韧性材料损伤的微尺度效应及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,微机电系统技术快速发展,各种微器件、微机械的主导尺寸常常处在微米或亚微米量级。新近的一系列力学实验观察、理论和数值分析表明:在微米或亚微米量级下,材料的力学行为呈现出强烈的微尺度效应。基于传统尺度无关本构框架的结构强度分析方法和安全评价体系面临挑战。因此。对材料和结构中损伤的微尺度效应开展深入、系统的研究,不仅具有重要的理论意义,而且具有重要的工程实用价值。
     本文运用应变梯度理论分析和动态离散位错模拟两种方法分别对微尺度下韧性材料损伤的微尺度效应及其机理进行了较深入、系统的研究。主要工作有: 1、从应变梯度理论和体胞模型出发,建立了尺度相关的含孔洞材料的塑性势,并将著名的Gurson模型推广到微尺度范围。通过对含理想球形孔洞的轴对称代表性胞元的分析,结果发现:(1)在孔洞体积分数一定的情况下,孔洞长大的速率低于尺度无关的Gurson模型预测的长大速率;(2)随着孔洞半径的减少,孔洞材料的屈服迹线逐渐向外扩张,显示出明显的尺度效应;在此基础上,通过数值积分给出了孔洞材料尺度相关的塑性势。
     2、基于SG应变梯度形变理论和含孔洞的无限大体模型,研究了三轴应力场中孔洞形状效应和尺度效应对其长大的耦合作用。结果表明:(1)孔洞的长大是尺度相关的,且存在一个与远场应力三维度和孔洞形状无关的“孔洞临界半径”,当微孔洞的等效半径接近或小于临界半径时,孔洞难以通过塑性变形长大;(2)孔洞长大的尺度效应和形状效应是相互耦合的,一般地,孔洞形状越偏离理想球形,其长大的尺度效应越明显,此外,这种耦合与远程应力三维度密切相关。
     3、基于SG应变梯度理论,研究了颗粒增强复合材料中颗粒的形状和尺寸对其内部及界面应力分布的影响,结果有助于理解金属基复合材料的微尺度增强机理。通过对三轴应力下含椭球夹杂的无限大体边值问题的分析,结果表明:(1)在微米尺度下,夹杂尺寸越小,夹杂/基体界面的法向应力、剪切应力和夹杂内部主拉伸方向的应力越高。(2)这种尺度效应随着远程应力三轴度的减小和远场等效应变的增加变得更为显著。(3)为更加合适的考虑基体/夹杂界面上的偶拽力平衡条件,本文引入了与尺度相关的界面能的概念,并进一步分析了界面能对颗粒界面及其内部应力分布的影响。
     4、开发了基于离散位错动力学模拟的计算分析程序,研究了FCC单晶体内含孤立孔洞的长大机理,结果有助于揭示不同大小孔洞长大机制的内在差异。通过对平面应变等轴拉伸载荷下无限大单晶体内孔洞周围的离散位错模拟,结果表明:(1)位错剪切环从位错源形核后,位错环扩展并到达孔洞表面是单晶内孔洞长大的重要机制;(2)不同尺寸的孔洞呈现出不同的长大方式,当孔洞较大时,孔洞的长大随等效应变光滑变化,但当孔洞较小时,孔洞长大接近于线弹性的,且呈现出“蛙跳”式长大,造成这种差异的主要原因是,在不同大小的孔洞附近,位错的可动性和位错源的可激活性不同;(3)在微米尺度下,特别是孔洞半径足够小时,孔洞长大的呈现出明显的离散性,这些现象难以被高阶连续理论所捕捉。
     5、基于位错发射的Rice-Thomson模型,研究了不同大小、不同取向的椭圆孔洞表面的位错发射及由此导致的孔洞长大机制。通过对单晶体中椭圆孔洞表面位错发射的分析得到:(1)存在一个临界应力,当外载低于该临界应力时,孔洞表面基本不发生位错发射,孔洞难以长大,当外载大于该临界应力时,孔洞表面发射位错并引起孔洞的突发性长大;(2)在纳米量级下,椭圆孔洞位错发射的临界应力呈现出尺度效应,孔洞的等效半径越小,位错发射所需临界应力就越大,而在同一等效半径下,椭圆孔洞的位错发射临界应力较圆孔洞小得多;(3)位错发射及由此引起的孔洞长大与椭圆孔洞主轴的取向有很大关系。
     6、基于二维离散位错动力学模拟方法,研究了无限大FCC单晶体内微夹杂周围的应力场分布,讨论了夹杂处孔洞形核的可能机制。通过对等轴拉伸载荷下含微夹杂的FCC单晶体的离散位错模拟得到:(1)由于基体/夹杂界面附近产生的位错障碍和位错塞积,基体/夹杂界面上出现一系列的应力峰;(2)随着夹杂半径的减小,界面上应力峰的数目和应力峰值都不断减小。这些结果表明,微尺度下,孔洞在基体/夹杂界面形核可能与界面上应力峰的数目和峰值的大小有关,并且夹杂越小,孔洞形核越难,这与现有实验结果定性一致。
With the rapid development of Micro Electromechanical System (i.e. MEMS) in recent years, various micro-apparatus and micro-machines have been widely used. A series of micro-mechanical tests and analytic results have already indicated that the mechanical behaviors show strong scale effect when the sample falls within the micron size range. At the micron scale, the strength analyses and structure optimization based on the classical independent-scale constitutive relation usually fail to be efficient. Thus, deep and systemic researches on damage and deformation behavior at the micron scale are of fundamental importance not only in understanding the damage mechanism of solids but also in engineering application.
