PTEN调节软骨细胞增殖与分化并抑制软骨发育障碍的发生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨是大部分骨骼的发育引擎,它的发育受到多种信号通路的协同调节。这些信号通路由各种因素驱动,包括细胞因子和激素如Indian hedgehog(Ihh)、甲状旁腺激素相关多肽(parathyroid hormone-related peptide,PTHrP)、转化生长因子β(transforming growth factorβ,TGF-β)超家族分子、成纤维细胞生长因子(fibroblast growth factor,FGF),也包括转录因子如Sox(SRY-related high mobility group-box gene)家族、Runx2(runt-related transcription factor 2)、缺氧诱导因子1α(hypoxia-inducible factor-1α,HIF-1α),以及各种应激因素如内质网应激反应(endoplasmic reticulum stress ,ERSS)等等。这些信号通路涉及调控软骨细胞的增殖、分化、迁移、凋亡以及细胞稳态的维持。当这些过程发生异常时,会使软骨内成骨过程受损,导致各种骨骼疾病的发生。软骨发育障碍是以多发性内生性软骨瘤为特征的软骨发育异常疾病,好发于青壮年,以疼痛、骨骼畸形和病理性骨折为主要临床表现。到目前为止,人们对软骨发育障碍的发生发展过程和分子机制知之甚少。
     10号染色体缺失的磷酸酶及张力蛋白同源物((Phosphatase and Tensin homolog deleted from chromosome 10,PTEN)是一个重要的抑癌分子,它通过负向调控磷脂酰肌醇3-激酶(phosphoinositide 3 kinase,PI3K)信号通路来维持细胞稳态,调节细胞的增殖、分化、迁移、凋亡和黏附。PTEN是最重要的抑癌基因之一,它的缺失和突变与人类遗传性疾病和肿瘤的发生密切相关。然而PTEN与软骨内成骨和软骨发育障碍之间的关系仍未明确。在本研究中,我们通过条件基因敲除技术获得了软骨细胞特异性的PTEN基因敲除小鼠,使我们能够深入探索PTEN调节的PI3K/Akt信号通路在软骨发育和骨骼疾病中的作用。
     PTEN基因敲除使生长板软骨细胞中Akt得到磷酸化激活,基因敲除小鼠体长增长并发生与人类内生性软骨瘤相类似的软骨发育障碍表型。通过BrdU掺入法跟踪观察发育中的生长板软骨细胞增殖情况,利用原位杂交和BrdU标记-示踪法分析生长板软骨细胞的分化情况,我们发现PTEN基因敲除导致生长板软骨细胞增殖和分化不均一,致使增殖和分化受阻的静息软骨细胞在生长板中央形成瘤核样的结构。瘤核随着生长板的生长逐渐被遗落入骨髓腔内形成位于生长板下端的瘤样软骨结节。组织学观察显示瘤样软骨结节具有典型的内生性软骨瘤病理学特征。除此之外,PTEN基因敲除的生长板排列和分化紊乱,伴有关节变形,关节软骨损耗等病理改变。因此,通过在软骨细胞中特异性地敲除PTEN基因,我们获得了软骨发育障碍的小鼠模型,为我们研究这个疾病提供了理想的遗传学工具。
     在软骨细胞特异性PTEN基因敲除小鼠体内,瘤核样结构的出现是内生性软骨瘤发生过程中最关键的事件,它们被认为是内生性软骨瘤的雏形。我们发现瘤核内的软骨细胞发生了严重的ERSS。免疫组化和电镜观察显示瘤核内细胞外基质成分的特性和分布发生异常,大量的以2型胶原(type II collagen,Col II)为代表的胞外基质成分堆积在瘤核细胞的内质网腔。伴随着ERSS相关基因免疫球蛋白结合蛋白(binding Ig protein,BiP)表达的上升,软骨细胞的内质网腔发生明显的扩张和破裂,胞外基质的分泌严重受损。我们进一步研究发现只有在低氧环境下,PTEN基因敲除才能导致软骨细胞发生ERSS,同时伴随着软骨细胞分化下降,揭示了PTEN敲除和低氧在ERSS发生过程中的协同作用。
     在软骨细胞特异性PTEN基因敲除小鼠的生长板软骨中,我们不仅发现了ERSS相关基因表达的上升,也发现了HIF-1α信号通路的活化。免疫组化和原位杂交的结果显示在PTEN基因敲除的生长板中HIF-1α和下游靶基因如血管内皮细胞生长因子( vascular endothelial growth factor , VEGF )、磷酸甘油酸激酶(phosphoglycerate-kinase,PGK)、p21、p57在生长板的中央区域表达异常升高。异常活化的HIF-1α信号通路导致这个区域的软骨细胞增殖停滞,导致软骨周围血管生成增加并侵入生长板。我们还发现在HIF-1α信号通路发生异常活化的部位随后发生了ERSS,形成瘤核。体外实验证实PTEN敲除导致软骨细胞HIF-1α信号通路在低氧条件下发生了过度的活化,且先于ERSS的发生,提示PI3K/Akt信号通路可能通过HIF-1α信号通路调节软骨细胞对低氧的反应,并影响ERSS的发生。
     在本研究中,我们首次提供了体内的遗传学证据表明PTEN通过抑制HIF-1α信号通路的过度激活,通过抑制ERSS的发生,调节软骨细胞的增殖和分化,在维持生长板软骨的有序结构,抑制软骨发育障碍的过程中发挥着重要作用。我们的研究成果为人们认识软骨发育障碍这一疾病提供了宝贵的参考。
Cartilage, which is the principal engine for conducting growth of most mammalian skeletons, is developmentally regulated by multiple signaling pathways whcih are driven by multiple factors including cytokines and hormones such as Ihh (Indian hedgehog), PTHrP (parathyroid hormone-related peptide), members of TGF-β(transforming growth factorβ) superfamily, FGF (fibroblast growth factor), as well as transcription factors such as Sox (SRY-related high mobility group-box gene) family, Runx2 (runt-related transcription factor 2), HIF-1α(hypoxia-inducible factor-1α), and stresses such as ERSS (endoplasmic reticulum stress). They are vitally engaged in the processes of coordinating chondrocytic proliferation, differentiation, migration, apoptosis and cellular homeostasis. Disruption of these processes may impair endochondral ossification, leading to various bone defects. Dyschondroplasia is a defect of cartilage development which is characterized by multiple enchondromatosis within the bone marrow cavity. This defect mainly harms youths by means of pain, skeletal deformities and pathological fractures. However, the molecular mechanisms underlying dyschondroplasia are poorly understood.
