预应力混凝土梁板抗火性能与抗火设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾能造成建筑结构的严重破坏,甚至导致建筑结构的坍塌,预应力混凝土结构近年来发展较快,应用越来越多。结构抗火设计应同时满足预应力混凝土结构火灾下与火灾后的安全,目前欧洲抗火设计规范(EC2-1-2)虽对预应力混凝土结构抗火设计方法有所述及,但仍是初步的,尚需开展火灾下与火灾后预应力混凝土梁板力学性能的研究。论文主要开展了五个方面的研究工作。
     (1)预应力钢筋、非预应力钢筋高温后的力学性能是开展火灾后预应力结构损伤评估与修复的重要依据。针对目前高温后预应力钢筋、非预应力钢筋力学性能研究中未考虑高温下应力历程对高温后力学性能的影响这一问题,为考察高温后预应力钢筋及非预应力钢筋力学性能,砸碎38个火灾后预应力混凝土梁板试件的混凝土,取出预应力钢筋及非预应力钢筋,制作成481个预应力钢筋试件和489个非预应力钢筋试件,并对这些试件进行高温后的力学性能试验。基于试验结果,探索了高温后预应力钢筋和非预应力钢筋的相关强度、弹性模量、断后伸长率等的变化规律;分别给出了高温后预应力钢筋及非预应力钢筋的应力—应变曲线方程。试验结果表明,在经历相同的温度作用后,承受初始应力的预应力钢筋较未施加初始应力的预应力钢筋的强度低,初始应力水平(常温下初始应力与常温下钢筋极限强度的比值)为0.6较无初始应力时,预应力钢筋条件屈服强度降低约7.0%;而高温后非预应力钢筋强度受初始应力的影响不大。
     (2)我国《混凝土结构设计规范》(GB50010-2002)还没有对预应力混凝土结构抗火设计作出具体规定。为研究预应力混凝土梁板的抗火性能,合作完成38个预应力混凝土简支梁板、连续梁板抗火性能试验,探索了混凝土保护层厚度、荷载水平、综合配筋指标等关键因素影响对预应力混凝土梁板抗火性能的影响,提出了火灾下混凝土梁板的无粘结筋应力、跨中变形计算公式,考察了火灾下连续梁板支座反力的变化。
     (3)混凝土、预应力钢筋和非预应力钢筋的本构关系和预应力混凝土梁板的力学性能随温度—荷载途径而的不同而不同,从混凝土、普通钢筋和预应力筋的热—力耦合本构关系出发,用t时刻的混凝土应力计算t+1时刻混凝土的瞬态热应变、高温徐变,实现了混凝土热—力耦合本构关系的解耦,钢筋、预应力筋的处理方法与此相同,可获得火灾下预应力混凝土梁任意截面的弯矩—曲率全过程曲线,基于支座变形协调方程,可利用割线刚度法对支座反力进行迭代求解,通过对截面曲率积分可求得连续梁各截面的变形,进而实现了考虑热—力耦合影响的火灾下预应力混凝土梁板非线性全过程有限元分析。
     (4)结构抗火设计需要同时满足结构火灾下与火灾后的安全。完成了19个火灾后预应力混凝土、钢筋混凝土简支梁板、16个火灾后预应力混凝土连续梁板的力学性能试验,获得了试件变形与裂缝发展、连续梁板支座反力变化、无粘结筋应力变化、正截面承载力变化等试验现象和测试数据,研究结果表明:相同条件下,火灾后有粘结预应力混凝土板承载力降低幅度较无粘结预应力混凝土板大。基于上述火灾后预应力混凝土梁板力学性能试验结果,提出了火灾后无粘结筋剩余应力、极限应力、裂缝宽度计算公式和变形分析方法。
     (5)为满足预应力混凝土梁板抗火设计与火灾后损伤评估的需要,分总则、抗火设计方法和构造措施、混凝土爆裂验算与防爆裂构造措施、火灾后预应力混凝土梁板承载力、变形计算与修复建议等方面提出了预应力混凝土梁板抗火设计建议和火灾后损伤评估与修复建议。
Fire can severely destruct building structures and even cause it collapse. In recent years, prestressed concrete (PC) structures grow rapidly, which are used more and more widely. Structural fire design should ensure that the structure is safe during fire and after fire. Although fire design method of PC structure has been preliminarily mentioned in Eurocode 2-1-2: structural fire design (EC2-1-2), the mechaincal performance of PC beam and slab during/after fire need to be researched further. 5 parts of research work are accomplished in this dissertation.