     In the present dissertation, the micro-scale effect on damage and deformation behavior is investigated by both the strain gradient theory and the discrete dislocation dynamic modeling. The results from two kinds of methods are complementary with each other, which introduce more information about the subject to us. The main results are shown as follows:
     Based on the SG strain gradient deformation theory and the infinite model with an isolated spheroidal void, the size and shape effects on void growth in triaxial stress field are carefully investigated. It is found that (1) there exists a“critical void radius”, the void is difficult to grow by plastic flow in the matrix material when the equivalent radius of micro-void approach or is lower than the“critical radius”; (2) the“critical radius”is independent of the void shape and the remote stress statue, and approximately equals to the material intrinsic length associated with the stretch strain gradient; (3)the void size effect and shape effect is coupled with each other, generally, the shape effect can enhance the scale effect. In addition, this coupling is closely related to the remote stress triaxiality.
     Based on the strain gradient deformation theory and the representative volume element (RVE) model, a scale-dependent macroscopic plastic potential of porous material is deduced, which generalizes application of the classical Gurson model to the micron size range. Further analyses show that(1)at a given void volume fraction, the growth rate of micron sized void is lower than that predicated by the traditional R-T model and Gurson model; (2) the yield locus of porous materials expands outwards with the void size decreasing.
     The effects of particle size and shape on the stress distribution at the particle/matrix interface and within the particle are investigated by employing the scale-dependent strain gradient SG theory to provide a better understanding to the micro-particle reinforcement mechanism. By solving a axial-symmetrical boundary value problem consisting of a infinite solid and an isolated spheriodal particle embedded in an infinite matrix, some interesting results are found as follow: (1) at the micron scale, the smaller the particle is, the higher the stresses at the matrix/inclusion interface and within the particle are; (2) this size effect is more remarkable with decreasing the stress triaxiality and increasing the remote equivalent strain. To reasonably equilibrate the double stress traction at the particle-matrix interface, a new parameter named“interfacial energy density”is introduced. The influence of“interfacial energy density”on the stress distribution is also investigated.
     A program for discrete dislocation dynamic modeling is developed. Using this program, the growth of an isolated void embedded in an infinite FCC single crystal is investigated. The emphasis is focused on the size effect of void growth and its intrinsic mechanism. The calculation results show that: (1) the expansion of dislocation shear loop and reaching the void surface is main mechanism controlling the void growth in single crystal; (2) the void growth vs. the remote strain curves are continuous and smooth for the larger voids, but there are some steps on the curves for the smaller void, so the internal mechanism controlling the void growth is different for the voids with various sizes; (3)this size effect is closely associated with the dislocation mobility and the number of dislocation sources activated around the void; (4) the discreteness of void growth is inherent and significant for the micron sized void.
     Based on the well-known Rice-Thomson model, dislocation emission and void growth induced by it are considered for elliptic voids with various sizes and different directions. The results indicate that: (1) there exist a“critical stress”, when the applied stress is lower than this“critical stress”, dislocations can not be emitted from the void surface, while when the applied stress is larger than the“critical stress”, the dislocation emission is activated and can introduce the nano-void to grow suddenly; (2) within the nanometer size range, the dislocation emission“critical stress”for elliptic void is size dependent, i.e. the smaller the void is, the higher the critical stress is, and at a given equivalent radius, the critical stress for the elliptic voids is lower than that for the circular voids; (3) the dislocation emission and the void growth induced by it are closely related to the direction angle between the slip plane and the axis of the elliptic void.
     By employing the 2D discrete dislocation dynamic modeling, the stress distribution in the vicinity of an isolate circular particle embedded in an infinite FCC matrix is investigated, and the void nucleation mechanism is discussed. The results are shown that: (1) due to the dislocation obstruction and pile-ups near the interface, there are a series of peaks for the interfacial normal stress at the particle-matrix interface; (2) the number of interfacial stress peak and the magnitude of these peaks increases with increasing the inclusion radius. These results indicate that, within the micron scale range, the void nucleation at the matrix/particle interface seems to be related to the number and magnitude of the interfacial stress peak. According to this assumption, some experiment observations can be explained, i.e. the smaller the particle is, the more difficult the void nucleation is.
引文
[1] 陈少华;王自强.应变梯度理论进展.力学进展,2003,33(2):207-216.
    [2] Lloyd, DJ. Particle reinforced aluminum and Magnesium matrix composites. Int Mater Rev, 1994, 39(1):1-23.
    [3] Ma, Q; Clark, DR. Size dependent hardness of silver single crystals. J Mater Res, 1995, 10(4):853-863.
    [4] Nix, WD; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids, 1998, 46(3): 411-425.
    [5] Wei, Y; Hutchinson, JW. Hardness trends in micron scale indentation, J Mech Phys Solids. 2003, 51(11-12):2037-2056.
    [6] Fleck, NA; Muller, GM; Ashby, MF; et al. Strain gradient plasticity: theory and experiment. Acta Mater, 1994, 42(2):475-487.
    [7] Stolken, JS; Evans, AG. A Microbend test method for measuring the plasticity length scale. Acta Mater, 1998, 46(14):5109-5115.
    [8] Wang,W; Huang, Y; Hsia, KJ; et al. A study of microbend test by strain gradient plasticity. Int J of Plasticity, 2003, 19(3):365-382.
    [9] Shu, JY; Barlow, CY. Strain gradient effects on microscopic strain field in a metal matrix composite. Int J of Plasticity, 2000, 16(5):563-591.