     The tumor suppressor PTEN (phosphatase and tensin homolog deleted from chromosome 10) is involved in the regulation of cell proliferation, lineage determination, motility, adhesion and apoptosis, as well as in the maintenance of intracellular homeostasis through coordinating the PI3K (phosphatidylinositol-3-kinase) signaling. Loss or mutation of PTEN has been implicated in various hereditary disorders as well as several sporadic human cancers. However, the functions of PTEN in endochondral ossification and dyschondroplasia inhibition remain largely unknown. In this study, we have created chondrocyte-specific PTEN knockout mice (PTENCo/Co;Col2a1-Cre-2) using the Cre–LoxP system. The employment of this genetic model would facilitate our understanding the role of PI3K/Akt signaling in cartilage development and bone defects.
     Following Akt activation, PTEN mutant mice exhibited excessive body length and dyschondroplasia resembling human enchondroma. By using BrdU incorporation and in situ hybridization/BrdU labeling-chasing assay, we observed asynchronous proliferation and differentiation of the PTEN mutant chondrocytes that led to the formation of neoplastic cores within the central region of growth plates. Abnormal resting chondrocytes within these cores are pinched off from the developing growth plates, gradually forming cartilaginous nodules within the bone marrow cavity. Histological observations showed pathological similarities between these cartilaginous neoplasms and human enchondroma. Additionally, an abnormal arrangement and differentiation of growth plate cartilage coupled with joint deformation as well as depletion of articular cartilage was also observed. Therefore, these knockout mice provided us with powerful genetic models on studying dyschondroplasia.
     The formation of neoplastic cores which were considered to be the rudiments of enchondromas, was the most remarkable even during the oncogenesis within the PTEN mutant mice. Immunohistochemistry and electron microscopy analyses revealed aberrant properties and distribution of ColII (type II collagen) fibrils within the neoplastic cores. Chondrocytes within the cores experienced severe ERSS characterized by an up-regulation of ERSS related genes as well as engorged and fragmented ER in which extracellular matrix proteins were trapped. We further found ERSS only occurred under hypoxic conditions within the PTEN mutant chondrocytes, leading to impaired maintenance of chondrocytic differentiation. This result suggested the synergistic function of PTEN deficiency and hypoxia in triggering ERSS.