     (1) The mechanical property of prestressing steel wire and non-prestressed steel bar after fire is the key factor in damage evaluation and repair after fire for prestressed structures. At present, the stress in the prestressing steel wire and non-prestressed steel bar at elevated temperature is not considered in their mechanical property after fire. In order to investigate the mechanical properties of prestressing steel wire and non-prestressed steel bar after fire, 38 prestressed concrete slabs and beams after fire are smashed and the prestressed steel wire and non-prestressed steel bar are taken out. A tensile test of 481 prestressing steel wires and 489 non-prestressing steel bars after fire is completed. Based on the experiment data, the relative strength, elastic modulus, and specific elongation of prestressing steel wire and non-prestressed steel bar after fire are obtained respectively. The strain-stress relationship of prestressing steel wire and non-prestressed steel bar after fire is obtained respectively. The experiment results show that: the strength of prestressing steel wire with initial stress after fire is lower than that without initial stress. For the prestressing steel wire with the ratio of initial stress to ultimate strength is 0.6 at normal temperature, the 0.2% yield strength of prestressing steel wire after fire is 7.0% lower than that without initial stress. But the strength of non-prestressed steel bar with and without initial stress after fire does not vary obviously.
     (2) Specific fire design method for PC structure has not been contained in Code for design of concrete structure (GB50010-2002) in China. 38 PC simple and continuous beams and slabs are test on the fire resistance. The influences of key factors such as concrete cover, load level and global reinforcement index to the fire resistance performance of PC beams and slabs are explored. The calculation formulas of the stress in the unbonded tendons and the deflection at mid-span of PC beam and slabs at elevated temperature are proposed, and the variation of support reaction at elevated temperature is obtained.
     (3) The constitutive model of concrete, prestressing steel wire and non-prestressed steel bar and the mechanical performance of PC beam and slab differ with different temperature-load paths. Based on the constitutive model of concrete, prestressing steel wire and non-prestressed steel bar considering the influence of thermal-mechanical coupling, and transient strain, compressive creep in concrete at time t+1 can be calculated through stress in concrete at time t, and then the coupled constitutive model of concrete can be decoupled, and prestressing steel wire and non-prestressed steel bar are disposed by the same way. Therefore, the whole progress of moment-curve analysis of PC beam and slab subjected to fire is completed. Based on the deflection compatibility equation at the support, the support reaction can be calculated by secant stiffness matrix iteration method, and the deflection of continuous beam and slab can be obtained by curve integral of cross section. Then the nonlinear finite element analysis of loading process for prestressed concrete continuous beam and slab at elevated temperature can be completed.
     (4) Structural fire design should ensure that the structure is safe during fire and after fire. 19 PC simple and 16 PC continuous beams and slabs are tested on mechanical performance after fire. Crack distribution and growth, deflection development, support reactions, stress in unboned prestressing steel wires, flexural carrying capacity as well as failure characteristics are obtained. The experiment results show that: the carrying capacity of bonded PC slab decreases grteater than that of the unbonded PC slab after fire under the same condition. Based on the experiment data, calculation formula of residual stress, ultimate stress in prestressing steel wire and crack width is put forward, and deflection analysis method of PC beams and slabs after fire is proposed.
     (5) In order to meet the requirement of fire design and repair method after fire for PC beam and slab, proposition on fire design and repair method after fire for PC beam and slab is proposed, which comprises general, effects of actions, characteristic values of resistance and fire design principles, thermal properties of material, mechanical properties of matireial during/after fire, calculation for temperature field, verification methods for crack, defletion and carrying capacity, concrete cover thickness for fire resistance of PC beams and slabs, detailing rules, check method on spalling of concrete of prestressed slabs and beams at elevated temperature and detailing rules to avoid concrete spalling etc.