    [10] Schluter, N; Grimpe, F; Bleck, W; et al. Modeling of the damage in ductile steels. Comp Mater Sci 1996, 7(1-2):27-33
    [11] Khraishi, TA; Khaleel, MA. A parametric-experimental study of void growth in superplastic deformation. Int J of Plasticity, 2001, 17(3):297-315.
    [12] Douglass, MR. Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In: Annual Proceedings-reliability physics symposium. Piscataway, NJ, USA: IEEE, 1998. 9-16.
    [13] Gao, H; Huang, Y; Nix, WD; et al. Mechanism-based strain gradient plasticity--I Theory. J Mech Phys Solids, 1999, 47(6):1239-1263.
    [14] Hutchinson, JW. Plasticity at micron scale. Int J of solids & structures, 2000, 37(1-2):225-238.
    [15] Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater, 1998, 46(16):5611-5626.
    [1] 陈少华;王自强.应变梯度理论进展.力学进展,2003,33(2):207-216.
    [2] Lloyd, DJ. Particle reinforced aluminum and Magnesium matrix composites. Int Mater Rev, 1994, 39(1):1-23.
    [3] Ma, Q; Clark, DR. Size dependent hardness of silver single crystals. J Mater Res, 1995, 10(4):853-863.
    [4] Nix, WD; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids, 1998, 46(3): 411-425.
    [5] Wei, Y; Hutchinson, JW. Hardness trends in micron scale indentation, J Mech Phys Solids. 2003, 51(11-12):2037-2056.
    [6] Fleck, NA; Muller, GM; Ashby, MF; et al. Strain gradient plasticity: theory and experiment. Acta Mater, 1994, 42(2):475-487.
    [7] Stolken, JS; Evans, AG. A Microbend test method for measuring the plasticity length scale. Acta Mater, 1998, 46(14):5109-5115.
    [8] Wang,W; Huang, Y; Hsia, KJ; et al. A study of microbend test by strain gradient plasticity. Int J of Plasticity, 2003, 19(3):365-382.
    [9] Shu, JY; Barlow, CY. Strain gradient effects on microscopic strain field in a metal matrix composite. Int J of Plasticity, 2000, 16(5):563-591.
    [10] Schluter, N; Grimpe, F; Bleck, W; et al. Modeling of the damage in ductile steels. Comp Mater Sci 1996, 7(1-2):27-33
    [11] Khraishi, TA; Khaleel, MA. A parametric-experimental study of void growth in superplastic deformation. Int J of Plasticity, 2001, 17(3):297-315.
    [12] Douglass, MR. Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In: Annual Proceedings-reliability physics symposium. Piscataway, NJ, USA: IEEE, 1998. 9-16.
    [13] Gao, H; Huang, Y; Nix, WD; et al. Mechanism-based strain gradient plasticity--I Theory. J Mech Phys Solids, 1999, 47(6):1239-1263.
    [14] Hutchinson, JW. Plasticity at micron scale. Int J of solids & structures, 2000, 37(1-2):225-238.
    [15] Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater, 1998, 46(16):5611-5626.Journal of the Mechanics and Physics of Solids, 1998,46(10):2049-2068
    [30] Goken, M; Kempf, M; Bordenet, M; et al. Nanomechanical characterizations of metals and thin films. Surface and Interface Analysis,1999, 27(5-6):302-306
    [31] Wei, Y; Shu, S; Du, Y; Zhu, C. Size, geometry and nonuniformity effects of surface-nanocrystalline aluminum in nanoindentation test. Int J Plast. 2005, 21(11):2089-2106
    [32] Manika, I; Maniks, J. Size effects in micro- and nanoscale indentation. Acta Mater, 2006, 54(8):2049-2056
    [33] Elssner, G; Korn, D; Ruhle, M. Influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scr Metall Mater, 1994, 31(8):1037-1042
    [34] Yang, J; Cady, C; Hu, MS; et al. Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulates. Acta Metall Mater,1990, 38(12):2613-2619
    [35] Ling, Z. Deformation behavior and microstructure effect in 2124Al/SiCp composite. J Compos Mater, 2000, 34(2):101-115
    [36] Dai, LH; Liu, LF; Bai, YL. Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites. Mater Lett, 2004, 58(11):1773-1776
    [37] Rice, JR; Tracey, DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids, 1969, 17(3):201-207
    [38] Toupin, RA. Elastic materials with couple stresses. Archive Rational Mechanics Analysis, 1962, 11(5):385-414
    [39] Mindlin, RD. Micro-structure in linear elasticity. Archive Rational Mechanics Analysis, 1964, 16(1):51-78
    [40] Mindlin, RD. Second gradient of strain and surface tension in linear elasticity. Int J Solids Struct, 1965, 1:417-438
    [41] Fleck, NA; Hutchinson, JW. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids, 1993, 41:1825-1857
    [42] Fleck, NA; Hutchinson, JW. Strain gradient plasticity. In: Hutchinson, JW; Wu TY (Eds). Advance in Applied Mechanics. New York: Academic Press, 1997. 295-361.
    [43] Fleck, NA; Hutchinson, JW. A reformulation of strain gradient plasticity. J ofMech Phys Solids, 2001, 49(10):2245-2271.
    [44] Huang, Y; Gao, H; Nix, WD; et al. Mechanism-based strain gradient plasticity—II. Analysis. Journal of the Mechanics and Physics of Solids, 2000, 48(1):99-128.
    [45] Gurtin, ME. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocation. J Mech Phys Solids, 50(1): 5-32.
    [46] Gurtin, ME. On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int J of Plasticity, 2003, 19(1): 47-90.