     An up-regulation of HIF-1αand downstream targets VEGF (vascular endothelial growth factor), PGK (phosphoglycerate-kinase), p21, p57 followed by an emergence of ERSS and neoplastic core was demonstrated via immunohistochemistry and in situ hybridization. Activated HIF-1αsignaling within PTEN mutant growth plates resulted in halted chondrocytic proliferation as well as excessive blood vessel growth and invasion. In vitro study showed that under hypoxia, PTEN mutant chondrocytes exhibited over-reacted HIF-1αsignaling in advance of ERSS, suggesting that PI3K/Akt signaling may regulate the responses of chondrocytes to hypoxia and trigger ERSS via up-regulation of HIF-1αsignaling.
     In this study, we provided the first genetic evidence to show that PTEN coordinates proliferation and differentiation of growth plate chondrocytes via inhibiting overactive HIF-1αsignaling and ERSS, thereby guides the uniform development of growth plate cartilage and suppresses dyschondroplasia. Our data provided new clues for better understanding molecular mechanisms of dyschondroplasia.
引文
[1] Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, & Baron J The role of the resting zone in growth plate chondrogenesis. 2002. Endocrinology, 143(5), 1851-1857.
    [2] Abcouwer SF, Marjon PL, Loper RK, & Vander Jagt DL Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. 2002. Invest Ophthalmol Vis Sci, 43(8), 2791-2798.
    [3] Aigner T Towards a new understanding and classification of chondrogenic neoplasias of the skeleton--biochemistry and cell biology of chondrosarcoma and its variants. 2002. Virchows Arch, 441(3), 219-230.
    [4] Akiyama H, Chaboissier MC, Martin JF, Schedl A, & de Crombrugghe B The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. 2002. Genes Dev, 16(21), 2813-2828.
    [5] Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, & de Crombrugghe B Interactions between Sox9 and beta-catenin control chondrocyte differentiation. 2004. Genes Dev, 18(9), 1072-1087.
    [6] Ali IU, Schriml LM, & Dean M Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. 1999. J Natl Cancer Inst, 91(22), 1922-1932.
    [7] Alvarez J, Horton J, Sohn P, & Serra R The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. 2001. Dev Dyn, 221(3), 311-321.
    [8] Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, & Serra R TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. 2002. Development, 129(8), 1913-1924.
    [9] Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, & Zelzer E HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. 2007. Development, 134(21), 3917-3928.
    [10] Bader AG, & Vogt PK An essential role for protein synthesis in oncogenic cellular transformation. 2004. Oncogene, 23(18), 3145-3150.
    [11] Barna M, & Niswander L Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. 2007. Dev Cell, 12(6), 931-941.
    [12] Bastepe M, Raas-Rothschild A, Silver J, Weissman I, Wientroub S, Juppner H, & Gillis D A form of Jansen's metaphyseal chondrodysplasia with limited metabolic and skeletal abnormalities is caused by a novel activating parathyroid hormone (PTH)/PTH-related peptide receptor mutation. 2004. J Clin Endocrinol Metab, 89(7),3595-3600.
    [13] Bateman JF, Wilson R, Freddi S, Lamande SR, & Savarirayan R Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. 2005. Hum Mutat, 25(6), 525-534.
    [14] Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, & Bell JC Activating transcription factor 4 is translationally regulated by hypoxic stress. 2004. Mol Cell Biol, 24(17), 7469-7482.
    [15] Blancher C, Moore JW, Robertson N, & Harris AL Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway. 2001. Cancer Res, 61(19), 7349-7355.
    [16] Brien EW, Mirra JM, & Kerr R Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. I. The intramedullary cartilage tumors. 1997. Skeletal Radiol, 26(6), 325-353.
    [17] Calvi LM, & Schipani E The PTH/PTHrP receptor in Jansen's metaphyseal chondrodysplasia. 2000. J Endocrinol Invest, 23(8), 545-554.
    [18] Cantley LC The phosphoinositide 3-kinase pathway. 2002. Science, 296(5573), 1655-1657.
    [19] Capdevila J, & Johnson RL Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. 1998. Dev Biol, 197(2), 205-217.
    [20] Chen EY, Fujinaga M, & Giaccia AJ Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. 1999a. Teratology, 60(4), 215-225.
    [21] Chen L, Adar R, Yang X, Monsonego EO, Li C, Hauschka PV, Yayon A, & Deng CX Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. 1999b. J Clin Invest, 104(11), 1517-1525.
    [22] Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, & Hurle JM Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. 2003. Dev Biol, 257(2), 292-301.
    [23] Chow LM, & Baker SJ PTEN function in normal and neoplastic growth. 2006. Cancer Lett, 241(2), 184-196.
