国农业出版社,2001.
    23 马克平.生物群落多样性的测度方法[A]. 钱迎倩,马克平.生物多样性研究的原理与方法[C].北京:中国科技出版社, 1994. 141~165.
    24 阮继生,刘志恒,梁丽糯等. 放线菌研究及应用[M].北京:科学出版社,1990.2-6;384。
    25 盛下放,黄为一等.硅酸盐菌剂的应用效果及其解钾作用的初步研究[J]. 南京农业大学学报, 2000, 23: 43-46.
    26 孙建好,郭天义等. 腐殖酸类肥料对小麦/大豆带田产量的影响[J]. 甘肃农业科技, 2001,1:35-37
    27 谭周进,汤海涛,佘崇祥.秸秆还田栽培土壤微生物动态研究[J].湖南农业科学,2001,49(2):
    28 土壤理化分析[M].中国科学院南京土壤研究所主编.上海科学出版社.1978
    29 土壤农化分析[M].第二版.南京农业大学主编.农业出版社. 1990
    30 土壤微生物研究会. 土壤微生物实验法.北京:科学出版社,1988,62-63,120-122,136-139.
    31 瓦克斯漫,放线菌(第二卷),北京:科学出版社,1974,69-219。
    32 王国惠,于鲁冀.细菌生理群的研究及其生态学意义[J].生态学报,1999,19(1):128-133.
    33 王淑彬 黄国勤2002,稻田水旱轮作的土壤微生物效应.江西农业大学学报,24(3):320-323
    34 王曙光,林先贵等. VA 菌根与植物的抗逆性[J]. 生态学杂志, 2001, (3): 56-59.
    35 魏景超. 真菌鉴定手册[M].上海:上海科学技术出版社,1979,1~760.
    36 文化等. 农业接口工程[M]. 北京: 北京科学技术出版社,1996, 74-77.
    37 吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J]. 土壤.2003,1:18-21.
    38 剑英,张磊.长期稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2001,24(1):82-85.
    39 邢来君,李明春. 普通真菌学,高等教育出版社,1999,313-431.
    40 徐国伟,常二华,蔡建.秸秆还田的效应及影响因素[J].耕作与栽培,2005,1(1):6-9.
    41 许光辉,李振高. 微生物生态学[M]. 南京: 东南大学出版社,1991, 104-11l.,265~276.
    42 许光辉,李振高. 微生物生态学[M]. 南京: 东南大学出版社,1991, 104-11l.,265-276.
    43 许光辉主编,土壤微生物分析方法手册[M].农业出版社.1986.
    44 薛泉宏,谭志远,朱铭莪 张晓琳,西藏土壤放线菌初步研究,西北农业大学学报,陕西,1999,27(1):28-32。
    45 亚历山大(美) 著.土壤微生物学报导论(广西农学院农业微生物教研组译) [M]. 北京:科学出版社, 1983
    46 阎逊初,放线菌的分类和鉴定. 北京:科学出版社,1992.1-1147。
    47 杨芳,徐秋芳.土壤微生物多样性研究进展[J]. 浙江林业科技, 2002, 22(6): 39-41
    48 杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响.微生物学杂志,Vol.20,No.2,2000: 23-25,47
    49 杨玉盛,何宗明,俞新妥等.南平溪后杉木林取代杂木林后土壤肥力变化的研究[J]. 植物生态学报, 1994 ,18 (3) : 236~242。)
    50 游长芬,土壤微生物中的放线菌,土壤学进展,1986,11,244-252。
    51 余贵芬, 青长乐等. 腐殖酸结合汞的研究现状[J]. 农业环境保护, 2000, 19(4):13~1
    52 张萍等. 高黎贡山土壤微生物的数量和多样性[J]. 生物多样性,1999, 7(4):297-302.
    53 张全国,张大勇. 生物多样性与生态系统功能:进展与争论[J]. 生物多样性,2002,10(1):49-60.
    54 张智哀,周国玉,卢布1994,旱地耕深与覆盖物对土壤微生物数量变化的研究。山西农业大学学报,14 ( 1 ): 33-36
    55 章家恩,刘文高,胡刚2002,不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,11( 2 ): 1 40-143
    56 赵小蓉,林启美. 微生物解磷的研究进展[J]. 土壤肥料, 2001, 3: 7-11.
    57 中国科学院南京土壤研究所微生物室,土壤微生物研究法,科学出版社,1985.中国科学院南京土壤研究所微生物室. 土壤微生物研究法,[M],北京:科学出版社 1985,54-62。
    58 周兴民等, 中国嵩草草地[M].北京:科学出版社,2001,168~175 30-32
    59 Anderson J P E & Domsch K H Quantification of bacterial and fungal contributions to soil respiration ,Arch,Microbiol,1973,93:113—127
    60 Anderson J P E, DOMSCH K H. A physiological method for the quantitative measurement of microbial biomass in soils [J]. Soil Biology and Biochemistry, 1978, 10: 215-221.
