PI3K/AKT/GSK3β信号传导通路在化疗药物诱导卵巢癌细胞凋亡中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PI3K/AKT/GSK3β信号通路在紫杉醇诱导卵巢癌细胞凋亡中作用的研究
     目的
     通过应用糖原合酶激酶-3β的特异性抑制剂LiCl和PI3K抑制剂LY294002,探讨PI3K/AKT/GSK3β信号通路在紫杉醇诱导卵巢癌细胞凋亡和周期阻滞中的作用。
     方法
     1、蛋白质印迹法检测抑制剂LiCl对GSK3β磷酸化水平的影响及对Bcl-2家族抗凋亡蛋白Bcl-2、Bcl-x1和Mcl-1表达的影响。
     2、细胞凋亡的检测:AnnexinV-FITC/PI凋亡检测试剂盒检测紫杉醇和LiCl作用下卵巢癌细胞的凋亡率;Hochest33342染色检测各组细胞凋亡形态学变化;蛋白质印迹法检测凋亡执行分子Caspase 9和Caspase 3的剪切情况。
     3、应用线粒体跨膜电位指示剂JC-1对各组细胞进行染色,荧光显微镜观察不同的凋亡程度下荧光的变化情况。
     4、应用线粒体提取试剂盒提取各组细胞的线粒体,蛋白质印迹法检测抑制剂LiCl对Bax线粒体转位的影响。
     5、细胞免疫荧光法检测紫杉醇对Bax蛋白表达和分布的影响。
     6、PI染色流式细胞仪检测LY294002和LiCl对紫杉醇诱导周期阻滞的影响。
     结果
     1、蛋白印迹实验结果显示,浓度增加的紫杉醇90 nM、300 nM和1μM作用OV2008细胞24h后,可上调GSK3β的磷酸化水平,而总的GSK3β蛋白表达无明显变化;LiCl可明显增加GSK3β的磷酸化水平,而总体GSK3β表达无明显变化。
     2、细胞凋亡的检测结果:各组细胞分别进行AnnexinV-FITC/PI凋亡染色,流式检测结果显示,LiCl预孵育后,梯度浓度紫杉醇作用细胞24h后的细胞凋亡率由26.77%,27.35%,32.28%下降为17.82%,20.17%,18.96%;Hochester33342染色结果显示,LiCl可抑制紫杉醇导致的细胞核形态学变化;蛋白质印迹结果显示,LiCl可抑制Caspase 9和Caspase 3的分子剪切,从而抑制凋亡的发生。
     3、线粒体跨膜电位指示剂JC-1染色结果显示,抑制剂LiCl可维持卵巢癌细胞OV2008线粒体的极化状态下红绿荧光的强度,阻抑紫杉醇诱导的线粒体去极化所导致的红色荧光减弱。
     4、细胞免疫荧光和线粒体提取试剂盒提取各组卵巢癌细胞线粒体后的蛋白质印迹结果显示,抑制剂LiCl可抑制紫杉醇导致的Bax蛋白的线粒体转位,并且抑制紫杉醇诱导的抗凋亡分子Bcl-2、Bcl-x1和Mcl-1的降解,上调其表达。
     5、流式细胞仪周期分析显示,紫杉醇作用后可引起明显的G_2M期阻滞(69.33%),而LiCl预孵育的细胞G_2M期阻滞明显增加(88.13%),紫杉醇与PI3K抑制剂LY294002(20μM)合用后则可明显降低其G_2M期阻滞(44.06%)。
     6、蛋白质印迹结果显示,应用RNA干扰降低AKT2表达或应用LY294002降低AKT活性均可增强紫杉醇诱导的卵巢癌细胞凋亡。
     结论
     1、GSK3β高水平磷酸化可抑制紫杉醇诱导的卵巢癌细胞凋亡。
     2、磷酸化GSK3β可抑制紫杉醇诱导的Bax蛋白的线粒体转位和抗凋亡分子Bcl-2、Bcl-x1和Mcl-1的降解,从而维持线粒体的稳定,抑制凋亡。
     3、GSK3β可通过调节Cyclin B1和CDC2影响紫杉醇诱导的G_2M期阻滞。
     第二部分PI3K/AKT/GSK3β信号通路在顺铂诱导卵巢癌细胞凋亡中作用的研究
     目的
     探讨增加GSK3β的磷酸化状态在顺铂诱导的卵巢癌细胞凋亡中的作用。
     方法
     运用GSK3β特异性抑制剂LiCl增加GSK3β磷酸化水平,应用流式细胞仪检测浓度梯度增加的顺铂诱导的两株卵巢癌细胞凋亡情况,以及LY294002和LiCl对顺铂诱导细胞周期阻滞的影响;Western Blot检测GSK3β及磷酸化GSK3β蛋白的表达。
     结果
     Western Blot结果显示,梯度浓度增加的顺铂(40μM、80μM及120μM)可导致GSK3β磷酸化水平不断增加;Western Blot结果显示,抑制剂LiCl作用后,磷酸化GSK3β水平明显增加;流式结果显示,梯度增加的顺铂作用于0V2008细胞24h,其凋亡率不断增加,分别为3.34%、23.48%和55.17%,而应用LiCl抑制剂预孵育的细胞,不同浓度顺铂作用24h后凋亡率分别为1.21%、16.09%和21.73%;而在另一株卵巢癌细胞SKOV3中,40μM、80μM及120μM作用24h后凋亡率分别为24.98%、53.34%和64.93%,而LiCl预孵育后,细胞凋亡率明显降低为13.94%、20.65%和35.75%。流式细胞周期分析结果显示,顺铂作用后可引起OV2008明显的S期阻滞(83.1 8%),而LY294002则可明显改善细胞S期阻滞(9.96%),且呈现轻度G_2M期阻滞(22.75%);LiCl也可部分改善细胞的S期阻滞(39.55%)。
     结论
     GSK3β磷酸化水平增加可抑制顺铂诱导的卵巢癌细胞的凋亡。
Part one
     Study of the role and mechanism of PI3K/AKT/GSK3βcellsingnaling pathway in paclitaxel induced apoptosis in ovarian cancer
     Objective: To investigate the effects of PI3K/AKT/GSK3βcell signal pathway on theapoptosis and cell cycle arrest induced by paclitaxel in ovarian carcinoma cell lines.
