小菊花部特征及花冠精油组分与访花昆虫的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Dendranthema morifolium)是异花授粉植物,具有自交不亲和的特性。其自然授粉的主要媒介为蜂类和蝶类。本项研究以南京农业大学中国菊花种质资源保存中心内栽培小菊为对象,进行了小菊化学生态学及传粉生物学研究;分别于2006年6月-2006年10月与2007年6月-2007年10月进行了野外调查,之后进行了室内分析和昆虫生物测定。研究内容包括:访花昆虫的种类、行为及活动规律:花部特征、花冠精油组分的鉴定和分析比较;利用“Y”型嗅觉仪及触角电位技术(EAG)研究了访花昆虫对不同花冠精油与几种主要花香物质的反应;以此来分析访花昆虫与小菊花部特征及花冠精油组分之间的关系。结果表明:
     (1)小菊的访花昆虫有32种,多数隶属于膜翅目、鳞翅目、双翅目和半翅目;不同月份访花昆虫的种类不同;不同种类访花昆虫的形态特征、访花目的及访花行为有所不同,在植物传粉中的作用也有很大差异;西方蜜蜂(Apis mellifera)为小菊的主要传粉者,其种群数量大,平均访花频率达16朵·min~(-1);晴天,西方蜜蜂和大红蛱蝶的访花蜂数与温度的变化呈显著正相关(r=0.876,0.887);气温骤降、阴天及降雨会影响访花昆虫的种类和数量;同一天内不同时间,访花昆虫的访花频率有差异,一般每天11:00-13:00的访花频率最高。
     (2)黄花色系较吸引西方蜜蜂访花;菊花的花朵繁密度、花冠直径、管状花花盘直径均与访花蜂数有显著相关性,而株高与访花蜂数无相关性。大红蛱蝶(Vanessaindica)青睐红色花;其访花蝶数与花朵繁密度、管状花花盘直径均有显著相关性,而花冠直径和株高与访花蝶数无相关性。
     (3)经气相色谱-质谱(GC-MS)分析得知,不同菊花品种(或材料)花冠精油的组分不同,其主要成分均为单萜和倍半萜类及其含氧衍生物;并且不同品种(或材料)含有某些特定的花冠精油组分,其中樟脑萜(r=-0.909,p<0.05)、6,10,14-三甲基-2-十五酮(r=0.882,p<0.05)与访花蜂数具一定的相关性,α-萜品醇(r=0.979,p<0.01)、顺柠檬烯氧化物(r=0.979,p<0.01)、金合欢烯氧化物(r=0.979,p<0.01)、p-mentha-6,8-dien-2-ol,cis-(r=0.973,p<0.01,p-menth-l-en-8-ol(r=0.962,p<0.01)和4-萜品烯醇(r=0.957,p<0.05)与访花蝶数也呈一定相关性。
     (4)小菊的自然结实率与访花蜂数呈显著相关性(r=0.534,p<0.05)。
     (5)西方蜜蜂对不同小菊花冠精油挥发物的嗅觉反应不同,并且随着浓度的减低,正趋性增加。其中,西方蜜蜂对0.1μL·mL~(-1)的'金陵春梦'和'金陵晚霞'挥发油表现出明显的正趋性(选择系数分别为:0.72和0.63)。西方蜜蜂对不同品种(或材料)小菊花冠精油的EAG反应亦有差异,其中对04-1-29、'金陵双秀'小菊的EAG反应值显著大于其他供试小菊(p<0.05),而对'金陵锦袍'和04-8-8小菊的EAG反应值显著小于其他供试小菊(p<0.05)。
     (6)西方蜜蜂对不同小菊花香物质组分的EAG反应存在差异,乙酸冰片酯的EAG反应值显著大于其他供试小菊挥发性花香物质组分(p<0.05)。西方蜜蜂对不同小菊花香物质组分的嗅觉反应亦不同,西方蜜蜂对0.01μL·mL~(-1)的石竹烯氧化物表现明显的正趋性(选择系数为0.60),对1μL·mL~(-1)的樟脑则表现明显的负趋性(选择系数为-0.65)。
Chrysanthemum (Dendranthema morifolium) is a self-incompatible allogamous plant. Its main pollination vectors are bees and butterflies. This paper firstly focused on and evaluated the chemical ecology and pollination characteristics of chrysanthemum with small flower type in Chrysanthemum Germplasm Resource Preserving Center of China. Our aim is to investigate and evaluate species and visiting behavior of flower-visiting insects of Dendranthema morifolium during flowering period, and the effects of flower color, corolla density, corolla diameter, tubular flower diameter, plant height and essential oils on attracting insect visitors. The volatiles from eight cultivars (or materials) of chrysanthemum with small flower type were collected by steam distilltion. Behavioral responses and electroantennogram (EAG) of Apis mellifera to the volatiles and several essential oil components of Chrysanthemum with small flower type were investigated respectively. The results as follows:
     (1) 32 species, belonging to Hymenoptera, lepidoptera, Diptera and Hemiptera, were observed visiting flowering D. morifolium,the species of visiting insects were not same among different months, and the effects of pollination were significantly affected by morphology, behavior and motive of flower-visiting insects. Apis mellifera was the main pollinator, which has a large population, and visiting frequency of A. mellifera was 16 flowers per min. During sunny days, visiting frequency of A mellifera and Vanessa indica were significantly positive correlation with temperature (r=0.876, 0.887, respectively), while sudden dropping-temperature, cloud and rain had important influences upon the number and species of flower-visiting insects visiting flower. Results of field observation further showed that each day, the visiting frequencies to D. morifolium inflorescences were different in different periods; generally, visiting frequency during period from 11:00 to 13:00 was the highest.
     (2) Bees preferred yellow colors flower to others including orange yellow, red, mauve, orange and pink. The number of visiting bees was significantly correlated with corolla density (r=0.715,p<0.01),indicating that the effect of a colony was more significant than the size of a single flower head. For all tested traits of a single flower head, tubular flower diameter had the most significant influence on attracting bees (r=0.622,p<0.01),followedby corolla diameter (r=-0.502,p<0.05).Butterflies preferred red color flowers, and tubular flower diameter significantly influenced the number of pollinating butterflies (r=0.635, p<0.01).Results suggested that rewards from the flowers were the dominating attractive factors to visitors. The effect of single flower head on number of visiting butterflies was more significant than corolla density (r=0.487,p<0.05). In all tested traits of a single flower head, flower color and tubular flower diameter were the main influencing factors on numbers of visiting butterflies.
     (3) The main essential oil components,such as camphor (r_(bees)-0.191,p>0.05; r_(butterflies)=0.507,p>0.05) and borneol (r_(bees)=0.354,p>0.05;r_(butterflies)=-0.387,p>0.05) had little correlation with number of visiting insects, whereas some specific essential oil components, such as camphene (r=-0.909, p<0.05), 2-pentadecanone,6,10,14-trimethyl-(r=0.882,p<0.05) showed significant correlations with number of visiting bees, andα-terpineol (r=0.979, p<0.01),cis-limonene oxide (r=0.979, p<0.01),E-farnesene epoxide (r=0.979, p<0.01),p-mentha-6,8-dien-2-ol, cis-(r=0.973,p<0.01),p-menth-1-en-8-ol (r=0.962,p<0.01) and p-menth-1-en-4-ol,[R]-[-]- (r=0.957,p<0.05) showed significant correlations with number of visiting butterflies.
     (4) The number of visiting bees was significantly correlated with seed setting percentage (r=0.534, p<0.05) .