    61 Andrew A. Meharg Clare L. Wyat Ian P. Thompson. Response of soil microbial biomass to1, 2-dichlorobenzene addition in the presence of plant residues. Environmental Toxicology and Chemistry, Vol. 17, No.8, 1998: p.1462-1468
    62 Baath E; Diaz Ravina M; Frostegard A; Campbell CD(1998) Effect of metal-rich sludge amendments on the soil microbial community. Applied Environmental Microbiology, Vol.64, No. 1, 238-245
    63 Bardgett R D, Frank land J C, Whittaker J B. The effects of agricultural practices on the soil biota of some upland grassland [J].Agri. Ecosyst. Environ, 1993, 45: 25-45.
    64 Beare,M.H.,Hendrix,P.F.and Coleman,D.C.1994.Water stable aggregates and organic matter fractions in conventional and no-till soils. Soil Science Society of America Journal, 58:777-786.
    65 Beck T. Mikrobiologische and biochemische Charakter is ierungl and wirtschaftlich genutzter Boden: I. Mit. Die Ermittlung der Bodenmikro biologis chen Kennzahl [J]. Z Pflanzenernaehr Bodenkd, 1984, 147: 456-466.
    66 Bending GD Turner MK Jones JE. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil BIOLOGY and Biochemistry, Vol.34, No.8, 2002: p.1073-1082
    67 Brookes P C, Andrea L, Pruden G, Jenkinsion D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17 (6): 837-842.
    68 Broughton L.C. and K. L. Gross. Paterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia. Vol. 125. no.3, 2000: p.420-427
    69 Brown. M.E. Seed and root bacterization. Annual Review of Phytopathology, 1974, 12: 311-331.
    70 Carter, M.R.1992.Influence of reduced tillage systems on organic matter, microbial biomass, macroaggregate distribution and structural stability of the surface soil inahumi climate. Soil and Tillage Research, 23:361-372.
    71 Chabot R., Antoun H. et al. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobiumle guminosrum biovar. Phaseoli [J].Plant and Soil, 1996, 184:311-321.
    72 Clark R. B. Arbuscular. mycorrhizal adaptation, spore ermination, root colonization, and host plant growth and ineral acquisition at low pH. Plant Soil, 1997, 192 (1):15-22.
    73 Clark R.B. et al. Effectiveness of arbuscular mycorrhiza solates on minera acquisition in Panicum virgatum arowth in acidic soil. In: Ahonen-Jonnarth, U. et al. (eds) Programe and Abstracts of Second International conference on Mycorrhiza. Uppeals, Swedew: SLU Press, 1998, 44.
    74 Clark FE and Paw IEA .The microflora of grassland, Adv. Agron, 1 970(22):375-435.
    75 Carr E .Eason H .Feng S RAPD-PCK typmg of A cinetobaefer isolates from aefivated studge Systems designed to remoue phosphorus M iorobiology 2 001,90:309-319
    76 Cooke W B,Ecology of Fungi BotRev,1958,24:341-429
    77 Degetts BP; Schipper LA; Sparling GP;Vojvodic VukovicM.Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry. Vol32, No.2,2000: p.189-196
    78 Derry AM Staddon WJ Kevan PG Trevors JT. Functional diversity and community tructure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization. Iodivcrsity and conservation. Vol.32,No.2.1999: p.205-221
    79 Doran, J.W.1980. Soil bacterial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal, 44:765-771.
    80 Ellis RJ Neish B Treat Iti1W Best JG Weightman AJ Morgan P Fry. Comparison of icrobial and meiofaunal community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods,VoL45,No3,2001: p.171-185
    81 Emma Frandberg, SchnurerJ. Chitinolyticp roperfies of Bacillus Pabull [J ] K .J.Appl.Bocfoniol, 1994, 76:316-367
    82 Ernelen B; Meinken K; Wintzingerode F van: Heuer H; Malkomes 1-I1; Backhats H; van Wartzinge
    83 Franzluebbers, A.J. 2002. Soil organic matters tratification ratio as an indicator of soil quality. Soil and Tillage Research, 66:95-106.
    84 Franzluebbers, A.J. and Arshad, M.A.1997.Soil microbia biomass and mineralizable carbon of water stable aggregates affected by texture and tillage. Soil Science Society of America Journal, 61:1090-1097.
    85 Freitas J. R. De, Banerjee M.R. et al. Phosphate-solubillizing rhizobactera encharce the growth and yield but not phsphorus uptake of canola (Brassica napus L.) [J]. Biology andFertility of Soils, 1997, 24: 358-364.