     Methods :
     1. Western Blot was used to detect the expression of p-GSK3βand the anti-apoptoticproteins Bcl-2、Bcl-xl and Mcl-1 in ovarian carcinoma cell lines treated by differentconcentration paclitaxel or by paclitaxel and LiCl.
     2. The apoptotic ratio test : the AnnexinV-FITC apoptosis detection kit was use to measurethe apoptotic ratio of OV20008 induced by paclitaxel and LiCl; the change of cellmorphology was identified by the Hochest33342 staining; and the Western Blot was use toevaluate the expression of Caspase 9 and Caspase 3.
     3. The effects of LiCl on mitochondrial membrane potential of OV2008 treated bypaclitaxel was measured by mitochondrial membrane potential detection Kit, then observedthe fluorescence under fluorescence microscope.
     4. Immunofluorescence and the mitochondria isolation kit were used to detect thetransposition of Bax from cytoplasm to mitochondria.
     5. Cell cycle were detected by flow cytometry after stained with PI in ovarian cancer cellstreated by LY294002 and LiCl.
     Results:
     1. LiCl could enhance the expression of p-GSK3β.The results of FACS showed that theapoptotic rates of cells treated with paclitaxel (26.77%,27.35%,32.28%)was higher than the cells treated with paclitaxel and LiCl (17.82%,20.17%,18.96%). Hochest33342 stainingshowed that LiCl could inhibit the apoptosis induced by pacitaxel, compared to the cellswithout inhibitor .And the Western Blot also showed that LiCl could inhibit the clip ofCaspase 9 and Caspase 3.
     2. The JC-1 staining showed that LiCl could inhibit the reduce of red fluorescence when thecells treated only by paclitaxel were detected stronger green fluorescence and lower redfluorescence.
     3. The results of immunofluorescence and Western Blot suggested that LiCl could block thetransposition of Bax from cytoplasm to mitochondria which induced by paclitaxel. TheWestern Blot also showed LiCl could suppress the down-regulation of Bcl-2、Bcl-xl andMcl-1.
     4. The results of FACS showed that LiCl could enhanced the G_2M arrest induced bypaclitaxel (88.13%) and in contrast LY294002 could improve the cell cycle arrest( 44.06% )
     5. Western Blot showed down-regulation of AKT by RNAi or by LY294002, both couldpromote the apoptosis induced by paclitaxel.
     Conclusions: The augment of p-GSK3βexpression could inhibit the apoptosisinduced by paclitaxel through up-regulating the function of Bax and down-regulating theanti-apoptotic proteins (Bcl-2,Bcl-xl,Mcl-1); and could also enhanced the G_2M arrest inovarian carcinoma cell lines.
     Part two
     Study of the effects of PI3K/AKT/GSK3βcell singnaling pathway oncisplatin induced apoptosis in ovarian cancer
     Objective: To investigate the effects of enhanced p-GSK3βon the apoptosis induced bypaclitaxel in ovarian carcinoma cell lines.
     Methods: LiCl was used to enhance the expression of p-GSK3β.The apoptosis wasdetected by FACS. The expression of p-GSK3βand GSK3βwas measured by WesternBlot.
     Results: The results of Western Blot showed that after treated by different concentrationcisplatin 24h, the expression of p-GSK3βwas up-regulated in the ovarian cancer cellsOV2008 and SKOV3.The results of FACS showed that the apoptotic rates of OV2008cells treated with different concentration cisplatin was 3.34 %、23.48 % and 55.17%,when pretreated with LiCl, the apoptotic rates reduced to 1.21%、16.09% and 21.73 % ;in another ovarian cancer cell SKOV3 , the apoptotic rates treated with differentconcentration cisplatin was 24.98%、53.34% and 64.93%, when pretreated with LiCl, theapoptotic rates reduced to 13.94%、20.65% and 35.75%. The results of Western Blotshowed that LiC1 could enhance the expression of p-GSK3βand the cisplatin also couldup-regulated the expression ofp-GSK3β.
     Conclusions: The augment ofp-GSK3βexpression could inhibit the apoptosis inducedby cisplatin in ovarian carcinoma cell lines.
引文
1.American Cancer Society Statistics for 2008. [www.cancer.org] .
    2.Eltabbakh GH, Awtrey CS. Current treatment for ovariancancer. Expert Opin Pharmacother, 2001(2): 109-124.
    3.Yuan ZQ, Sun M, Feldman RI, et al. Frequent activation of AKT2 andinduction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene, 2000(19):2324-2330.