    [47] Acharya, A; Bassani, JL. Lattice incompatibility and a gradient theory of crystal plasticity. J Mech Phys Solids, 2000, 48(8):1565-1595.
    [48] Acharya, A; Beaudoin, AJ. Grain-size effect in viscoplastic polycrystals at moderate strains. J Mech Phys Solids, 2000 48(10): 2213-2230.
    [49] Bassani, JL. Incompatibility and a simple gradient theory of plasticity, Journal of the Mechanics and Physics of Solids, 2001, 49(9):1983-1996
    [50] Beaudoin, AJ; Acharya, A. A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility. Mater Sci Eng A, 2001, A309-310:411-415
    [51] Guo, Y; Huang, Y; Gao, H; et al. Taylor-based nonlocal theory of plasticity: numerical studies of the micro-indentation experiments and crack tip fields, Int J Solids Struct, 2001, 38(42-43):7447-7460
    [52] Chen, SH; Wang, TC. New hardening law for strain gradient plasticity. Acta Mater, 2000, 48(16):3997-4005
    [53] Chen, S; Wang, T. Strain gradient theory with couple stress for crystalline solids. Eur J Mech A Solids, 2001, 20(5):739-756
    [54] Chen, SH; Wang, TC. A new deformation theory with strain gradient effects. Int J Plast, 2002, 18(8):971-995
    [55] Huang, Y; Qu, S; Hwang KC; et al. A conventional theory of mechanism-based strain gradient plasticity. Int J of Plasticity, 2004, 20(4-5):753-782.
    [56] Yefimov, SE; Van der Giessen, E; Groma, I. Bending of a single crystal: discrete dislocation and nonlocal crystall plasticity simulations. Modelling and Simul. Mater Sci Eng, 2004, 12(6):1069-1086
    [57] Shu, JY; Fleck, NA; Van der Giessen, E; et al. Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J MechPhys Solids, 2001, 49(6):1361-1395.
    [58] Bittencourt, E; Needleman, A; Gurtin, ME; et al. A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J Mech Phys Solids, 2003, 51(2):281-310.
    [59] Arsenlis, A; Parks, DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids, 2002, 50(9): 1979-2009.
    [60] Shu, JY; Fleck, NA. Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J Mech Phys Solids, 1999, 47(2):297-324.
    [61] Smyshlyaev, VP; Fleck, NA. The role of strain gradients in the grain size effect for polycrystals. J Mech Phys Solids, 1996, 44(4):465-496.
    [62] Busso, EP; Meissonnier, FT; O’Dowd, NP. Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids, 2000, 48(11):2333-2361.
    [63] Acharya, A; Bassani, JL; Beaudoin, A. Geometrically necessary dislocations, hardenging and a simple gradient theory of crystal of crystal plasticity. Scripta Mater, 2003, 48(2):167-172
    [64] Han, CS; Gao, H; Huang, Y; et al. Mechanism-based strain gradient crystal plasticity-I. Theory. J Mech Phys Solids, 2005, 53(5):1188-1203
    [65] Han, CS; Gao, H; Huang, Y; et al. Mechanism-based strain gradient crystal plasticity-II. Analysis. J Mech Phys Solids, 2005, 53(5):1204-1222
    [66] Arsenlis, A; parks, DM; Becker, R; et al. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J Mech Phys Solids, 2004, 52(6):1213-1246.
    [67] Evers, LP; Brekelmans, WAM; Geers, MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J Mech Phys Solids, 2002, 50(11):2403-2424.
    [68] Evers, LP; Brekelmans, WAM; Geers, MGD. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids & Structures, 2004, 41(18-19):5029-5230.
    [69] Evers, LP; Brekelmans, WAM; Geers, MGD. Non-local crystal plasticity model with intrinsic SSD and GND effects. J Mech Phys Solids, 2004, 52(10): 2379-2401.
    [70] Yefimov, S; Groma, I; Van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity caculations. J Mech Phys Solids, 2004, 52(2):279-300.Phys Solids, 2001, 49(6):1361-1395.
    [58] Bittencourt, E; Needleman, A; Gurtin, ME; et al. A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J Mech Phys Solids, 2003, 51(2):281-310.
    [59] Arsenlis, A; Parks, DM. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J Mech Phys Solids, 2002, 50(9): 1979-2009.
    [60] Shu, JY; Fleck, NA. Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J Mech Phys Solids, 1999, 47(2):297-324.
    [61] Smyshlyaev, VP; Fleck, NA. The role of strain gradients in the grain size effect for polycrystals. J Mech Phys Solids, 1996, 44(4):465-496.
    [62] Busso, EP; Meissonnier, FT; O’Dowd, NP. Gradient-dependent deformation of two-phase single crystals. J Mech Phys Solids, 2000, 48(11):2333-2361.
    [63] Acharya, A; Bassani, JL; Beaudoin, A. Geometrically necessary dislocations, hardenging and a simple gradient theory of crystal of crystal plasticity. Scripta Mater, 2003, 48(2):167-172
    [64] Han, CS; Gao, H; Huang, Y; et al. Mechanism-based strain gradient crystal plasticity-I. Theory. J Mech Phys Solids, 2005, 53(5):1188-1203
    [65] Han, CS; Gao, H; Huang, Y; et al. Mechanism-based strain gradient crystal plasticity-II. Analysis. J Mech Phys Solids, 2005, 53(5):1204-1222
    [66] Arsenlis, A; parks, DM; Becker, R; et al. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J Mech Phys Solids, 2004, 52(6):1213-1246.
    [67] Evers, LP; Brekelmans, WAM; Geers, MGD. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J Mech Phys Solids, 2002, 50(11):2403-2424.