引文
1郑文忠.预应力混凝土结构抗火性能与火灾后损伤评估与修复.黑龙江省杰出青年科学基金任务书, 2002:2~12
    2许名鑫.预应力混凝土梁板抗火性能试验与分析.哈尔滨工业大学博士学位论文. 2006:17~23, 65~70
    3 A. H. Gustaferro. Design of Prestressed Concrete for Fire Resistance.Journal of the Prestressed Concrete Institute. 1973,18(6):102~116
    4 L. A. Ashton, S.C.C. Bate. Fire Resistance of Prestressed Concrete Beams. Journal of the ACI. 1961,32(11):1417~1440
    5 A. H. Gustaferro, S.L. Selvaggio. Fire Endurance of Simply-supported Prestressed Concrete Slabs. Journal of the Prestressed Concrete Institute. 1967,12(1):37~52
    6 T. R. Joseph, I. Son. Report on Unbonded Post-tensioned Prestressed, Reinforced Concrete Flat Plate Floor with Expanded Shale Aggregate. Journal of the Prestressed Concrete Institute. 1968,13(2):45~56
    7 M. S. Abrams, A. H. Gustaferro. Fire Endurance of Prestressed Concrete Units Coated with Spray-applied Insulation. Journal of the Prestressed Concrete Institute. 1972,17(1):82~103
    8 S. Krishnamoorthy, G. L. England, C. W. Yu. The Behaviour of Prestressed Concrete Portal Frames Influenced by Creep and Temperature. Magazine of Concrete Research. 1971,23(No.74):23~36
    9 P. V. Herberghen, M. V. Damme, J. Fe′de′ration Int. de la Pre′contrainte (1983/1984) 3~11
    10 P. Lukkunaprasit. Unbonded Post~tensioned Concrete Flat Plates under 5 Hours of Fire, in: FIP~XIth International Congress on Prestressed Concrete. S61~S64,Hamburg, Germany, 1990: 4~9
    11 Eurocode 2: Design of Concrete Structures, Part 1-2: General Rules—Structural Fire Design. prEN 1992-1-2, British Standards Institution, London, British, 2003
    12侯晓萌,郑文忠.欧洲规范中混凝土结构抗火设计主要内容(二)——基于构件分析的简化抗火计算方法与火灾下混凝土爆裂简化判别方法,工业建筑. 2008, 38(6):110~112+116
    13 B. Ellingwood, T. D. Lin. Flexure and Shear Behavior of Concrete Beams during Fires. Journal of Structural Engineering ASCE. 1991,117(2):440~458
    14 T. D. Lin, B. Ellingwood and O. Piet. Flexural and Shear Behavior of Reinforced Concrete Beams during Fire Tests. Report NBS-GCR-87-536, National Bureau of Standards, Washington, D.C., 1987
    15 E. Ellobody, C. G. Bailey. Modelling of Unbonded Post-tensioned Concrete Slabs under Fire Conditions. Fire Safety Journal. 2009, 44(2):159~167
    16 C. G. Bailey, E. Ellobody. Fire Tests on Unbonded Post-tensioned One-way Concrete Slabs. Magazine of Concrete Research. 2009,61(1):67~76
    17 M. Gillie, A. S. Usmani and J. M. Rotter. A Structural Analysis of the First Cardington Test. Journal of constructional steel research. 2001,57(6): 581~601
    18 Z. H. Huang, I. W. Burgess and R. J. Plank. Nonlinear Analysis of Reinforced Concrete Slabs Subjected to Fire. ACI Structural Journal. 1999,96(1):127~135
    19 Z. H. Huang, I. W. Burgess and R.J. Plank. Modelling Membrane Action of Concrete Slabs in Composite Buildings in Fire I: Theoretical development. Journal of Structural Engineering ASCE. 2003,129(8):1093~1102
    20 Z. H. Huang, I. W. Burgess and R. J. Plank. Modelling Membrane Action of Concrete Slabs in Composite Buildings in Fire. II: Validations. Journal of Structural Engineering ASCE. 2003,129(8):1103~1112
    21 Z. H. Huang, I. W. Burgess and R.J. Plank. Behaviour of Reinforced Concrete Structures in Fire. In: 4th International workshop on structures in fire. 2006: 561~572