    4.Lasky T, Silbergeld E. P53 mutations associated with breast,colorectal, liver, lung, and ovarian cancers. Environ Health Perspect, 1996(104): 1324-1331.
    5.Gatti L, Supino R, Perego P, et al.Apoptosis and growth arrest induced by platinum compounds in U2-OS cells reflect a specific DNA damage recognition associated with a different p53-mediated response. Cell Death Differ, 2002(9):1352-1359.
    6.Servidei T, Ferlini C, Riccardi A, et al.The novel trinuclear platinum complex BBR3464 induces a cellular response different from cisplatin.Eur J Cancer, 2001(37):930-938.
    7.Schneiderman D, Kim J-M, Senterman M, et al. Sustained suppression of Fas ligand expression in cisplatin-resistant human ovarian surface epithelial cancer cells. Apoptosis, 1999(4):271-282.
    8.Li J, Feng Q, Kim JM, et al.Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology, 2001(142):370-380.
    9.Yuan ZQ, Feldman RI, Sussman GE, et al. AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: Implication of AKT2 in chemoresistance. J Biol Chem, 2003,278(26):23432-23440.
    10.Fraser M, Leung BM, Yan X, et al. p53 is a Determinant of Xiap/Akt-Mediated Chemoresistance in Human Ovarian Cancer Cells. Cancer Res, 2003, 63(21):7081-7088.
    11.Xing H, Weng D, Chen G et al.Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells.Cancer Lett,2008,261(l):108-119.
    12.Ayo LD, Dormer DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of mdm2 from the cyto-plasm to the nucleus. Proc Natl Acad Sci USA, 2001,98(20): 11598-11603.
    13. Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J, 1996, 15(23): 6541-6551.
    14. Cheng JQ, Jiang X, Fraser M, et al.Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-
    15. kinase/Akt pathway. Drug Resist Updat, 2002,5 (1):131-146.
    16. Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci U S A, 1996,93 (3):3636-3641.
    17. Shayesteh L, Lu Y, Kuo WL, et al.PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet, 1999, 21(l):99-102.
    18. Bellacosa A, de Feo D, Godwin AK, et al.Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer, 1995, 64(2):280-285.
    19. Ruggeri BA, Huang L, Wood M, et al. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog, 1998,21(1):81-86.
    20. Philp AJ, Campbell IG, Leet C, et al.The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res, 2001, 61(12):7426-7429.
    21. Jimenez C, Jones DR, Rodriguez-Viciana P, et al.Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. Embo J, 1998, 17(5):743-753.
    22. Hu L, Hofmann J, Lu Y, et al.Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002,62(9): 1087-1092.
    23. Mukai, F. et al. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem,2002,81, 1073-1083.
    24. Frame, S. and Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J,2001,359, 1-16.
    25. Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3b (GSK-3b) and mediates protein kinase A-dependent inhibition of GSK-3b. J. Biol. Chem,2002,277, 36955-36961.
    26. Grimes, C.A. and Jope, R.S. The multifaceted roles of glycogen synthase kinase 3b in cellular signaling. Prog. Neurobiol,2001,65, 391-426.
    27. Bijur, G.N. and Jope, R.S. Glycogen synthase kinase-3b is highly activated in nuclei and mitochondria. NeuroReport, 2003,14,2415-2419.
    28. Diehl, J.A. et al. Glycogen synthase kinase-3b regulates cyclin D1 proteolysis and subcellular localization. Genes Dev,1998,12, 3499-3511.
    29. Bijur, G.N. and Jope, R.S. Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3b. J. Biol. Chem,2001,276,37436-37442.
    30. Bijur, G.N. and Jope, R.S. Dynamic regulation of mitochondrial Akt and GSK3b. J. Neurochem. 2003,87, 1427-1435.
    31. Manoukian, A.S. and Woodgett, J.R. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv.Cancer Res. 2002,84, 203-229.
    32. Price, M.A. and Kalderon, D. Proteolysis of the hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell,2002,108, 823-835.
    33. Jia, J. et al. Shaggy/GSK antagonizes hedgehog signaling by regulating cubitus interruptus. Nature,2002,416, 548-552.
    34. Franca-Koh, J. et al. The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J. Biol. Chem. 2002,277, 43844-43848.
    35. Watcharasit, P. et al. Direct, activating interaction between glycogen synthase kinase-3b and p53 after DNA damage. Proc. Natl. Acad. Sci. U. S. A. 2002,99, 7951-7955
    36. Fujimuro, M. et al. A novel viralmechanismfor dysregulation of b-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat.Med. 2003,9, 300-306.
    37. Watcharasit, P. et al. Glycogen synthase kinase-3b (GSK3b) binds to, and promotes the actions of, p53. J. Biol. Chem. 2003,278,48872-48879.
    38. Pap, M. and Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 1998,273, 19929-19932
    39. Loberg, R.D. et al. Enhanced glycogen synthase kinase-3b activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism.J.Biol. Chem. 2002,277, 41667-41673.
    40. Perez, M. et al. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase-3. Biochem. J. 2003,372, 129-136.
    41. Song, L. et al. Central role of glycogen synthase kinase-3b in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol.Chem.2002,277, 44701-44708.