     (5) The olfactory responses of Apis mellifera to volatiles from different cultivars (or materials) were different, and the positive response became greater as the concentration decreased. Apis mellifera was significantly attracted by 0.1μL/mL~(-1) 'jin ling chun meng' and 'jin ling wan xia' volatiles (coefficient of selectivity are 0.72 and 0.63 ). Apis mellifera also has different responses to volatiles from different cultivars (or materials) of chrysanthemum with small flower type, the EAG values of Apis mellifera treated by volatiles of 04-1-29 and 'jin ling shuang xiu' were significant higher than the other cultivars (or materials) (p<0.05),while the values treated by volatiles of 'jin ling jin pao'and 04-8-8 were lower than the other cultivars (or materials)(p<0.05).
     (6) Apis mellifera has different responses to volatiles from different aromatic constituents of chrysanthemum with small flower type, the EAG values of Apis mellifera treated by bomeol acetate were significant higher than the other components (p<0.05).The olfactory responses of Apis mellifera to different components of volatiles were also different, Apis mellifera manifests obvious positive tropism to 0.01μL·mL~(-1)CaryophyIIene oxide (coefficient of selectivity is 0.60),while negative tropism to 1μL·mL~(-1) Camphor (coefficient of selectivity is -0.65).
引文
1.戴思兰,陈俊愉.菊属7个种的人工种间杂交试验.北京林业大学学报,1994,18(4):16-22.
    2.丁红建,郭予元,吴才宏.用于昆虫嗅觉行为研究的四臂嗅觉仪的设计、制作和应用.昆虫知识,1996,33(4):241-243
    3.丁红建,吴才宏,郭予元.棉铃虫成虫对寄主植物挥发性他感信息物的嗅觉行为研究.见:何礼远//植物病虫害生物学研究进展.北京:中国农业科技出版社,1995:163-116.
    4.杜家纬.植物-昆虫间的化学通讯及其行为控制.植物生理学报,2001,27(3):193-200.
    5.李江红,尤民生.昆虫授粉研究与应用概述.福建农业大学学报,1999,28(4):492-497.
    6.杜永均,严福顺..植物挥发性物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理.昆虫学报,1994,37(2):233-250.
    7.方海涛,斯琴巴特.蒙古扁桃花部综合特征的虫媒传粉.生态学杂志,2007,26(2):177-181.
    8.官昭瑛,吴艳光,袁海滨,任炳忠..昆虫访花机制研究概述.吉林农业大学学报,2005,27(6):608-613.
    9.郭友好.传粉生物学与植物进化.引自:陈家宽,杨继主编:植物进化生物学.武汉大学出版社,1994,232-280.
    10.黄保民,王蕾.怀菊花挥发油的化学成分研究.中药材,1997,20(3):144-145.
    11.黄双全,郭友好,潘明清,陈家宽.鹅掌楸的花部综合特征与虫媒传粉.植物学报,1999,41,241-248.
    12.黄双全,郭友好.传粉生物学的研究进展.科学通报,2000,45(3):225-237.
    13.红雨,刘强.芍药的访花昆虫和传粉昆虫.昆虫知识,2004,41(5):449-454.
    14.姜宁华,朱山寅,吴素香.杭白菊挥发油成分分析.浙江中医学院学报,2003,27(5):83-85.
    15.冷丰收,王思宏,金大成,尹起范.延边地区黄万寿菊花挥发油的GC/MS研究.延边大学学报,1999,25(4):261-265.
    16.李鸿渐,邵建文.中国菊花品种资源的调查收集和分类.南京农业大学,1990,13(1):30-36.
    17.李绍文.生态生物化学.北京:北京大学出版社,2003:2.
    18.李绍文.生态生物化学.北京:北京大学出版社,2003:6.
    19.李绍文.生态生物化学.北京:北京大学出版社,2001,7.
    20.李辛雷,陈发棣,菊属种间杂交胚拯救过程成苗途径的初步研究.植物学通报,2004,21(3):337-341.