    86 Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community-level sole-carbon-source utilization [J]. Appli Environ Microbiol, 1991, 57: 2 351-2 35
    87 genetic fingerprinting in addition to conventional testing procedures. Applied and Environmental Microbiology.Vol.64.No.8.1998:p.2814-2821
    88 GOODFELLOW M, HILL I R, GRAYRG, Bacteria in a pine forest soil. The ecology of soil bacteria [M],Toronto: University of Toronto Press,1968,500—515
    89 Grayston SJ; Wang ShenQuiang; Campbell CD; Edwards AC; Wang SQ.1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology &Biochemistry, Vol.30, No.3,369-78
    90 Guckert J B, White D C. Phospholipid, esther-linked fatty acid analysis in microbial ecology [A]. In: Megusar F, Gantar G, eds. Perspectives in Microbial Ecology: Proceedings of the 4th International Symposium on Microbial Ecology[C]. Ljubljana, Slovenia, 1986: 455-459.
    91 Hassink, J., OudeVoshaar, J.H., Nijhuis, E.H.andvan Veen, J.A.1991. Dynamics of the microbial populations of a reclaimed-polder soil under a conventional and a reduced input farming system. Soil Biology and Biochemistry, 23:515-524.
    92 Insam H. A new set of substrates proposed for community characterization in environmental samples [Z]. 1997.
    93 Jenkinson D S. The effects of biocidal treatments on metabolism in soil: IV. The decomposition of fumigated organisms in soil [J]. Soil Biology and Biochemistry, 1976, 8: 203-208.
    94 Kennedy,A.C. 1999a. Bacterial diversity in agroecosyste Agriculture, Ecosystems and Environment,74:65-76
    95 KLEEBERGER A CASTPRPH H,KLINGMULLER W.The rhizophere microflora of wheat and barley with special reference to gram negative bacteria [J],Arch Microbiol ,1983,136:306—311
    96 Kucey R. M. N., Janzen H.H. et al. Microbially mediated increases in plant-available phosphorus. Advance of Agronomy. 1989,42: 199-288
    97 Kennedy A C etal.Soil Water Conserv [J].1995,50:243-248
    98 Lahav 1 Steinberger Y. Soil bacterial functional diversity in a potato field. European journal of soil biology, Vol.37,No.1,2001: p.59-67
    99 Liu XY. Lindemann WC. Whitford WG Steiner RL. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert. Biology and Fertility of soils, Vol.32.No.3 2000: p.243-249
    100 Lupwayi, N.Z., Arshad, M.A., Rice, W.A.andClayton G.W.2001a. Bacterial diversity in water stable aggrgates of soil sunder conventional and zero till age managment.Applied Soil Ecology, 16:251-261.
    101 Lupwayi,N.Z.,Monreal,M.A.,Clayton,G.W.,Grant,C.A.,Johnston,A.M.andRice,W.A.2001b.Soil microbial biomass and diversity respond to till age and sulphur fertilizers. Canadian Journal of Soil Science, 81:577-589.
    102 Lupwayi, N.Z., Rice, W.A.andClayton, G.W.1998.Soil microbial diversity and community structure under wheat as influenced by till age and crop rotation. Soil Biology and Biochemistry, 30:1733-1741.
    103 Lupwayi, N.Z., Rice, W.A.andClayton, G.W.1999.Soil microbial biomass and carbon dioxide flux under wheat as influenced by till age and croprotation.Canadian Journal of Soil Science, 79:273-280.
    104 MILLER N J,HENKEN G,VAN VEEN J A Variation and composition of bacterial populations in the rhizospherea of maize, wheat and grass cultivars [J],Can J Microbiol ,1989,35:656--660
    105 Mltyzer G EC de Waal, and AG Uiterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Envic Microbiol. 1993 59: 695-700.
    106 MartinD .F.Distrikution of bafe-glucanases within the genecs [J].Bacillus.Appl. Environ.Microil, 1980, 40(6):1136--1138
    107 Mueller-Dombois D.Ecological Measurements and Microbial Population, In: Wicklow D.T. & Carroll G.C. eds. The Fungal Community: Its Organization and Rolein the Ecosystem.MarcelDekker,Inc.,1981,173~184
    108 Muyzer G, de Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE of PCR-amplified genes coding for 16S Rrna [J]. Applied Environment Microbiology, 1993, 59: 695-700.
    109 Nicholson PS. Hirsch PR.The efects of pesticides on the diversity of culturABle soil bacteria. Joomal of applied microbiology, Vol.84,No.4,1998: p.551-5.58
    110 Pankhurst CE Yu S Hawke BCi Hatch BD. Capacity of fatty acid prolites std substrate utilisation patternstodescribe differences in soil microbial communities associated withincmased salinity or alkalinity at three locations in South Australia. BIOLOGy and Fertility of soils.Vol.33.No.3,2001; p,204-217
    111 Petersen S O, Debosz K, Schjonning P, Christensen B T, Elmholt S. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally andorganically farmed soils [J]. Geoderma, 1997, 78: 181-196.