    42. Carmichael, J. et al. Glycogen synthase kinase-3b inhibitors prevent cellular polyglutamine toxicity caused by the Huntington's disease mutation. J. Biol. Chem. 2002,277, 33791-33798
    43. Kim, H.S. et al. Regulation of angiogenesis by glycogen synthase kinase-3b. J. Biol. Chem. 2002,277, 41888-41896.
    44. Klein, P.S. and Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U. S. A. 1996,93,8455-8459.
    45. Chuang, D.M. et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002,4,129-136.
    46. Bijur, G.N. et al. Glycogen synthase kinase-3b facilitates staurosporine- and heat shock-induced apoptosis: protection by lithium. J. Biol. Chem. 2000,275, 7583-7590.
    47. Li, X. et al. Glycogen synthase kinase-3b, mood stabilizers, and neuroprotection. Bipolar Disord. 2002,4, 137-144.
    48. Cross, D.A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death.J. Neurochem. 2001,77, 94-102.
    49. Pap, M. and Cooper,G.M. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/ glycogen synthase kinase 3b signaling pathway. Mol. Cell. Biol. 2002,22,578-586.
    50. Kim, J.W. et al. Glycogen synthase kinase 3b is a natural activator of mitogen-activated protein kinase/extracellular signalregulated kinase kinase kinase 1 (MEKK1). J. Biol. Chem. 2003,278,13995-14001.
    51. Hongisto, V. et al. Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol. Cell. Biol. 2003,23, 6027-6036.
    52. Hoeflich, K.P. et al. Requirement for glycogen synthase kinase-3b in cell survival and NF-kB activation. Nature,2000,406, 86-90.
    53. Schotte, P. et al. Lithium sensitizes tumor cells in an NF-kBindependent way to caspase activation and apoptosis induced by tumor necrosis factor (TNF). J. Biol. Chem. 2001,276, 25939-25945.
    54. Schwabe, R.F. and Brenner, D.A. Role of glycogen synthase kinase-3 in TNF-a-induced NF-kB activation and apoptosis in hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2002,283,G204-G211.
    55. Demarchi, F. et al. Glycogen synthase kinase-3b regulates NF-kBl/pl05 stability. J. Biol. Chem. 2003,278, 39583-39590.
    56. Aubert, J. et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat. Biotechnol. 2002,20, 1240-1245.
    57. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. U. S. A. 2003,100, 7632-7637.
    58. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005;6:351-362.
    59. Polakis P. The oncogenic activation of β-catenin. Curr Opin Genet Dev 1999;9:15-21.
    60. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002;84:203-229.
    61. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006; 18:77-82.
    62. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129:199-221.
    63. Boissan M, Beurel E, Wendum D, et al.Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma.Am J Pathol 2005; 167:869-877.
    64. Leis H, Segrelles C, Ruiz S, et al.Expression, localization, and activity of glycogen synthase kinase 3β during mouse skin tumorigenesis. Mol Carcinog 2002;35:180-185.
    65. Ban KC, Singh H, Krishnan R, et al.GSK-3β phosphorylation and alteration of β-catenin in hepatocel-lular carcinoma. Cancer Lett 2003; 199:201-208.
    66. Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, et al. Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells.Hepatology 2002;36:1528-1536.
    67. Goto H, Kawano K, Kobayashi I, et al. Expression of cyclin D1 and GSK-3β and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol 2002;38:549-556.
    68. Mulholland DJ, Dedhar S, Wu H, et al.PTEN and GSK3β:key regulators of progression to androgen-independent prostate cancer. Oncogene 2006;25:329-337.
    69. Gotoh J, Obata M, Yoshie M, et al.Cyclin Dl over-expression correlates with β-
    70. catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3/i and ERKl/2 in mouse hepatic carcinogenesis. Carcinogenesis 2003;24:435-442.
    71. Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 2005;334:1365-1373.
    72. Fujimuro M, Hayward SD. Manipulation of glycogen-synthase kinase-3 activity in KSHV associated cancers. J Mol Med 2004;82:223-231.
    73. Cohen Y, Chetrit A, Cohen Y, et al.Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med Oncol 1998; 15:32-36.
    74. Gould TD, Gray NA, Manji HK. Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol Res 2003;48:49-53.
    1.Lin H, Changchien CC. Management of relapsed/refractory epithelial ovarian cancer: currents standards and novel approaches[J].Taiwan J Obstet Gynecol, 2007, 46(4):379-388.
    2.Beurel E, Jope RS.The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways[J].Prog Neurobiol,2006,79 (4):173-189.
    3.American Cancer Society Statistics for 2008. [www.cancer.org] .
    4.M.A. Jordan. Mechanism of action of anti tumour drugs that interact with microtubules and rubulin[J]. Curr. Med. Chern, 2002 (2) :1-17.
    5.F. Gueritte. General and recent aspects of the chemistry and structure-activity relationships of taxoids[J].Curr. Pharmacol. Des, 2001 (7):1229-1249.
    6.McGrogan BT, Gilmartin B, Carney DN et al.Taxanes, microtubules and chemoresistant breast cancer[J].Biochimica et Biophysica Acta (BBA) - Reviews on Cancer,2008,1785(2):96-132.
    7.McCubrey JA, Steelman LS, Abrams SL et al.Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance[J].Adv Enzyme Regul,2006,46(l):249-279.
    8.8.[CANCER June 1, 2000 / Volume 88 / Number 11,2619]
    9.Xing H, Weng D, Chen G et al.Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells[J].Cancer Lett,2008,261(1):108-119.
    10.Jope RS, Yuskaitis CJ, Beurel E et al.Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics[J].Neurochem Res,2007,32(4-5):577-595.