    21.李辛雷,陈发棣.菊花二倍体野生种与栽培中间杂种的幼胚拯救.林业科学,2006,42(11): 42-46.
    22.凌育赵.水蒸气蒸馏法提取桔干皮中的香精油.广东化工,2005,(04):42-43.
    23.刘爱忠,李德铢,王红.西双版纳先锋植物野芭蕉的传粉生态学研究.植物学报,2001,43(3):319-324.
    24.刘林德,陈磊,张丽,等.华北蓝盆花的开花特征及传粉生态学研究.生态学报,2004,24(4):718-723.
    25.刘林德,李玮,祝宁,等.刺五加、短梗五的花分泌节律、花蜜成及访花多样性的比较研究.生态学报,2002,22(6):847-853
    26.罗峰,雷朝亮.传粉甲虫的研究进展.昆虫知识,2003,40(4):313-317.
    27.庞雄飞,尤民生.昆虫群落生态学.北京:中国农业出版社,1996
    28.钦俊德.昆虫与植物的关系.北京:科学出版社.1987.
    29.孙晓玉,杨利平,陆兆华.栽培细叶百合的传粉生态.植物研究,2006,26(1):103-108.
    30.王立龙,王广林,刘登义,等.珍稀濒危植物小花木兰传粉生物学研究.生态学杂志,2005,24(8):853-857.
    31.吴艳光,任炳忠,杜秀娟,等.长白山北坡访花昆虫研究(Ⅳ).吉林农业大学学报,2006,28(6):613-618.
    32.仵均祥.农业昆虫学.北京:中国农业出版社,1999:4-23.
    33.严善春,张丹丹,迟德富.植物挥发性物质对昆虫作用的研究进展.应用生态学报,2003,14(2):310-313.
    34.杨明非,刘晓东,潘雪峰.地被菊挥发油的化学组分分析.东北林业大学学报,1997,25(6):87-91.
    35.叶淑香,阎丙申.昆虫生理与害虫防制.医学动物防制,1997,13(6):382-384.尤民生.论我国昆虫多样性的保护与利用.生物多样性,1997,5(2):135-141.
    36.原国辉,徐永伟,郭线茹,蒋金炜.不同花香化合物对棉铃虫成虫触角电位的影响及诱蛾效果.河南农业大学,2004,38(2):148-150.
    37.张红兵,李小鹰,戴华国,周秋君.白蚁表皮碳氢化合物组分鉴定及分类学意义.昆虫学报,2005,48(4):582-587.
    38.张红玉.虫媒植物与传粉昆虫的协同进化(二)——虫媒花的性状对昆虫传粉的适应.四川林业科技,2005,26(6),22-26.
    39.张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用.昆虫学报,1998,41(2):204-214.
    40.张同心,崔为止,孙绪艮,张卫光,梁中贵.松阿扁叶蜂对不同树种挥发物的触角电位反应.昆虫学报,2005,48(4):514-517.
    41.张学祖.植物植食性昆虫及扑食者种间化学信息物质.昆虫知识,1994,31(1):52-55
    42.张永明,黄亚非,陶玲,黄际薇.不同产地野菊花挥发油成分比较研究..中国中药杂志,2002,27(4):265-267.
    43.周琼,梁广文.植物挥发性次生物质对昆虫行为的调控及其机制.湘潭师范学院学报(自然科学版),2003,25(4):56-60
    44.周世良,潘开玉,洪德元.杭州石荠苎和石香薷(唇形科)的传粉生物学比较研究.植物学报,1996,38(7):530-540
    45.Althoff D M,Segraves KA,Sparks J P. Characterizing the interaction between the bogus yucca moth and yuccas : do bogus yucca moths impact yucca reproductive success. Oecologia-Springer-Verlag Heidelberg,2004,140(2):321-327.
    46.Andersson S, Dobson H E.Behavioral foraging responses by the butterfly Heliconius melpomene to lanatana camara floral scent [J ]. J Chem Ecol,2003 ,29(10):2303-2318.