    [68] Evers, LP; Brekelmans, WAM; Geers, MGD. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids & Structures, 2004, 41(18-19):5029-5230.
    [69] Evers, LP; Brekelmans, WAM; Geers, MGD. Non-local crystal plasticity model with intrinsic SSD and GND effects. J Mech Phys Solids, 2004, 52(10): 2379-2401.
    [70] Yefimov, S; Groma, I; Van der Giessen, E. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity caculations. J Mech Phys Solids, 2004, 52(2):279-300.the associated asymptotic crack-tip fields. Key Eng Mater, 2000,183-187 (1):9-18
    [86] Wei, Y; Qiu, X; Hwang, KC. Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity. Eng Fract Mech, 2004, 71(1):107-125
    [87] Imatani, S; Hatada, K; Maugin, GA. Finite element analysis of crack problems for strain gradient material model. Philos Mag, 2005, 85(33-35):4245-4256
    [88] Chen, SH; Wang, TC. Finite element solutions for plane strain mode I crack with strain gradient effects. Int J Solids Struct, 2002, 39(5):1241-1257
    [89] Shu, JY; Fleck, NA. Prediction of a size effect in micro-indentation. Int J Solids Struct, 1998, 35(13):1363-1383
    [90] Huang, Y; Xue, Z; Gao, H; et al. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J Mater Res, 2000, 15(8):1786-1796
    [91] Wei, Y; Wang X; Zhao, M; et al. Size effect and geometrical effect of solids in micro-indentation test. Acta Mech Sin, 2003, 19(1):59-70
    [92] Wei, Y. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mech. Sin, 2001, 17(1):45-58
    [93] Niordson, CF; Tvergaard, V. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal. Eur J Mech A, Solids, 2002, 21(2):239-248
    [94] Niordson, CF. Strain gradient plasticity effects in whisker-reinforced metals. J Mech Phys Solids, 2003, 51(10): 1863-1883
    [95] Dinesh, D; Swaminathan, S; Chandrasekar, S; et al. An intrinsic size-effect in machining due to the strain gradient. In: Proceedings of the ASME Manufacturing Engineering Division 2001.New York: American Society of Mechanical Engineers, 2001, 197-204.
    [96] Joshi, SS; Melkote, SN. An explanation for the size-effect in machining using strain gradient plasticity. J Manuf Sci Eng Trans ASME, 2004, 126(4):679-684
    [97] Liu, K; Melkote, SN. Material strengthening mechanisms and their contribution to size effect in micro-cutting. J Manuf Sci Eng Trans ASME. 2006, 128(3):730-738
    [98] Needleman, A. Computational mechanics at the mesoscale. Acta Mater, 2000, 48(1):105-124
    [99] Buehler, MJ; Hartmaier, A; Gao, HJ; et al. Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure. ComputMethods Appl Mech Engrg, 2004, 193(48-51): 5257-5282.
    [100] Shikrot, LE; Miller, RE; Gurtin, WA. Multiscale plasticity modeling: coupled atomistic and discrete dislocation mechanics. J Mech Phys Solids, 2004, 52(4):755-787
    [101] Amodeo, RJ; Ghoniem, NM. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys Rev B, 1990, 41(10):6958-6967
    [102] Amodeo, RJ; Ghoniem, NM. Dislocation dynamics. II. Applications to the formation of persistent slip bands, planar arrays, and dislocation cells. Phys Rev B, 1990, 41(10):6968-6976
    [103] Van der Giessen, E; Needleman, A. Discrete dislocation plasticity: A simple planar model. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5):689-735.
    [104] Kubin, LP; Canova, G; Condat, M; et al. Dislocation microstructures and plastic flow: a 3D simulation. Diffusion and Defect Data - Solid State Data, Part B, 23-24:455-472
    [105] Zbib, HM; Rhee, M; Hirth, JP; et al. On plastic deformation and the dynamics of 3D dislocations. International Journal of Mechanical Sciences, 1998, 40(2-3):113-127.
    [106] Cleveringa, HHM; Van der Giessen, E; Needleman, A. A discrete dislocation analysis of bending. International Journal of Plasticity, 1999, 15(8):837-868
    [107] Shi, MX; Huang, Y; Gao, H. The J-integral and geometrically necessary dislocations in nonuniform plastic deformation. Int J Plast, 2004, 20(8-9):1739-1762
    [108] Deshpande, VS; Needleman, A; Van der Giessen, E. Discrete dislocation plasticity analysis of single slip tension. Mater Sci Eng A, 2005, 400-401(1-2):154-157
    [109] Cleveringa, HHM; van der Giessen, E; Needleman, A. A discrete dislocation analysis of mode I crack growth. J Mech Phys Solids, 2000, 48(6-7):1133-1157
    [110] Van der Giessen, E; Deshpande, VS; Cleveringa, HHM; et al. Discrete dislocation plasticity and crack tip fields in single crystals. J Mech Phys Solids, 2001, 49(9):2133-253
    [111] Deshpande, VS; Needleman, A; Van der Giessen, E. Discrete dislocation plasticity modeling of short cracks in single crystals. Acta Materialia, 2003, 51(1):1-15
    [112] Nakatani, A; Drugan, WJ; van der Giessen, E; et al. Crack tip fields at a ductile single crystal-rigid material interface. International Journal of Fracture, 2003, 122(3-4):131-159
    [113] O'Day, MP; Curtin, WA. A superposition framework for discrete dislocation plasticity. J Appl Mech Trans ASME, 2004, 71(6):805-815
    [114] Zacharopoulos, N; Srolovitz, DJ; Lesar, R. Dynamic simulation of dislocation microstructures in mode III cracking. Acta Materialia, 1997, 45(9):3745-3763
    [115] Cleveringa, HHM; van der Giessen, E; Needleman, A. Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Materialia, 1997, 45(8):3163-3179.