    11.Jope RS, Johnson GV.The glamour and gloom of glycogen synthase kinase-3[J].Trends Biochem Sci,2004,29(2):95-102.
    12.Watcharasit P, Bijur GN, Zmijewski JW et al.Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage[J].Proc Natl Acad Sci U S A,2002,99(12):7951-7955.
    13.Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ et al. GSK3β inhibition by lithium confers resistance to chemotherapy-induced apoptosistlirough the repression of CD95 (Fas/APO-1) expression[J]. Exp Cell Res 2004;300(2):354-364.
    14. Beurel E, Kornprobst M, Blivet Van Eggelpoel MJ et al.GSK-3beta reactivation with LY294002 seansitizes hepatoma cells to chemotherapy-induced apoptosis[J].Int J Oncol,2005,27(l):215-222.
    15. Rask K, Nilsson A, Brannstrom M et al.Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta[J].Br J Cancer,2003,89(7):1298-1304.
    16. Petit PX, H Lecoeur, E Zorn, et al. Alterations in mitochondrial structure and function are early events of dexamethasoneinducedthymocyte apoptosis[J]. Cell Biol,1995,130(l):157-167.
    17. Somervaille TC, Linch DC, Khwaja A et al.Growth factor withdrawal from primary human erytliroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax[J].Blood,2001,98(5):1374-1381.
    1.Yang X, FraserM,Moll UM, et al. Akt2mediated cisp latin resistance in ovarian cancer: Modulation of p53 action on caspase-dependent mitochondrial death pathway [J]. Cancer Res, 2006, 66(15): 3126-3136.
    2.Beurel E, Jope RS.The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways[J].Prog Neurobiol,2006,79 (4):173-189.
    3.Hendrikse NH, Franssen EJF, WTA vander Graaf. Vissalization of multidrug resistance in vivo[J].Eur J Nucl Med, 1999, 26(3):283-293.
    4.Cheng TC, Manorek G, Samimi G, et al. Identification of genes whose expression is associated with cisplatin resistance in human ovarian carcinoma cells[J].Cancer Chemother Pharmacol, 2006, 58(3) :384-395.
    5.Jope RS, Yuskaitis CJ, Beurel E et al.Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics[J].Neurochem Res,2007,32(4-5):577-595.
    6.Jope RS, Johnson GV.The glamour and gloom of glycogen synthase kinase-3[J].Trends Biochem Sci,2004,29(2):95-102.
    7.Watcharasit P, Bijur GN, Zmijewski JW et al.Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage[J].Proc Natl Acad Sci U S A,2002,99(12):7951-7955.
    8.Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ et al. GSK3 β inhibition by lithium confers resistance to chemotherapy-induced apoptosisthrough the repression of CD95 (Fas/APO-1) expression[J]. Exp Cell Res 2004;300(2):354-364.
    9.Beurel E, Kornprobst M, Blivet Van Eggelpoel MJ et al.GSK-3beta reactivation with LY294002 seansitizes hepatoma cells to chemotherapy-induced apoptosis[J].Int J Oncol,2005,27(1):215-222.
    10.Rask K, Nilsson A, Brannstrom M et al.Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta[J].Br J Cancer,2003,89 (7):1298-1304.
    1.Johnson SW, Perez RP, Godwin AK, et al. Role of platinum- DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem Pharmacol, 1994; 47 (4):689-697.
    2.Yakirevich E , Sabo E , Naroditsky I , et al . Multidrug resistance-related phenotype and apoptosis-related protein expression in ovarian serous carcinomas.Gynecol Oncol, 2006, 100(1): 152-159.
    3.Kavallaris M, Leary JA, Barrett JA, et al. MDR1 and multidrug resistance- associated protein (MRP) gene expression in epithelial ovarian tumors. Cancer Lett, 1996,102(1-20):7 -16.
    4.Holzmayer TA, Hilsenbeck S, Von D, et al. Clinical correlates of MDR1 (P- glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst,1992,84(19):1486-1491.
    5.Bush JA, Li G.Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int J Cancer, 2002,98(3):323-330.
    6.Izquierdo MA, van der Zee AGJ, Vermorken JB, et al. Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognosis in advanced ovarian carcinoma. J Natl Cancer Inst ,1995,87(16):1230-1237.
    7.Ohishi Y, Oda Y, Uchiumi T, et al. ATP-binding cassette superfamily transporter gene expression in human primary ovarian carcinoma. Clin Cancer Res, 2002,8 (12):3767-3775.
    8.Helleman J , van Staveren IL , Dinjens WN , et al . Mismatch repair and treatment resistance in ovarian cancer . BMC Cancer 2006, 6:201-210.
    9.Gadducci A, Cosio S, Muraca S, et al. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur J Gynaecol Oncol, 2002, 23(5):390-396
    10.Skirnisdottir 1, Seidal T , Gerdin E , et al.The prognostic importance of p53, bcl-2, and bax in early stage epithelial ovarian carcinoma treated with adjuvant chemotherapy. Int J Gynecol Cancer ,2002,12(3),265-276.
    11.Ozols RF.Systemic therapy for ovarian cancer: current status and new treatments.Semin Oncol,2006,33(2S6):S3-11.
    12. Cure H, Battista C, Gustalla J, et al. Phase ******* randomized trial of high dose chemotherapy and PBSC support as consolidation in patients with responsive low burden advanced ovarian cancer: preliminary results of a GINECO/ FNLCC/ SFGMTC study. Proc Am Soc Clin Oncol 2001;20:204a.