    47.Andersson S, Nilsson 1A, Groth I, Bergstrom G.Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Botanical Journal of linnean Society, 2002, 140, 129-153.
    48.Andersson S. Foraging responses in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepterix rhamni (Pieridae) to floral scents. Chemoecology, 2003a,13,1-11.
    49.Andersson S. Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepterix rhamni (Pieridae). Chemoecology, 2003b, 13, 13-20.
    50.Andreas Jürgens. Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors? Biochem Syst Ecol. 2004, 32:841-859.
    51.Armbruster W S.1983. Dalecbampia scandens (Ortiguilla, Bejuco de Pan),IN: D H Janzen (eds.).Costa Rican natural history.Univ. Chicago Press, Chicago,pp.230-233.
    52.Armbruster W S.,G (?) Webster. 1979.Pollination of two species of Dalecbampia (Euphorbiaceae) in Mexico by euglossine bees. Biotropica,11:278-283.
    53.Atkins M D. Insects in persective. MacMIllan Publishing Co. 1978, pp.399.
    54.Baker H G, I Baker. 1973a. Amino-acids in nectar and their evolutionary significance. Nature, 241:543-545.
    55.Baker H G., I Baker. 1973b. Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in San Diego, Calif, pp.243-264.
    56.Baker H G, I Baker. 1975. Studies on nectar-constistution and pollinator-plant coebolution.IN:l E.Gilibert and P H Raven(eds.),Coevolution of Animals and Plants. Univ. Texas Press, Austin,Texas,pp.100-140.
    57.Baker H G., I Baker. 1983a. A brief historical review of the chemistry of floral nectoa. IN: B Bentley and T Elias (eds.),The biology of nectarines.Columbia Univ. Press.New York,pp. 126-152.
    58. Baker H G., I Baker. 1983b. Floral nectar sugar constituents in relation to pollinator type.
    59. Bergstrom G. Role of volatile chemicals in opyrys2pollinator inter-actions.Biochemical Aspects of Plant and Animal Coevolution ,1978 :207-232.
    60. Bogler D J , Neff J I, Simpson B B. Multiple origins of the yucca-yucca moth association. Proc Natl Acad Sci USA , 1995 , 92 (15) :6864-6867.
    61. Borg-karlson A K. Chemical and ethological studies of pollination in the genus Ophrys ( Orchidaceae ). Phytochemisty , 1990 (29) :1359-1387.
    62. Buchmanm S1. The ecology of oil flowers and their bees. Review of Ecology and Systematics, 1987, 18,343-369.
    63. Butler, C.G. 1943. Work on bee repellents: Management of colonies for pollination. Ann.Appl.Biol.,30:195-196.
    64. Butler,C.G. 1945. The influence of various physical and biological factors of the environment in honeybee activity: An examination of the relationship between activity and nectar concentration and abundance. J. Wxp.Biol., 21:5-12.
    65. Butler,C.G.,E P Jeffree, H Kalums. 1993. The behaviour of population of honeybees on an artificial and on a natural crop. J Exp Biol, 20:65-73.
    66. Castellanos M C .Wilson P ,Thomson J D.'Anti-bee'and'pro-bird'changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol ,2004 ,17 (4) :876-885.
    67. Chagnon,M., J Gingras , D De Oliveira.1993, Complementary aspect of srrawberry pollination by honey and Indigenous bees. Journal of Economical Entomoluogy, 86(2): 416-420.
    68. Corbet S A.Bees and the nectar of Echium vulgare. The pollination of flowers by insects ,1978 :21-23.
    69. Culley, Weller, Sakai. The evolution of wind pollination in angiosperms. Trends in Ecology and Evolution. 2002, 17(8): 361-369.
    70. Dobson EM, BergstrOm G, Groth I.Differences in fragrance chemistry between flower parts of Rosa rugosa thumb (Rosaceae). Israel Journal of Botany, 1990, 39, 143-156.