    22 Y. X. Zhang, M. A. Bradford. Nonlinear Analysis of Moderately Thick Reinforced Concrete Slabs at Elevated Temperatures using a Rectangular Layered Plate Element with Timoshenko Beam Functions. Engineering Structures. 2007,29(10):2751~2761
    23 Y. X. Zhang, K. S. Kim. Two Simple and Efficient Displacement-based Quadrilateral Elements for the Analysis of Composite Laminated Plates. International Journal for Numerical Methods in Engineering. 2004,61(11):1771~1796
    24 Y. X. Zhang, K. S. Kim. A Simple Displacement Based 3-node Triangular Element for Linear and Geometrically Nonlinear Analysis of Composite Plates. Computer Methods in Applied Mechanics and Engineering. 2005,194(4):607~32
    25 Y. X. Zhang, K. S. Kim. Two Simple Displacement-based Geometrically Nonlinear Laminated Composite Quadrilateral Plate Finite Elements. Composite Structures. 2006;72(3):301~310
    26 V. K. R. Kodur, M. B. Dwaikat. A Numerical Model for Predicting the FireResistance of Concrete Beams. Cement Concrete Composites. 2008,30(5):431~443
    27 M. B. Dwaikat, V. K. R. Kodur. A Numerical Approach for Modeling the Fire induced Restraint Effects in Reinforced concrete beams. Fire Safety Journal. 2007,43 (4):291~307
    28 V. K. R. Kodur, M. B. Dwaikat. Performance-based Fire Safety Design of Reinforced Concrete Beams. Journal of Fire Protection Engineering. 2007,17(4):293~320
    29 R. Felicetti. The Drilling Resistance Test for the Assessment of Fire Damaged Concrete. Cement and Concrete Composites. 2006,28(4):321~329
    30 A. Abbasi, P. J. Hogg. Fire Testing of Concrete Beams with Fibre Reinforced Plastic Rebar. Composites Part A. 2006,37(8):1142~1150
    31 K. D. Herrtz, L. S. Srensen. Test Method for Spalling of Fire exposed Concrete. Fire safety Journal. 2005,40(5):466~476
    32 M. Li, C. X. Qian and W. Sun. Mechanical Properties of High-strength Concrete after Fire. Cement and Concrete Research. 2004,34(6):1001~1005
    33 A. Abbasi, P. J. Hogg. A Model for Predicting the Properties of the Constituents of a Glass Fibre Rebar Reinforced Concrete Beam at Elevated Temperatures Simulating a Fire Test. Composites Part B. 2005,36(5):384~393
    34 J. Yin, X. X. Zha, L. Y. Li. Fire Resistance of Axially Loaded Concrete Filled Steel Tube Columns. Journal of Constructional Steel Research. 2006, 62(7):723~729
    35 K. Sakr, E. EL-Hakim. Effect of High Temperature or Fire on Heavy Weight Concrete Properties. Cement and Concrete Research. 2005,35(3):590~596
    36 L. H. Han, J. S. Huo, Y. C. Wang. Compressive and Flexural Behaviour of Concrete Filled Steel Tubes after Exposure to Standard Fire. Journal of Constructional Steel Research. 2005,61(7):882~901
    37 S. Bratina, M. Saje and I. Planinc. Numerical Modelling of Behaviour of Reinforced Concrete Columns in Fire and Comparison with Eurocode 2. International Journal of Solids and Structures. 2005,42(21~22):5715~5733
    38 B. Williams, L. Bisby, V. Kodur, M. Green and E. Chowdhury. Fire Insulation Schemes for FRP-strengthened Concrete Slabs. Composites Part A. 2006,37(8):1151~1160
    39 A. S. Usmani, N. J. K. Cameron. Limit Capacity of Laterally Restrained Reinforced Concrete Floor Slabs in Fire. Cement and Concrete Composites.2004,26(2):127~140
    40 J. Cai. Developments in Modelling of Composite Building Structures in Fire. Ph.D. Thesis, University of Sheffield. 2002:120~154
    41沈玉根.高温后预应力混凝土受弯构件受力性能的研究.西南交通大学硕士论文. 1992:22~26