    [116] Cleveringa, HHM; Van Der Giessen, E; Needleman, A. A discrete dislocation analysis of residual stresses in a composite material. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79(4):893-920.
    [117] Groh, S; Devincre, B; Kubin, LP; et al. Size effects in metal matrix composites. Mater Sci Eng A, 400-401:279-82
    [118] Deshpande, VS; Needleman, A; Van Der Giessen, E. Discrete dislocation plasticity analysis of static friction. Acta Materialia, 2004, 52(10):3135-3149.
    [119] Widjaja, A; Van der Giessen, E; Needleman, A. Discrete dislocation modelling of submicron indentation. Materials Science & Engineering A, 2005, 400-401(1-2):456-459
    [120] Fivel, M; Verdier, M; Canova, G. 3D simulation of a nanoindentation test at a mesoscopic scale. Materials Science & Engineering A, 1997, A234-23:923-926
    [121] Fivel, MC; Robertson, CF; Canova, GR; et al. Three-dimensional modeling of indent-induced plastic zone at a mesoscale. Acta Materialia, 1998, 46(17):6183-6194.
    [122] Nicola, L; Van der Giessen, E; Needleman, A. 2D dislocation dynamics in thin metal layers, Materials Science and Engineering A, 2001, 309-310:274-277.
    [123] Nicola, L; Van der Giessen, E; Needleman, A. Discrete dislocation analysis of size effects in thin films. Journal of Applied Physics, 2003, 93(10):5920-5928
    [124] Van der Giessen, E; Nicola, L; Needleman, A. Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity. Thin Solid Films, 2005, 479(1-2):329-338
    [125] McClintock, FA. A criterion of ductile fracture by growth of holes. Journal ofApplied Mechanics. 1968, 35:363-371.
    [126] Gurson, AL. Continuum theory of ductile rupture by void nucleation and growth: Part I- Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials & Technology, 1977, 99(1):2-15.
    [127] Yamamoto,H. Conditions for shear localization in the ductile fracture of void-containing materials. Int J of Fracture, 1978, 14(4):347-365.
    [128] Tvergaard, V. Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 1981, 17(4):389-407
    [129] Tvergaard, V. On localization in ductile materials containing voids. International Journal of Fracture, 1982, 18(4):237-252
    [130] Faleskog, J; Gao, X; Shih, CF. Cell model for nonlinear fracture analysis-I. Micromechanics calibration. International Journal of Fracture, 1998, 89(4):355-373
    [131] Leblond, JB; Perrin, G; Devaux, J. Improved gurson-type model for hardenable ductile metals. Eur J Mech A Solids, 1995, 14(4):499-527
    [132] Li, Z; Wang, C; Chen, C. The influence of matrix yield stress gradient on the growth and coalescence of spheroidal void. Int J of Solids & Structures, 2002,39(3):601-616.
    [133] Li, Z; Wang, C; Chen, C. The evolution of voids in the plasticity strain hardening gradient materials, Int. J. of Plasticity,2003,19(2):213-234.
    [134] 王自强; 秦嘉亮. 含孔洞非线性材料的本构势和孔洞扩展率.固体力学学报,1989,2:127-141.
    [135] 黄筑平; 孙立志. 韧性材料中一个新的动态孔洞增长模型. 中国科学 A,1992,9:960-969.
    [136] Huang, Y. Accurate dilatation rates for spherical void in triaxial stress fields. Journal of Applied Mechanics, 1991, 58(4):1084-1086.
    [137] Zhang, KS; Bai, JB; Francois, D. Numerical analysis of the influence of the Lode parameter on void growth. Int J Solids Struct, 2001, 38(32-33):5847-5856
    [138] Tvergaard, V; Needleman, A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32(1):157-169
    [139] Li, G; Ling, X; Shen, H. On the mechanism of void growth and the effect of straining mode in ductile materials. Int J Plast, 2000, 16(1):39-57
    [140] Ohno, N; Hutchinson, JW. Plastic flow localization due to non-uniform voiddistribution. J Mech Phys Solids, 1984, 32(1):63-85
    [141] Becker, R; Smelser, RE. Simulation of strain localization and fracture between holes in an aluminum sheet. J Mech Phys Solids, 1994, 42(5):773-796
    [142] Becker, R; Smelser, RE; Richmond, O. Effect of void shape on the development of damage and fracture in plane-strain tension. J Mech Phys Solids, 1989, 37(1):111-129
    [143] Becker, R; Smelser, RE; Richmond, O; et al. Effect of void shape on void growth and ductility in axisymmetric tension tests. Metall Trans A, 1989, 20A(5):853-861
    [144] Lee, BJ; Mear, ME. Axisymmetric deformations of power-law solids containing a dulute concentration of aligned spheroidal voids. J Mech Phys Solids, 1992, 40(8):1805-1836.
    [145] Yee, KC; Mear, ME. Effect of void shape on the macroscopic response of non-linear porous solids. Int J Plast, 1996, 12(1):45-68
    [146] Gologanu, M; Leblond, JB; Devaux,J. Approximate models for ductile metals containing non-spherical voids-case of axisymmetric oblate ellipsoidal cavities. J Mech Phy Solids, 1993, 41(11):1723-1754
    [147] Gologanu, M; Leblond, JB; Devaux,J. Approximate models for ductile metals containing non-spherical voids-case of axisymmetric oblate ellipsoidal cavities,J Engng Mat & Tech, 1994, 116(3):290-297.