    71. Dobson H E M. Floral volatiles in insect biology. Insect-Plant Inter-actions. CRC Press Boca Raton F 1,1994(5) :47-81.
    72. Dodson CH, Dressier Rl, Hills HG, Adams RM, Williams NH. Biologically active compounds in orchid fragrance. Science, 1969, 164, 1243 -1249.
    73. Duffied, G. E. Choice of flower by foraging honey bees(Apis mellefera): Possible morphological cues, Ecol. Entomol., 1986, 18: 119-179.
    74. Eevin GN, Wetzel RG. Allelochemical autotoxcity in the emergent wetland macrophyte Juncus effusus (Juncaceae). American Journal of Botany, 2000, 87, 853 - 860.
    75. Edward E ,Southwick l S. Estimating the value of honey bees as agricultural pollinators in the United States. Journal of Economic Entomology, 1992 ,85 (3) :621-635.
    76. Frankie G. W, H G Baker, P A Opler. 1974. Comparative phonological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J. Ecol, 62: 881-913.
    77. Free J B. Dandelion as a competitor of fruit trees for bee visitors.J Appl Ecol, 1968, 5: 169-178.
    78. Frisch, J. B. Bees and their vision, chemical sense and behavior. 1976, 2-59.
    79. Harborne J B.Biochemistry of plant pollination. Introduction to Ecological Biochemistry, 1993, 36-70.
    80. Henrich B, Raven PH. Energetics and pollination ecology. Science, 1972, 176: 597-602.
    81. Heinrich B. Bee flowers: A hypothesis on flower variety and blooming times. Evolution 1795, 29: 325-334.
    82. Haragsim, C. Are we to control pollination with the help of pheromones.Apicata, 1986, 21: 85-87.
    83. Hoballah ME, Stuurman J, Turlings TCJ, Guerin PM, Connetable S, Kuhlemeier C. The composition and timing of flower odour emission by wild Petunia axillaries coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta, 2005, 222, 141-151.
    84. Holley A ,Macleod P. Transduction te codage des informations olfactives chez les vertebres . J Physiol Paris ,1977, (73): 725-828.
    85. Iakovleva, l. P. Characteristics of pollen collection and flower soedialization of various races of honeybees. Apicata, 1985, 20:10-15.
    86. Johnson S D ,Peter C I ,Agren J . The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid Anacamptis morio. Proc R Soc lond B Biol Sci, 2004 ,271(1541) :803-809.
    87. Jurgens A. Flower scent composition in diurnal Silene species (Caryophyllaceae): phylogenetic constraints or adaption to flower visitors ? Biochemical Systematics and Ecology, 2004, 32, 841-859.
    88. Kaiser R. Plant scents :Scent pollination principles . The scent of orchids ,1993 (28) :407-454.
    89. Kevan PG, Baker HG. Insects as flower visitors and pollinators. Annual Review of Entomology, 1983, 28,407-453.
    90. Knudsen J T ,Tollsten l ,Bengstrom G. Floral scents-a checklist of olatile compounds isolated by headspace techniques . Phytochemistry ,1993 (33) :253-280.
    91. levin M D .Waller G D. Evaluating the role of honey bees in food production. A picata, 1989, 24 (3) :65-69.
    92. Marr Dl , Pellmyr O. Effect of pollinator-inflicted ovule damage on floral abscission in the yucca-yucca moth mutualism: the role of mechanical and chemical factors . Oecologia ,2003 ,136 (2) :236-243.
    93. Matsuka M , Sakal T. Bee pollination in Japan w ith special refrence to straw berry p roduction in green-houses. Ann Rev Entomol, 1989, 34: 55-61.
    94. Matthew Gronquist, Alexander Bezzerides, Athula Attygalle, et al .Attractive and defensive functions of the ultraviolet pigments of a flower ( Hypericum calycinum). Proc Natl Acad Sci USA ,2001, 98(24):13745-13750.