    [24] Chung UI, Lanske B, Lee K, Li E, & Kronenberg H The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. 1998. Proc Natl Acad Sci U S A, 95(22), 13030-13035.
    [25] Chung UI, Schipani E, McMahon AP, & Kronenberg HM Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. 2001. J Clin Invest, 107(3), 295-304.
    [26] Colvin JS, Green RP, Schmahl J, Capel B, & Ornitz DM Male-to-female sex reversal in mice lacking fibroblast growth factor 9. 2001. Cell, 104(6), 875-889.
    [27] Cully M, You H, Levine AJ, & Mak TW Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. 2006. Nat Rev Cancer, 6(3), 184-192.
    [28] Czupalla C, Nurnberg B, & Krause E Analysis of class I phosphoinositide 3-kinase autophosphorylation sites by mass spectrometry. 2003. Rapid Commun Mass Spectrom, 17(7), 690-696.
    [29] de Crombrugghe B, Lefebvre V, & Nakashima K Regulatory mechanisms in the pathways of cartilage and bone formation. 2001. Curr Opin Cell Biol, 13(6), 721-727.
    [30] Deng C, Wynshaw-Boris A, Zhou F, Kuo A, & Leder P Fibroblast growth factor receptor 3 is a negative regulator of bone growth. 1996. Cell, 84(6), 911-921.
    [31] Derynck R, & Zhang YE Smad-dependent and Smad-independent pathways in TGF-beta family signalling. 2003. Nature, 425(6958), 577-584.
    [32] Di Cristofano A, Pesce B, Cordon-Cardo C, & Pandolfi PP Pten is essential for embryonic development and tumour suppression. 1998. Nat Genet, 19(4), 348-355.
    [33] Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM, & Francis-West PH Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. 1996. Mech Dev, 57(2), 145-157.
    [34] Emerling BM, Weinberg F, Liu JL, Mak TW, & Chandel NS PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). 2008. Proc Natl Acad Sci U S A.
    [35] Endo H, Murata K, Mukai M, Ishikawa O, & Inoue M Activation of insulin-like growth factor signaling induces apoptotic cell death under prolonged hypoxia by enhancing endoplasmic reticulum stress response. 2007. Cancer Res, 67(17), 8095-8103.
    [36] Erlebacher A, Filvaroff EH, Gitelman SE, & Derynck R Toward a molecular understanding of skeletal development. 1995. Cell, 80(3), 371-378.
    [37] Farquharson C, Jefferies D, Seawright E, & Houston B Regulation of chondrocyte terminal differentiation in the postembryonic growth plate: the role of the PTHrP-Indian hedgehog axis. 2001. Endocrinology, 142(9), 4131-4140.
    [38] Ford-Hutchinson AF, Ali Z, Lines SE, Hallgrimsson B, Boyd SK, & Jirik FR Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. 2007. J Bone Miner Res, 22(8), 1245-1259.
    [39] Franke TF, Kaplan DR, Cantley LC, & Toker A Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. 1997. Science, 275(5300), 665-668.
    [40] Friedman PA, Coutermarsh BA, Kennedy SM, & Gesek FA Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involvingprotein kinase A and protein kinase C. 1996. Endocrinology, 137(1), 13-20.
    [41] Fruman DA, Meyers RE, & Cantley LC Phosphoinositide kinases. 1998. Annu Rev Biochem, 67, 481-507.
    [42] Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, & Asahara H Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. 2005. J Biol Chem, 280(9), 8343-8350.
    [43] Giaccia AJ, Simon MC, & Johnson R The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. 2004. Genes Dev, 18(18), 2183-2194.
    [44] Giordano J, Prior HM, Bamforth JS, & Walter MA Genetic study of SOX9 in a case of campomelic dysplasia. 2001. Am J Med Genet, 98(2), 176-181.
    [45] Giudici MA, Moser RP, Jr., & Kransdorf MJ Cartilaginous bone tumors. 1993. Radiol Clin North Am, 31(2), 237-259.
    [46] Gordan JD, Thompson CB, & Simon MC HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. 2007. Cancer Cell, 12(2), 108-113.
    [47] Haas AR, & Tuan RS Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. 1999. Differentiation, 64(2), 77-89.
    [48] Hall CM International nosology and classification of constitutional disorders of bone (2001). 2002. Am J Med Genet, 113(1), 65-77.
    [49] Han S, Liang CP, DeVries-Seimon T, Ranalletta M, Welch CL, Collins-Fletcher K, Accili D, Tabas I, & Tall AR Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. 2006. Cell Metab, 3(4), 257-266.