    13. Stiff PJ, Shpall EJ, Liu PY, et al. Randomized Phase *********** trial of two high-dose chemotherapy regimens with stem cell transplantation for the treatment of advanced ovarian cancer in first remission or chemosensitive relapse: a Southwest Oncology Group study. Gynecol Oncol 2004,94(1):98-106.
    14. Markman M, Liu PY, Wilczynski S, et al. Phase ******* randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest Oncology Group and Gynecologic Oncology Group trial. J Clin Oncol 2003; 21 (13):2460-2465.
    15. Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage ******** ovarian cancer. N Engl J Med 1996; 335 (26):1950-1955.
    16. Markman M, Bundy BN, Alberts DS, et al. Phase ******** trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage ********* ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group.J Clin Oncol, 2001,19(4):1001-1007.
    17. Armstrong D, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin andpaclitaxel in ovarian cancer. N Engl J Med ,2006,354(1):34-43.
    18. Joly F, Joly C, Mangioni C,et al.A phase 3 study of PSC 833 in combination with paclitaxel and carboplatin (PC-PSC) versus paclitaxel and carboplatin (PC) alone in patients with stage ******** or suboptimally debulked stage ******** epithelial ovarian cancer or primary cancer of the peritoneum (Abstract). Proc Am Soc Clin Oncol ,21: 806
    19. Seiden MV, Swenerton KD, Matulonis U, et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy.Gynecol Oncol ,2002,86(3):302-310.
    20. Plumb JA, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2 -deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter.Cancer Res, 2000, 60 (21): 6039-6044.
    21. Gifford G, Paul J, Kaye S, et al. The acquisition of LMLH1 methylation in plasma DNA after chemotherapy predicts poor survival forovarian cancer patients. Clin Cancer Res, 2004, 10(13): 4420- 4424.
    22. Lee C, Appleton K, Plumb J, et al. A phase I trial of the DNAhypomethylating agent 5-aza-2 -deoxycytidine in combination with carboplatin both given 4 weekly by intravenous injection in patients with advanced solid tumours. J Clin Oncol, 2004, 22 (14S):128-135.
    23. Schilder RJ.Novel therapies: update on biologic targeted strategies for ovarian cancer.in Perry Mc(ed):2005 American Society of Clinical Oncology Annual Meeting Educational Book, Alexanaria, VA. American Society of Clinical Oncology, 2005, 421-428.
    24. Finkler N,Gordon A,Crozier M,et al.Phase ***** evaluation of OSI-774,a potential oral antagonist of the EGFR-TK in patients with advanced ovarian cancer.Proc Am Soc Clin Oncol,2001,20(208a) (abstr) .
    25. Schilder RJ,Kohn E,Sill MW,et al. Phase ***** trial of gefitinib in patients with recurrent ovarian or primary peritoneal cancer:Gynecologic Oncology Group 170C.Proc Am Clin Oncol,2003,22(451) (abstr) .
    26. Schilder RJ, Sill MW,Chen X,et al. Phase ***** study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: A Gynecologic Oncology Group Study.Clin Cancer Res,2005,11(15):5539-5548.
    27. Aghajanian C, Sabbatini P, Derosa F, et al.A phase ***** study of cetuximab/paclitaxel/carboplatin for the initial treatment of advancer stage ovarian , primary peritoneal, and fallopian tube cancer . Proc Am Soc Clin Oncol, 2005,24:466.
    28. Schilder RJ. Phase ***** trial of cetuximab in recurrent ovarian cancer . Philadelphia , PA , Fox Chase Cancer Center .
    29. MobusVJ, Baum RP, BolleM, et al. Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer. Am J Obstet Gynecol, 2003,189 (1): 28-36.
    30. Disis ML, Goodell V, Schiffman K et al.Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients.J Clin Immunol,2004,24(5):571-578.
    31. Wolf J, Bodurka-Bevers D, Gano J, et al. A phase I trial of ADp53 for ovarian cancer patients: correlation with p53 and antiadenovirus Ab status. Proc Am Soc Clin Oncol 2000; 19:382a [abstract 1510].
    32. Buller RE, Shahin MS, Horowitz JA, et al. Long term follow-up of patients with recurrent ovarian cancer after Ad p53 gene replacement with SCH 58500. Cancer Gene Ther 2002;9(7):567-572.
    33. Buller RE, Runnebaum IB, Karlan BY, et al. A phase Ⅰ/Ⅱ trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer.Cancer Gene Ther, 2002, 9 (7):553-566.
    34. Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer?Lancet Oncol,2003,4(7):415-422.
    35. Vasey PA, Shulman LN, Campos S, et al. Phase I trial of intraperitoneal injection of the E1B- 55-kd-gene-deleted adenovirus ONYX-015(dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J Clin Oncol ,2002,20(6): 1562-1569.
    36. Brader KR, Wolf JK, Hung MC, et al. Adenovirus E1A expression enhances the sensitivity of an ovarian cancer cell line to multiple cytotoxic agents through an apoptotic mechanism. Clin Cancer Res,1997,3(11):2017-2024.
    37. Hortobagyi GN, Ueno NT, Xia W, et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase Ⅰ clinical trial. J Clin Oncol, 2001, 19 (14):3422-3433.