    95. Maria Elena Hoballah · Jeroen Stuurman, Ted C. J. Turlings Patrick M. Guerin, Sophie Conne' table Cris Kuhlemeier. The composition and timing of flower odour emission by wild Petunia axillaries coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta .Planta. 2005, 222: 141-151.
    96. Melrsham KJ, Jacobsen N, Hodes JR. Compounds which affect the behavior of the honey bees (Apis mellifera l.): a review. Annual Review of Entomology, 1988, 33, 104-121.
    97. Michael A Birkett ,Colin A M Campbell, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA ,2000 , 97(16) :9329-9334.
    98. Mosquin T. 1971. Competition for pollinatiors as a stimulus for evolution flowering time. Oikos, 22:398-402.
    99. Patrick H W, Harington W. Ethologial isolation of 2-odour selection by honeybees. Journal of Apiculture Research, 1985, 24(2), 86-92.
    100. Pellmyr O ,Thompson J N. Multiple occurrences of mutualism in the yucca moth lineage . Proc Natl Acad Sci USA , 1992 , 89 (7) :2927-2929.
    101. Pichersky E, Jonathan G. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol, 2002, 5: 237-243.
    102. Price P W. Insect ecology. John Wiley and Sons,Inc, 1997, pp.239-266.
    103. Rodrigo B Singer. The pollination mechanism in trigonidium obtusum lindl (Orchidaceae : Maxillariinae ): Sexual Mimicry and Trap-flowers. Ann Bot (lond) ,2002 ,89 (2) :157-163.
    104. Roubik,D.W. 1992. loose niches in tropical communities: Why are there so few bees and so many trees? IN: M. D>Hunter,T. Ohgeshi and P. W. Price (eds.) Effects of Resource Distribution on Animal-Plant Interactions. Academic Press, San Diego,Calif., pp.327-354.
    105. Sasaki M,Ono M,Asada S,Yoshida T. Oriental orchid (Cymbidium pumnilum) attracts drones of the Japanese honeybee (Apis ceranajaponica) as pollinators. Experientia ,1991 ,47 (11-12) :1229-1231.
    106. Schiestl F P. Floral evolution and pollinator mate choice in a sexually deceptive orchid. J Evol Biol ,2004,17(1) :67-75.
    106. Simposon, B B, J.I Neff.1983. Evolution and diversity of floral rewards.IN: C.E.Jones and R.J little (eds.). Handbook of experimental Pollination biology. Scientific and Academic Editions, New York,pp.142-159.
    107. Smart, J., N. F. Hughes. The insect and plant: progressive palaeocological integration. IN: H.F.van Emden(ed.), Insect/Plant relationships.Roy. Entomol. Soc. london Symp. 1973, 6, 143-155.
    108. Surburg H, Guentert M, Harder H. Volatile compounds from flowers. ACS Symposium, 1993 (525):168-186.
    109. Teixeira Sde P,Borba El ,Semir J . lip anatomy and its implications for the pollination mechanisms of bulbophyllum species (Orchidaceae). Ann Bot (lond) ,2004 ,93(5) :499-505.
    110. Visser J H. Host odor perception in phytophagous insects. Annu Rev Ent, 1986 ,31:121-144.
    111. Williams NH. Floral fragrances as cues in animal behavior// Jones CE, little RJ, eds. Handbook of Experimental Pollination Biology. New York: Van Nostrand Reinhold: 1983, 50-72.
    112. Wright GA , Skinner B D , Smith B H. Ability of honeybee , Apis mellifera , to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J Chem Ecol ,2002 ,28 (4) :721-740.
    113. Wyatt R. Pollinator-plant interactions and the evolution of breeding systems// Real l, ed. Pollination Biology. Florida: Academic Press: 1983, 51-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700