    [148] Pardoen, T; Hutchinson, JW. An extended model for void growth and coalescence. J Mech Phys Solids, 2000, 48(12):2467-512
    [149] Gologanu, M; Leblond, JB; Perrin, G; et al. Theoretical models for void coalescence in porous ductile solids. I. Coalescence “in layers”. Int J Solids Struct, 2001, 38(32-33)5581-5594
    [150] Gologanu, M; Leblond, JB; Devaux, J. Theoretical models for void coalescence in porous ductile solids. II. Coalescence “in columns”. Int J Solids Struct, 2001, 38(32-33)5595-5604
    [151] Benzerga, AA. Micromechanics of coalescence in ductile fracture. J Mech Phys Solids, 2002, 50(6):1331-1362
    [152] Needleman, A; Kushner, AS. An analysis of void distribution effects on plastic flow in porous solids. Eur J Mech A, 1990, 9(3):193-206
    [153] Benson, DJ. Effects of void cluster size on ductile fracture. Int J Plast, 1995, 11(5):571-582
    [154] Kuna, M; Sun, DZ. Three-dimensional cell model analyses of void growth in ductile materials. Int J Fract, 1996, 81(3):235-58
    [155] Bandstra, JP; Koss, DA; Geltmacher, A; et al. Modeling void coalescence during ductile fracture of a steel. Mater Sci Eng A, 2004, 366(2):269-281
    [156] Huang, Y; Hutchinson, JW; Tvergaard, V. Cavitation instabilities in elastic-plastic solids. J Mech Phys Solids, 1991, 39(2):223-241
    [157] Li, Z; Guo, W. The influence of plasticity mismatch on the growth and coalescence of spheroidal voids on the bimaterial interface. Int J Plast, 2002, 18(2):249-279
    [158] Siruguet, K; Leblond, JB. Effect of void locking by inclusions upon the plastic behavior of porous ductile solids-I: theoretical modeling and numerical study of void growth. Int J Plast, 2004, 20(2):225-54
    [159] Baaser, H; Gross, D. Analysis of void growth in a ductile material in front of a crack tip. Comput Mater Sci, 2003, 26:28-35
    [160] Orsini, VC; Zikry, MA. Void growth and interaction in crystalline materials. Int J Plast, 2001, 17(10):1393-1417
    [161] Schacht, T; Untermann, N; Steck, E. The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids. Int J Plast, 2003, 19(10):1605-1626
    [162] Kysar, JW; Gan, YX; Mendez-Arzuza, G. Cylindrical void in a rigid-ideally plastic single crystal. Part I: Anisotropic slip line theory solution for face-centered cubic crystals. Int J Plast, 2005, 21(8):1481-1520
    [163] Gan, YX; Kysar, JW; Morse, TL. Cylindrical void in a rigid-ideally plastic single crystal II: Experiments and simulations. Int J Plast, 2006, 22(1):39-72
    [164] Gologanu, M; Leblond JB; Perrin, G. A micromechanically based Gurson-type model for ductile porous metals including strain gradient effects. In: Krishnaswami, S; McMeeking RM; Rrasorras JRL. Net Shape Processing of Powder Materials. New York, Americal Society of Mechanical Engineering, 1995, 47-56.
    [165] Shu, JY. Scale-dependent deformation of porous single crystals. Int J Plast, 1998, 14(10-11):1085-107
    [166] Dieter, GE. Mechanical Metallurgy. New York:McGraw-Hill,1986.
    [167] Tvergaard, V; Niordson, C. Nonlocal plasticity effects on interaction of different size voids. Int J Plast, 2004, 20(1):107-120
    [168] Huang, M; Li, Z; Wang, C; et al. Influences of microscope size effect of matrix on plastic potential and void growth of porous materials. Acta Mechanica Solida Sinca, 2002, 15:283-293
    [169] Li, Z; Huang, M; Wang, C. Scale-dependent plasticity potential of porous materials and void growth. Int J of Solids and Structures, 2003, 40:3935-3954.
    [170] Liu, B; Huang, Y; Li, M; 等 A study of the void size effect based on the Taylor dislocation model. Int J Plast, 2005,21(11):2107-2122
    [171] Duva, JM; Hutchinson, JW. Constitutive potentials for dilutely voided nonlinear materials. Mech Mater, 1984, 3(1)41-54
    [172] Huang, M; Li, Z; Wang, C. Interaction between the void size and the void shape - Growth of axisymmetric prolate ellipsoidal microvoid. Acta Mechanica Sinica, 2005,21:272-277.
    [173] Mandel, J. Contribution theorique a l’etude de l’ecrouissag et des lois d’ecoulement plsatique. In:11th Int Congress on Applied Mechanics, Berlin:Springer, 1964, 502-509.
    [174] Hill, R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids, 1966, 14:95-102.
    [175] Hill, R. New horizons in the mechanics of solids. J Mech Phys Solids, 1956, 5:66
    [176] Budiansky, B; Hutchinson, JW; Slutsky, S. Void growth and collapse in viscous solids, In: HoP-Kins, HG; Sewll, MJ. Mechanics of Solid, The Rodney Hill 60th Anniversary Volume. Oxford: Pergamon Press, 1982. 13-45.
    [177] Goods, SH; Brown, LM. The nucleation of cavities by plastic deformation. Acta Metall, 1979, 27(1):1-15
    [178] Fisher, JR; Gurland, J. Void nucleation in spheroidized carbon steels part I: experimental. Metal Sci, 1981, 15(5):185-192
    [179] Koenigsmann, HJ. Starke, EA; Allaire, PE. Finite element/experimental analysis of cavity nucleation in an Al-Si-Ge alloy. Acta Metal, 1996, 44(8):3069-3075.