    38. Alvarez RD, Barnes MN, Gomez-Navarro J, et al. A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibodyencoding adenovirus (AD21): a phase Ⅰ trial. Clin Cancer Res , 2000,6(8):3081-3087.
    1.Mukai, F. et al. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J. Neurochem,2002,81, 1073-1083.
    2.Frame, S. and Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J,2001,359, 1-16.
    3.Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3b (GSK-3b) and mediates protein kinase A-dependent inhibition of GSK-3b. J. Biol. Chem,2002,277, 36955-36961.
    4.Grimes, C.A. and Jope, R.S. The multifaceted roles of glycogen synthase kinase 3b in cellular signaling. Prog. Neurobiol,2001,65, 391-426.
    5.Bijur, G.N. and Jope, R.S. Glycogen synthase kinase-3b is highly activated in nuclei and mitochondria. NeuroReport, 2003,14,2415-2419.
    6.Diehl, J.A. et al. Glycogen synthase kinase-3b regulates cyclin D1 proteolysis and subcellular localization. Genes Dev,1998,12, 3499-3511.
    7.Bijur, G.N. and Jope, R.S. Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3b. J. Biol. Chem,2001,276,37436-37442.
    8.Bijur, G.N. and Jope, R.S. Dynamic regulation of mitochondrial Akt and GSK3b. J. Neurochem. 2003,87, 1427-1435.
    9.Manoukian, A.S. and Woodgett, J.R. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv.Cancer Res. 2002,84, 203-229.
    10.Price, M.A. and Kalderon, D. Proteolysis of the hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell,2002,108, 823-835.
    11.Jia, J. et al. Shaggy/GSK antagonizes hedgehog signaling by regulating cubitus interruptus. Nature,2002,416, 548-552.
    12.Franca-Koh, J. et al. The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J. Biol. Chem. 2002,277, 43844-43848.
    13.Watcharasit, P. et al. Direct, activating interaction between glycogen synthase kinase-3b and p53 after DNA damage. Proc. Natl. Acad. Sci. U. S. A. 2002,99, 7951-7955
    14. Fujimuro, M. et al. A novel viralmechanismfor dysregulation of b-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat.Med. 2003,9, 300-306.
    15. Watcharasit, P. et al. Glycogen synthase kinaseob (GSK3b) binds to, and promotes the actions of, p53. J. Biol. Chem. 2003,278,48872-48879.
    16. Etienne-Manneville, S. and Hall, A. Cdc42 regulates GSK-3b and adenomatous polyposis coli to control cell polarity. Nature ,2003,421,753-756.
    17. Eickholt, B.J. et al. An inactive pool of GSK-3 at the leading edge of growth cones is implicated in semaphorin 3A signaling. J. Cell Biol. 2002,157, 211-217.
    18. Lucas, F.R. et al. Inhibition of GSK-3b leading to the loss of phosphorylated MAP-IB is an early event in axonal remodeling induced by WNT-7a or lithium. J. Cell Sci. 1998,111,1351-1361.
    19. Hall, A.C. et al. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol. Cell. Neurosci. 2002,20, 257-270.
    20. Sayas, C.L. et al. Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta,2002,1582,144-153.
    21. Morfini, G. et al. Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility.EMBO J. 2002,21, 281-293.
    22. Wakefield, J.G. et al. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J. Cell Sci. 2003,116,637-646.
    23. Pap, M. and Cooper, G.M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 1998,273, 19929-19932
    24. Loberg, R.D. et al. Enhanced glycogen synthase kinase-3b activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism.J.Biol. Chem. 2002,277, 41667-41673.
    25. Perez, M. et al. Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase-3. Biochem. J. 2003,372, 129-136.
    26. Song, L. et al. Central role of glycogen synthase kinaseob in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol.Chem.2002,277, 44701-44708.
    27. Carmichael, J. et al. Glycogen synthase kinase-3b inhibitors prevent cellular polyglutamine toxicity caused by the Huntington's disease mutation. J. Biol. Chem. 2002,277, 33791-33798
    28. Kim, H.S. et al. Regulation of angiogenesis by glycogen synthase kinase-3b. J. Biol. Chem. 2002,277, 41888-41896.
    29. Klein, P.S. and Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. U. S. A. 1996,93,8455-8459.
    30. Chuang, D.M. et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord. 2002,4,129-136.
    31. Bijur, G.N. et al. Glycogen synthase kinase-3b facilitates staurosporine- and heat shock-induced apoptosis: protection by lithium. J. Biol. Chem. 2000,275, 7583-7590.
    32. Li, X. et al. Glycogen synthase kinase-3b, mood stabilizers, and neuroprotection. Bipolar Disord. 2002,4, 137-144.
    33. Cross, D.A. et al. Selective small-molecule inhibitors of glycogen synthase kinase-3 activity protect primary neurones from death.J. Neurochem. 2001,77, 94-102.
    34. Pap, M. and Cooper,G.M. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/ glycogen synthase kinase 3b signaling pathway. Mol. Cell. Biol. 2002,22,578-586.
    35. Kim, J.W. et al. Glycogen synthase kinase 3b is a natural activator of mitogen-activated protein kinase/extracellular signalregulated kinase kinase kinase 1 (MEKK1). J. Biol. Chem. 2003,278,13995-14001.
    36. Hongisto, V. et al. Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol. Cell. Biol. 2003,23, 6027-6036.
    37. Hoeflich, K.P. et al. Requirement for glycogen synthase kinase-3b in cell survival and NF-kB activation. Nature,2000,406, 86-90.