    42华毅杰.预应力混凝土结构火灾反应及抗火性能研究.同济大学博士论文. 2000,66~72
    43袁爱民,董毓利,戴航,李延和,高立堂.无粘结预应力混凝土三跨连续梁火灾试验研究.建筑结构学报. 2006,27(6):60~66
    44王中强.无粘结预应力混凝土扁梁抗火性能的试验研究和理论分析.中南大学博士论文. 2006:56~63
    45余志武,王中强.高温下无粘结预应力扁梁的试验研究与理论分析.第三届全国钢结构防火及防腐技术研讨会暨第一届全国结构抗火学术交流会论文集.中国钢结构协会防火与防腐分会和中国建筑学会抗震防灾分会建筑抗火专业委员会.福州, 2005:94~105
    46陆洲导,朱伯龙,姚亚雄.钢筋混凝土框架火灾反应分析.土木工程学报. 1995, 28(6):18~27
    47董毓利,李晓东.同跨受火时两层两跨组合钢框架抗火性能的试验研究.建筑结构学报. 2007,28(5):14~23
    48吴波,何喜洋.高温下钢筋混凝土框架内力重分布研究.土木工程学报. 2006, 39(9):54~61
    49吕彤光.高温下钢筋的强度和变形试验研究.清华大学硕士论文.1996:21~26
    50郑文忠,胡琼,张昊宇.高温下及高温后1770级φP5低松弛预应力钢丝力学性能试验研究.建筑结构学报. 2006,27(2): 120~128
    51张昊宇,郑文忠.高温下1770级φP5钢丝蠕变及应力松弛性能试验研究.土木工程学报. 2006,39(8): 7~13
    52郑文忠,张昊宇,胡琼.考虑温度~时间路径的高强钢丝应变及应力计算方法.建筑材料学报. 2007,10(3):288~294
    53张昊宇,郑文忠. 1860级φP5钢丝抗火性能试验研究.哈尔滨工业大学学报. 2007, 39(6):861~865
    54 U. Diederichs, U. M. Jumppanen and U. Schneider. High Temperature Properties and Spalling Behaviour of High Strength Concrete. Proceeding of
    4th Weimar Workshop on High Performance Concrete, HAB Weimar, Germany,1995:219~235
    55 V. K. R. Kodur, T. T. Lie. Fire Resistance of Fibre-Reinforced Concrete. Fibre Reinforced Concrete: Rresent and the Future, Canadian Society of CivilEngineering, Canada, 1998: 189~213
    56 V. K. R. Kodur. Spalling in High Strength Concrete Exposed to Fire—Concerns, Causes, Critical Parameters and Cures. In: Proceedings:ASCE structures congress, Philadelphia, USA, 2000:1~8
    57 V. K. R. Kodur. Guidelines for Fire Resistance Design of High Strength Concrete Columns. Journal of Fire Protection Engineering. 2005,15(2):93~106
    58 M. B. Dwaikat, V. K. R. Kodur. Hydrothermal Model for Predicting Fire-induced Spalling in Concrete Structural Systems. Fire Safety Journal. 2009,44(3):425~434
    59 V. K. R. Kodur, T. Wang and F. Cheng . Predicting the Fire Resistance Behavior of High Strength Concrete Columns. Cement and Concrete Composites. 2004,26(2):141~153
    60 G. F. Peng. Evaluation of Fire Damage to High Performance Concrete. Ph.D. Thesis, Hong Kong Polytechnic University. 2000:77~86
    61郑文忠,许名鑫,石东升,胡琼.火灾下预应力板混凝土爆裂规律试验研究.土木工程学报. 2006,39(10):48~53
    62 Eurocode 2: Design of Concrete Structures, Part 1: General Rules and Rules for Buildings. prEN 1992-1-1, British Standards Institution, London, British, 2005
    63侯晓萌,郑文忠.欧洲规范中混凝土结构抗火设计主要内容(一)——火灾下荷载效应、抗力效应、材料性能与基于表格的抗火设计方法.工业建筑. 2008,38(4):98~103
    64 GB/T9978-1999.建筑构件耐火试验方法
    65王英,许名鑫,郑文忠.某预应力混凝土工程火灾后结构损伤评估与修复.低温建筑技术. 2007,116(2):36~38
    66范进,吕志涛.高温(火灾)下预应力钢丝性能的试验研究.建筑技术. 2001,32 (12):833~834
    67范进,吕志涛.高温后预应力钢丝性能的试验研究.工业建筑. 2002,32 (9):30~31
    68范进,吕志涛.受高温作用时预应力钢绞线性能的试验研究.建筑结构. 2002,32 (3):50~63
    69余志武,王中强,史召锋.高温后新Ⅲ级钢筋力学性能的试验研究.建筑结构学报. 2005,26(2):112~116
    70 Zheng Wenzhong, Hou Xiaomeng. Experiment and Analysis on the Mechanical Behaviour of PC Simply-supported Slabs Subjected to Fire. Advances inStructural Engineering. 2008,11(1):71~89
    71 GB/T 228-2002.金属材料室温拉伸试验方法
    72吴波.火灾后钢筋混凝土结构的力学性能.科学出版社, 2003:23~26
    73路春森,屈立军,薛武平等.建筑结构耐火设计.中国建筑工业出版社, 1995:66~77
    74陆洲导.钢筋混凝土梁对火灾反应的研究.同济大学博士论文.1989:33~39
    75朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究. 1990,16(1):37~43
    76 Standards Australia, AS4100. Steel Structures.Sydney,1990:6~8
    77李卫,过镇海.高温下砼的强度和变形性能试验研究.建筑结构学报. 1993,14(1):8~16
    78李华东.高温下钢筋混凝土压弯构件的试验研究.清华大学硕士论文. 1994:18~26
    79过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2003:188~192