    [180] Gurland, J. Observation on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature. Acta Metall, 1972, 20(5):735-741
    [181] Orr, J; Brown, DK. Elastic-plastic solutions for a cylindrical particle in plane strain. Engineering Fracture of Mechanics, 1974, 6(2):261-274.
    [182] Thomson, RD; Hancock, JW. Local stress and strain fields near a spherical near a
    [168] Huang, M; Li, Z; Wang, C; et al. Influences of microscope size effect of matrix on plastic potential and void growth of porous materials. Acta Mechanica Solida Sinca, 2002, 15:283-293
    [169] Li, Z; Huang, M; Wang, C. Scale-dependent plasticity potential of porous materials and void growth. Int J of Solids and Structures, 2003, 40:3935-3954.
    [170] Liu, B; Huang, Y; Li, M; 等 A study of the void size effect based on the Taylor dislocation model. Int J Plast, 2005,21(11):2107-2122
    [171] Duva, JM; Hutchinson, JW. Constitutive potentials for dilutely voided nonlinear materials. Mech Mater, 1984, 3(1)41-54
    [172] Huang, M; Li, Z; Wang, C. Interaction between the void size and the void shape - Growth of axisymmetric prolate ellipsoidal microvoid. Acta Mechanica Sinica, 2005,21:272-277.
    [173] Mandel, J. Contribution theorique a l’etude de l’ecrouissag et des lois d’ecoulement plsatique. In:11th Int Congress on Applied Mechanics, Berlin:Springer, 1964, 502-509.
    [174] Hill, R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids, 1966, 14:95-102.
    [175] Hill, R. New horizons in the mechanics of solids. J Mech Phys Solids, 1956, 5:66
    [176] Budiansky, B; Hutchinson, JW; Slutsky, S. Void growth and collapse in viscous solids, In: HoP-Kins, HG; Sewll, MJ. Mechanics of Solid, The Rodney Hill 60th Anniversary Volume. Oxford: Pergamon Press, 1982. 13-45.
    [177] Goods, SH; Brown, LM. The nucleation of cavities by plastic deformation. Acta Metall, 1979, 27(1):1-15
    [178] Fisher, JR; Gurland, J. Void nucleation in spheroidized carbon steels part I: experimental. Metal Sci, 1981, 15(5):185-192
    [179] Koenigsmann, HJ. Starke, EA; Allaire, PE. Finite element/experimental analysis of cavity nucleation in an Al-Si-Ge alloy. Acta Metal, 1996, 44(8):3069-3075.
    [180] Gurland, J. Observation on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature. Acta Metall, 1972, 20(5):735-741
    [181] Orr, J; Brown, DK. Elastic-plastic solutions for a cylindrical particle in plane strain. Engineering Fracture of Mechanics, 1974, 6(2):261-274.
    [182] Thomson, RD; Hancock, JW. Local stress and strain fields near a spherical near acomposites and polycrystals. J Mech Phys Solids, 2005, 53(5):1047-1070.
    [197] Gurtin, ME. The linear theory of elasticity. In: Truesdell, C. (Ed.).mechanics of Solids. Vol.II. New York: Springer-Verlag, 1984.
    [198] Arias, TA; Joannopoulos, JD. Ab initio theory of dislocation interactions: from close-range spontaneous annihilation to the long-range continuum limit. Physical Review Letters, 1994,73(5):680
    [199] Rhee, M; Zbib, HM; Hirth, JP; et al. Models for long/short range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Modelling and Simulation in Materials Science and Engineering, 1998, 6(4):467-492
    [200] Lubarda, VA; Blume, JA; Needleman, A. An analysis of equilibrium dislocation distributions. Acta Metallurgica et Materialia, 1993, 41(2):625-42
    [201] Eshelby, JD. Boundary problems. in: Nabarro FRN. Dislocations in solids. Amsterdam: North-Holland Pub, 1979. 167.
    [202] Lubarda, VA; Schneider, MS; Kalantar, DH; et al. Void growth by dislocation emission. Acta Materialia, 2004, 52(6):1397-1408.
    [203] Ahn, DC; Sofronis, P; Minich, R. On the micromechanics of void growth by prismatic-dislocation loop emission. J Mech Phys Solids, 2006, 54(4):735-755
    [204] Cuitino, AM; Ortiz, M. Ductile fracture by vacancy condensation in F.C.C. single crystals. Acta Mater,1996,44(2):427-436
    [205] Huang, MX; Li, Z. Dislocation emission criterion from a blunt crack tip. J Mech Phys Solids, 2004,52(9):1991-2003
    [206] Timoshenko, SP. Theory of elasticity. 3d ed., N.y. McGraw-Hill,1970.
    [207] Fischer, L; Beltz, GE. The effect of crack blunting on the competition between dislocation nucleation and cleavage. J Mech Phys Solids, 2001, 49(3):635–654
    [208] Huang, M; Li, Z. Size effects on stress concentration induced by a prolate ellipsoidal particle and void nucleation mechanism. Int J Plast, 2005, 21(8): 1568-1590
    [209] Huang, M; Li, Z. Influences of particle size and interface energy on the stress concentration induced by the oblate spheroidal particle and the void nucleation mechanism. Int J Solids Struct, 2006,43(14-15):4097-4115
    [210] Dundurs, J; Mura, A. Interaction between an edge dislocation and a circular inclusion. J Mech Phys Solids, 1964, 12(1):177-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700