    38. Schotte, P. et al. Lithium sensitizes tumor cells in an NF-kBindependent way to caspase activation and apoptosis induced by tumor necrosis factor (TNF). J. Biol. Chem. 2001,276, 25939-25945.
    39. Schwabe, R.F. and Brenner, D.A. Role of glycogen synthase kinase-3 in TNF-a-induced NF-kB activation and apoptosis in hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2002,283,G204-G211.
    40. Demarchi, F. et al. Glycogen synthase kinase-3b regulates NF-kBl/pl05 stability. J. Biol. Chem. 2003,278, 39583-39590.
    41. Aubert, J. et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat. Biotechnol. 2002,20, 1240-1245.
    42. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. U. S. A. 2003,100, 7632-7637.
    43. Hardt, S.E. and Sadoshima, J. Glycogen synthase kinase-3b: a novel regulator of cardiac hypertrophy and development. Circ. Res. 2002,90,1055-1063.
    44. Haq, S. et al. Stabilization of b-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc. Natl. Acad. Sci.U. S. A. 2003,100, 4610-4615.
    45. Hill, M.M. and Hemmings, B.A. Inhibition of protein kinase B/Akt. Implications for cancer therapy. Pharmacol. Ther. 2002,93, 243-251.
    46. Jope, R.S. Anti-bipolar therapy:mechanism of action of lithium.Mol. Psychiatry, 1999,4, 117-128.
    47. Phiel, C.J. and Klein, P.S. Molecular targets of lithium action.Annu. Rev. Pharmacol. Toxicol. 2001,41,789-813.
    48. Kozlovsky, N. et al. GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur. Neuropsychopharmacol. 2002,12, 13-25.
    49. Eldar-Finkelman, H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med. 2002,8, 126-132.
    50. Nikoulina, S.E. et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes.Diabetes, 2000,49, 263-271.
    51. Lochhead, P.A. et al. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes, 2001,50,937-946.
    52. Coghlan, M.P. et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol. 2000,7, 793-803.
    53. MacAulay, K. et al. Use of lithium and SB-415286 to explore the role of glycogen synthase kinase-3 in the regulation of glucose transport and glycogen synthase. Eur. J. Biochem. 2003,270, 3829-3838.
    54. Plotkin, B. et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3.J. Pharmacol. Exp. Ther. 2003,305, 974-980.
    55. Ring, D.B. et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes,2003,52, 588-595.
    56. Henriksen, E.J. et al. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am.J. Physiol. Endocrinol. Metab. 2003,284, E892-E900.
    57. Nikoulina, S.E. et al. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes,2002,51, 2190-2198.
    58. Phiel, C.J. et al. GSK-3a regulates production of Alzheimer's disease amyloid-b peptides. Nature,2003,423, 435-439.
    59. Kang, D.E. et al. Presenilin 1 facilitates the constitutive turnover of b-catenin: differential activity of Alzheimer's diseaselinked PS1 mutants in the b-catenin signaling pathway. J. Neurosci. 1999,19, 4229-4237.
    60. Palacino, J.J. et al. Presenilin 1 regulates b-catenin-mediated transcription in a glycogen synthase kinase-3-independent fashion.J. Biol. Chem. 2001, 276, 38563-38569.
    61. Pigino, G. et al. Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport. J. Neurosci. 2003,23, 4499-4508
    62. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005;6:351-362.
    63. Polakis P. The oncogenic activation of β-catenin. Curr Opin Genet Dev 1999;9:15-21.
    64. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002;84:203-229.
    65. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006; 18:77-82.
    66. 156. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 2003; 129:199-221.
    67. Boissan M, Beurel E, Wendum D, et al.Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma.Am J Pathol 2005; 167:869-877.
    68. Leis H, Segrelles C, Ruiz S, et al.Expression, localization, and activity of glycogen synthase kinase 3 β during mouse skin tumorigenesis. Mol Carcinog 2002;35:180-185.
    69. Ban KC, Singh H, Krishnan R, et al.GSK-3β phosphorylation and alteration of β-catenin in hepatocel-lular carcinoma. Cancer Lett 2003; 199:201-208.
    70. Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, et al. Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells.Hepatology 2002;36:1528-1536.
    71. Goto H, Kawano K, Kobayashi I, et al. Expression of cyclin D1 and GSK-3β and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol 2002;38:549-556.
    72. Mulholland DJ, Dedhar S, Wu H, et al.PTEN and GSK3β: key regulators of progression to androgen-independent prostate cancer. Oncogene 2006;25:329-337.
    73. Gotoh J, Obata M, Yoshie M, et al.Cyclin Dl over-expression correlates with β-
    74. catenin activation, but not with H-ras mutations, and phosphorylation of Akt, GSK3β and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis 2003;24:435-442.
    75. Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Comraun 2005;334:1365-1373.
    76. Fujimuro M, Hayward SD. Manipulation of glycogen-synthase kinase-3 activity in KSHV associated cancers. J Mol Med 2004;82:223-231.
    77. Cohen Y, Chetrit A, Cohen Y, et al.Cancer morbidity in psychiatric patients: influence of lithium carbonate treatment. Med Oncol 1998; 15:32-36.
    78. Gould TD, Gray NA, Manji HK. Effects of a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous polyposis coli mutant mice. Pharmacol Res 2003;48:49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700