    [50] Harding HP, & Ron D Endoplasmic reticulum stress and the development of diabetes: a review. 2002. Diabetes, 51 Suppl 3, S455-461.
    [51] Harding HP, Zhang Y, Bertolotti A, Zeng H, & Ron D Perk is essential for translational regulation and cell survival during the unfolded protein response. 2000. Mol Cell, 5(5), 897-904.
    [52] Hashimoto Y, Tomiyama T, Yamano Y, & Mori H Mutation (D472Y) in the type 3 repeat domain of cartilage oligomeric matrix protein affects its early vesicle trafficking in endoplasmic reticulum and induces apoptosis. 2003. Am J Pathol, 163(1), 101-110.
    [53] Hirao M, Tamai N, Tsumaki N, Yoshikawa H, & Myoui A Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. 2006. J Biol Chem, 281(41), 31079-31092.
    [54] Ho MS, Tsang KY, Lo RL, Susic M, Makitie O, Chan TW, Ng VC, Sillence DO, Boot-Handford RP, Gibson G, Cheung KM, Cole WG, Cheah KS, & Chan D COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. 2007.Hum Mol Genet, 16(10), 1201-1215.
    [55] Horiki M, Imamura T, Okamoto M, Hayashi M, Murai J, Myoui A, Ochi T, Miyazono K, Yoshikawa H, & Tsumaki N Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. 2004. J Cell Biol, 165(3), 433-445.
    [56] Hosoi T, Hyoda K, Okuma Y, Nomura Y, & Ozawa K Akt up- and down-regulation in response to endoplasmic reticulum stress. 2007. Brain Res, 1152, 27-31.
    [57] Hu MC, Gong HY, Lin GH, Hu SY, Chen MH, Huang SJ, Liao CF, & Wu JL XBP-1, a key regulator of unfolded protein response, activates transcription of IGF1 and Akt phosphorylation in zebrafish embryonic cell line. 2007. Biochem Biophys Res Commun, 359(3), 778-783.
    [58] Huang W, Chung UI, Kronenberg HM, & de Crombrugghe B The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. 2001. Proc Natl Acad Sci U S A, 98(1), 160-165.
    [59] Ikeda T, Kawaguchi H, Kamekura S, Ogata N, Mori Y, Nakamura K, Ikegawa S, & Chung UI Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. 2005. J Bone Miner Metab, 23(5), 337-340.
    [60] Inoki K, Corradetti MN, & Guan KL Dysregulation of the TSC-mTOR pathway in human disease. 2005. Nat Genet, 37(1), 19-24.
    [61] Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, & Mulligan RC Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. 1994. Genes Dev, 8(3), 277-289.
    [62] Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, & McMahon AP Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. 2000. Development, 127(3), 543-548.
    [63] Karsenty G, & Wagner EF Reaching a genetic and molecular understanding of skeletal development. 2002. Dev Cell, 2(4), 389-406.
    [64] Kobayashi T, Lyons KM, McMahon AP, & Kronenberg HM BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. 2005. Proc Natl Acad Sci U S A, 102(50), 18023-18027.
    [65] Kolpakova E, & Olsen BR Wnt/beta-catenin--a canonical tale of cell-fate choice in the vertebrate skeleton. 2005. Dev Cell, 8(5), 626-627.
    [66] Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, & Huang LE HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. 2004. Embo J, 23(9), 1949-1956.
    [67] Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, & Wouters BG Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. 2002. Mol Cell Biol, 22(21), 7405-7416.
    [68] Kronenberg HM Developmental regulation of the growth plate. 2003. Nature, 423(6937), 332-336.
    [69] Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LH, Ho C, Mulligan RC, Abou-Samra AB, Juppner H, Segre GV, & Kronenberg HM PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. 1996. Science, 273(5275), 663-666.
    [70] Lefebvre V Toward understanding the functions of the two highly related Sox5 and Sox6 genes. 2002. J Bone Miner Metab, 20(3), 121-130.
    [71] Li X, Ionescu AM, Schwarz EM, Zhang X, Drissi H, Puzas JE, Rosier RN, Zuscik MJ, & O'Keefe RJ Smad6 is induced by BMP-2 and modulates chondrocyte differentiation. 2003. J Orthop Res, 21(5), 908-913.
    [72] Li YM, Zhou BP, Deng J, Pan Y, Hay N, & Hung MC A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. 2005. Cancer Res, 65(8), 3257-3263.