    112 Rillig MC Scow KM Klironomos JN Mlen ME. Microbial carbon-substrate utilization in the rhizosphere of Gurierreziasarothrae grown in elevated atmospheric carbon dioxide. Soil BIOLOGy and Biocheniistry.VoL29.No.9-10.1997: p.1397-1394
    113 ROSZAK D B,COLWELL R R.Survival strategies of bacteria in the natural environment [J].Microbiological Review,1987,51(30):365—379
    114 Ruling WFM. Braster M.; van Veaeveld HW; van Brutkelen BM. Linkint microbial community smtcture to pollution, Siolog-substrate utilization in and near a lamitill leachate plume. Water Science and Technology ,Vol.41.No.12,2000 p. 47-53
    115 Ruzicka S, Edgerton D, Norman M, Hill T. The utility of ergo sterol as a bioindicator of fungi in temperature soils [J]. Soil Biology and Biochemistry, 2000, 32: 989-1006.
    116 Schtater M Dick R. Shifts in substrate utilizatiort potential and structure of soilmicrobialcommunities in response to carbon substrates. Soil BIOLOGy and Biochemistry. Vol.33.No. 11,2001: p.1481-1491
    117 Schuuer ME Dick RP. Microbial community profiles and activities among agn regates of winter tallow and cover-cropped soil. Soil Science Society of America Journal, Vo1.6n,No.1,2002:p.142-153
    118 Schwieger F, Tebbe C C. A new approach to utilize PCR-single strand-conformation polymorphism for 16s rRNA based microbial community analysis [J]. Applied Environment Microbiology, 1998, 64: 4870-4876.
    119 Skujins J. History of abiotic soil enzyme research [A]. In: BURNS R G, ed. Soil Enzymes[C]. New York: Academic Press, 1978: 1-49.
    120 SKYUING G W QUADLING C,Soil bacteria:comparisona of rhizosphere and nonrhizosphere populations Can J Microbiol [J].,1969,15:473—488
    121 Sladdon WJ; Trevors JT: Duchesm LC; Colombo CA. Soil microbial diversity and community sttueaure across a climatic Vadient in western Canada. Btodiversity and Comervation , Vol.7, No.8, 1998: p.1091-1092
    122 Sparling G P. The substrate induced respiration method[A]. In: ALEF K, NANNIPIERI P, eds., Methods in Applied Soil Microbiology and Biochemistry[C]. London: Academic Press, 1995: 397-404.
    123 Stephen JR. McCaig AE. Smith Z Prosser JI. Embley TM, 1996. Mtolecular diversity of soil and marine 16S rDNA sequences related to subgroup armnonia-oxidizing bacteria. Appl Environ Microbiol. 62:41 47-54
    124 R. L. Stimulation of plant growth by organic matter. Journal of the Australian Institute of Agricultural Science, 1942, 8: 156~163.
    125 M L Derry AM Kevan PG Ttevors JT Functional diversitv acrd community structure of microorganisms in thizosphere and non-rhizmphene Canadian arctic soils. Biodiversily and conservation, Vol. 10,No, 11.2001: p.1933-1947
    126 TORSVIK V L Isolation of bacterial DNA from soil [J].soil Biol Biochem.1980.12:15—21
    127 Asar-Cepeda C, Leiros C, Gilsotres F, Seoane S. Towards a biochemical quality index for soils —an expression relating several biological and biochemical properties [J]. Biol Fertil Soils, 1998, 26: 100-106.
    128 Uell Dombois D,Ecological Measurements and Microbial Population, In:Wicklow D.T&CarrollG,C Ecosystem,MarcelDekker,inc,1981,173—184
    129 Heerden J, Cloete TE.; Ehlers MM, Biolog for the determination of microbial diversity in activated sludge systems. Water Science and Technology.Vot.43.No.1, 2001:83-90
    130 Sser S, Parkinson D. Soil biological criteria as indicators of soil quality: soil microorganisms [J]. Am J Altern Agric, 1992, 7:33-37.
    131 West A W, Grant W D, Sparling G P. Use of ergosterol, diaminopimelic acid and glucosamine content of soils to monitor changes in microbial populations [J].Soil Biology and Biochemistry, 1987, 19:607-612.
    132 Ward D M ,Bateson M M,WellerR ,Ribosomal RNA analysis of microorganism as they our in nacre [J] Adv.Microbial. Ecol.1992,12:220-286.
    133 Yan,F.,McBratney,A.B.andCopeland,L.2000.Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in N W New South Wales.Geoderma,96:321-343.
    134 Lles L, Alef K. Biomarkers [A]. In: ALEF K, NANNIPIERI P eds. Methods in Applied Soil Microbiology and Biochemistry[C]. London: Academic Press, 1995: 422–439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700