    [73] Lin C, Meitner PA, & Terek RM PTEN mutation is rare in chondrosarcoma. 2002. Diagn Mol Pathol, 11(1), 22-26.
    [74] Liu CY, & Kaufman RJ The unfolded protein response. 2003. J Cell Sci, 116(Pt 10), 1861-1862.
    [75] Liu X, Bruxvoort KJ, Zylstra CR, Liu J, Cichowski R, Faugere MC, Bouxsein ML, Wan C, Williams BO, & Clemens TL Lifelong accumulation of bone in mice lacking Pten in osteoblasts. 2007. Proc Natl Acad Sci U S A, 104(7), 2259-2264.
    [76] Liu Z, Xu J, Colvin JS, & Ornitz DM Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. 2002. Genes Dev, 16(7), 859-869.
    [77] Ma Y, & Hendershot LM The role of the unfolded protein response in tumour development: friend or foe? 2004. Nat Rev Cancer, 4(12), 966-977.
    [78] MacLean HE, Guo J, Knight MC, Zhang P, Cobrinik D, & Kronenberg HM The cyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrP in chondrocytes. 2004. J Clin Invest, 113(9), 1334-1343.
    [79] Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, & Carmeliet G Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. 2002. Mech Dev, 111(1-2), 61-73.
    [80] Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, Bouillon R, & Carmeliet G Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. 2004. J Clin Invest, 113(2), 188-199.
    [81] Majumdar MK, Wang E, & Morris EA BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. 2001. J Cell Physiol, 189(3), 275-284.
    [82] Mariani FV, & Martin GR Deciphering skeletal patterning: clues from the limb. 2003. Nature, 423(6937), 319-325.
    [83] Matthews JA, Belof JL, Acevedo-Duncan M, & Potter RL Glucosamine-induced increase in Akt phosphorylation corresponds to increased endoplasmic reticulum stress in astroglial cells. 2007. Mol Cell Biochem, 298(1-2), 109-123.
    [84] Mattson MP Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. 2003. Neuromolecular Med, 3(2), 65-94.
    [85] Milgram JW The origins of osteochondromas and enchondromas. A histopathologic study. 1983. Clin Orthop Relat Res(174), 264-284.
    [86] Minina E, Kreschel C, Naski MC, Ornitz DM, & Vortkamp A Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. 2002. Dev Cell, 3(3), 439-449.
    [87] Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, & Vortkamp A BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. 2001. Development, 128(22), 4523-4534.
    [88] Mirra JM, Gold R, Downs J, & Eckardt JJ A new histologic approach to the differentiation of enchondroma and chondrosarcoma of the bones. A clinicopathologic analysis of 51 cases. 1985. Clin Orthop Relat Res(201), 214-237.
    [89] Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, Doetschman T, Coffin JD, & Hurley MM Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. 2000. J Clin Invest, 105(8), 1085-1093.
    [90] Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, & Michiels C Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. 2003. J Biol Chem, 278(33), 31277-31285.
    [91] Mouw G, Zechel JL, Gamboa J, Lust WD, Selman WR, & Ratcheson RA Activation of caspase-12, an endoplasmic reticulum resident caspase, after permanent focal ischemia in rat. 2003. Neuroreport, 14(2), 183-186.
    [92] Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, & de Crombrugghe B Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. 2004. Genes Dev, 18(3), 290-305.
    [93] Murakami S, Kan M, McKeehan WL, & de Crombrugghe B Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. 2000. Proc Natl Acad Sci U S A, 97(3), 1113-1118.
    [94] Naski MC, Colvin JS, Coffin JD, & Ornitz DM Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. 1998. Development, 125(24), 4977-4988.
    [95] Oostra RJ, van der Harten JJ, Rijnders WP, Scott RJ, Young MP, & Trump D Blomstrand osteochondrodysplasia: three novel cases and histological evidence for heterogeneity. 2000. Virchows Arch, 436(1), 28-35.
    [96] Ornitz DM FGF signaling in the developing endochondral skeleton. 2005. Cytokine Growth Factor Rev, 16(2), 205-213.
    [97] Ornitz DM, & Marie PJ FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. 2002. Genes Dev, 16(12), 1446-1465.
    [98] Patra D, Xing X, Davies S, Bryan J, Franz C, Hunziker EB, & Sandell LJ Site-1 protease is essential for endochondral bone formation in mice. 2007. J Cell Biol, 179(4), 687-700.
    [99] Pfander D, Kobayashi T, Knight MC, Zelzer E, Chan DA, Olsen BR, Giaccia AJ, Johnson RS, Haase VH, & Schipani E Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. 2004. Development, 131(10), 2497-2508.
    [100] Pirog-Garcia KA, Meadows RS, Knowles L, Heinegard D, Thornton DJ, Kadler KE, Boot-Handford RP, & Briggs MD Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP. 2007. Hum Mol Genet, 16(17), 2072-2088.
    [101] Pizette S, & Niswander L BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. 2000. Dev Biol, 219(2), 237-249.
    [102] Pore N, Jiang Z, Shu HK, Bernhard E, Kao GD, & Maity A Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. 2006. Mol Cancer Res, 4(7), 471-479.
    [103] Potter BK, Freedman BA, Lehman RA, Jr., Shawen SB, Kuklo TR, & Murphey MD Solitary epiphyseal enchondromas. 2005. J Bone Joint Surg Am, 87(7), 1551-1560.
    [104] Provot S, & Schipani E Molecular mechanisms of endochondral bone development. 2005. Biochem Biophys Res Commun, 328(3), 658-665.
    [105] Provot S, Zinyk D, Gunes Y, Kathri R, Le Q, Kronenberg HM, Johnson RS, Longaker MT, Giaccia AJ, & Schipani E Hif-1alpha regulates differentiation of limb bud mesenchyme and joint development. 2007. J Cell Biol, 177(3), 451-464.
    [106] Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, Koumenis C, Taya Y, Yoshimura A, & Koromilas AE Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. 2004. Genes Dev, 18(3), 261-277.
    [107] Reilly GC, Golden EB, Grasso-Knight G, & Leboy PS Differential effects of ERK and p38 signaling in BMP-2 stimulated hypertrophy of cultured chick sternal chondrocytes. 2005. Cell Commun Signal, 3(1), 3.
    [108] Reinhold MI, Abe M, Kapadia RM, Liao Z, & Naski MC FGF18 represses noggin expression and is induced by calcineurin. 2004. J Biol Chem, 279(37), 38209-38219.
    [109] Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, & ClemensTL Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. 2005. Bone, 37(3), 313-322.
    [110] Robinson CJ, & Stringer SE The splice variants of vascular endothelial growth factor (VEGF) and their receptors. 2001. J Cell Sci, 114(Pt 5), 853-865.
    [111] Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, & Munnich A Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. 1994. Nature, 371(6494), 252-254.
    [112] Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, & Kaufman RJ Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. 2006. PLoS Biol, 4(11), e374.
    [113] Rutkowski DT, & Kaufman RJ A trip to the ER: coping with stress. 2004. Trends Cell Biol, 14(1), 20-28.
    [114] Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, & Basilico C FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. 1999. Genes Dev, 13(11), 1361-1366.
    [115] Sandya S, Achan MA, & Sudhakaran PR Parallel changes in fibronectin and alpha5beta1 integrin in articular cartilage in type II collagen-induced arthritis. 2007. Indian J Biochem Biophys, 44(1), 14-18.
    [116] Schipani E Hypoxia and HIF-1 alpha in chondrogenesis. 2005. Semin Cell Dev Biol, 16(4-5), 539-546.
    [117] Schipani E, Langman C, Hunzelman J, Le Merrer M, Loke KY, Dillon MJ, Silve C, & Juppner H A novel parathyroid hormone (PTH)/PTH-related peptide receptor mutation in Jansen's metaphyseal chondrodysplasia. 1999. J Clin Endocrinol Metab, 84(9), 3052-3057.
    [118] Schipani E, Langman CB, Parfitt AM, Jensen GS, Kikuchi S, Kooh SW, Cole WG, & Juppner H Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen's metaphyseal chondrodysplasia. 1996. N Engl J Med, 335(10), 708-714.
    [119] Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, & Juppner H Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. 1997. Proc Natl Acad Sci U S A, 94(25), 13689-13694.
    [120] Schipani E, & Provot S PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. 2003. Birth Defects Res C Embryo Today, 69(4), 352-362.
    [121] Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, & Johnson RS Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. 2001. Genes Dev, 15(21), 2865-2876.
    [122] Schmidl M, Adam N, Surmann-Schmitt C, Hattori T, Stock M, Dietz U, de Crombrugghe B, Poschl E, & von der Mark K Twisted gastrulation modulates bonemorphogenetic protein-induced collagen II and X expression in chondrocytes in vitro and in vivo. 2006. J Biol Chem, 281(42), 31790-31800.
    [123] Schroder M, & Kaufman RJ ER stress and the unfolded protein response. 2005. Mutat Res, 569(1-2), 29-63.
    [124] Silve C, & Juppner H Ollier disease. 2006. Orphanet J Rare Dis, 1, 37.
    [125] Skinner HD, Zheng JZ, Fang J, Agani F, & Jiang BH Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. 2004. J Biol Chem, 279(44), 45643-45651.
    [126] Smits P, Dy P, Mitra S, & Lefebvre V Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. 2004. J Cell Biol, 164(5), 747-758.
    [127] Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B, & Lefebvre V The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. 2001. Dev Cell, 1(2), 277-290.
    [128] St-Jacques B, Hammerschmidt M, & McMahon AP Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. 1999. Genes Dev, 13(16), 2072-2086.
    [129] Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, & Wasmuth JJ Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. 1995. Nat Genet, 9(3), 321-328.
    [130] Tchetina EV, Antoniou J, Tanzer M, Zukor DJ, & Poole AR Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. 2006. Am J Pathol, 168(1), 131-140.
    [131] Tsang KY, Chan D, Cheslett D, Chan WC, So CL, Melhado IG, Chan TW, Kwan KM, Hunziker EB, Yamada Y, Bateman JF, Cheung KM, & Cheah KS Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. 2007. PLoS Biol, 5(3), e44.
    [132] Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, & Yoshikawa H Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. 2002. J Bone Miner Res, 17(5), 898-906.
    [133] Valcourt U, Gouttenoire J, Moustakas A, Herbage D, & Mallein-Gerin F Functions of transforming growth factor-beta family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. 2002. J Biol Chem, 277(37), 33545-33558.
    [134] Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, & Tabin CJ Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. 1996.Science, 273(5275), 613-622.
    [135] Vranka J, Mokashi A, Keene DR, Tufa S, Corson G, Sussman M, Horton WA, Maddox K, Sakai L, & Bachinger HP Selective intracellular retention of extracellular matrix proteins and chaperones associated with pseudoachondroplasia. 2001. Matrix Biol, 20(7), 439-450.
    [136] Waite KA, & Eng C Protean PTEN: form and function. 2002. Am J Hum Genet, 70(4), 829-844.
    [137] Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, & Broadus AE Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. 1996. Proc Natl Acad Sci U S A, 93(19), 10240-10245.
    [138] Werno C, Zhou J, & Brune B A23187, ionomycin and thapsigargin upregulate mRNA of HIF-1alpha via endoplasmic reticulum stress rather than a rise in intracellular calcium. 2008. J Cell Physiol, 215(3), 708-714.
    [139] Yang L, Carlson SG, McBurney D, & Horton WE, Jr. Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. 2005. J Biol Chem, 280(35), 31156-31165.
    [140] Yang X, Chen L, Xu X, Li C, Huang C, & Deng CX TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. 2001. J Cell Biol, 153(1), 35-46.
    [141] Yoon BS, & Lyons KM Multiple functions of BMPs in chondrogenesis. 2004. J Cell Biochem, 93(1), 93-103.
    [142] Zelzer E, Mamluk R, Ferrara N, Johnson RS, Schipani E, & Olsen BR VEGFA is necessary for chondrocyte survival during bone development. 2004. Development, 131(9), 2161-2171.
    [143] Zelzer E, McLean W, Ng YS, Fukai N, Reginato AM, Lovejoy S, D'Amore PA, & Olsen BR Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. 2002. Development, 129(8), 1893-1904.
    [144] Zelzer E, & Olsen BR The genetic basis for skeletal diseases. 2003. Nature, 423(6937), 343-348.
    [145] Zeng L, Kempf H, Murtaugh LC, Sato ME, & Lassar AB Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. 2002. Genes Dev, 16(15), 1990-2005.
    [146] Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, & O'Keefe RJ ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. 2003. J Bone Miner Res, 18(9), 1593-1604.
    [147] Zhang J, Tan X, Li W, Wang Y, Wang J, Cheng X, & Yang X Smad4 is required for the normal organization of the cartilage growth plate. 2005. Dev Biol, 284(2), 311-322.
    [148] Zou H, Wieser R, Massague J, & Niswander L Distinct roles of type I bonemorphogenetic protein receptors in the formation and differentiation of cartilage. 1997. Genes Dev, 11(17), 2191-2203.
    [149] Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, & Giaccia AJ Loss of PTEN facilitates HIF-1-mediated gene expression. 2000. Genes Dev, 14(4), 391-396.
    [150] Zuscik MJ, Hilton MJ, Zhang X, Chen D, & O'Keefe RJ Regulation of chondrogenesis and chondrocyte differentiation by stress. 2008. J Clin Invest, 118(2), 429-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700