    80王广勇.钢筋混凝土框架结构抗火性能理论与试验研究.北京工业大学博士论文. 2008:97~99
    81徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究.哈尔滨工业大学博士论文. 2002:77~82
    82李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.中国建筑工业出版社, 1991:33~39
    83 V. K. R. Kodur, M. B. Dwaikat. Response of Steel Beam-columns Exposed to Fire. Engineering Structures. 2009,31(2):369~379
    84吴波,马忠诚,欧进萍.高温后混凝土变形特性和本构关系的试验研究.建筑结构学报. 1999,20(5):42~49
    85郑文忠,王英.预应力混凝土房屋结构设计统一方法与实例.黑龙江科学技术出版社, 1998:22~30
    86蔡跃.火灾下预应力混凝土结构计算理论及抗火设计方法研究.同济大学博士学位论文. 2003:55~62
    87 GB 50010-2002.混凝土结构设计规范
    88 G. M. E. Cooke. Behaviour of Precast Concrete Floor Slabs Exposed to Standardized Fires. Fire Safety Journal. 2001,36 (5):459~475
    89 Z. H. Huang, A. Platten. Nonlinear Finite Element Analysis of Planar Reinforced Concrete Members Subjected to Fires. ACI Structural Journal. 1997,94(3):272~282
    90 A. M. Sanad, S. Lamont, A.S. Usmani and J.M. Rotter. Structural Behavior inFire Compartment under Different Heating Regimes-Part 1(slab thermal gradients). Fire Safety Journal. 2000,35(2): 99~116
    91 S. Bratina, I. Planinc, M. Saje and G. Turk. Nonlinear Fire-resistance Analysis of Reinforced Concrete Beams. Structural Engineering and Mechanics. 2003,16(6):695~712
    92 S. Bratina, M. Saje and I. Planinc. The Effects of Different Strain Contributions on the Response of RC Beams in Fire. Engineering Structure. 2006,28(7):1236~1249
    93 D. Gawin, F. Pesavento and B.A. Schrefler. Modelling of Hygro-thermal Behavior and Damage of Concrete at Temperature with Thermo-chemical and Mechanical Material Degradation. Computer Methods in Applied Mechanics and Engineering. 2003, 192 ,(13~14):1731~1771
    94 G. A. Khoury, C. E. Majorana, F. Pesavento and B.A. Schrefler. Modelling of Heated Concrete. Magazine of Concrete Research. 2002,54(2):77~101
    95 X. D. Shi, T. H. Tom, K. H. Tom and Z. H. Guo. Effect of Force-temperature Paths on Behaviors of Reinforced Concrete Flexural Members. ACSE Journal of Structual Engineering. 2002,108(3):365~373
    96陆洲导,李刚,许立新.无粘结预应力混凝土框架火灾下结构反应分析.土木工程学报. 2003,36(10):30~35
    97陆洲导,李刚,许立新,华毅杰.有粘结与无粘结预应力混凝土框架结构抗火性能比较研究.建筑结构. 2004,34(4):35~38+31
    98高立堂.无粘结预应力砼板火灾行为的试验研究及热弹塑性有限元分析.西安建筑科技大学博士学位论文. 2003,88~93
    99 International Standard ISO 834-1-1999(E). Fire-resistance Tests-Elements of building construction-Part 1:General requirement
    100 Y. Anderberg, S. Thelandersson. Stress and Deformation Characteristics of Concrete at High Temperatures, 2. Experimental Investigation and Material Behaviour Model. Lund Institute of Technology, Sweden. 1976:11~19
    101过镇海,李卫.混凝土在不同应力—温度途径下的变形试验和本构关系.土木工程学报. 1993,26(5):58~69
    102郑文忠,侯晓萌,许名鑫.两跨无粘结预应力混凝土连续板抗火性能试验与分析.建筑结构学报, 2007, 28(5):1~13
    103 L. Lim, A. Buchanan, P. Moss and J. M. Franssen. Numerical Modelling of Two-Way Reinforced Concrete Slabs in Fire. Engineering Structures. 2004, 26(8) :1081~1091
    104 W. K. Chow, W. Y. Hung. On the Fire Safety for Internal Voids in HighriseBuildings. Building and Environment.2003,38 :1317~1325
    105 Y. C. Wang, J.M.Davies. Fire Tests of Non-Sway Loaded and Rotationally Restrained Steel Column Assemblies. Journal of Constructional Steel Research. 2003,59(3):359~383
    106 A. Benedetti. Approximate Optimal Design of Fire-Resisting Beams and Columns. Journal of Constructional Steel Research. 2003,59(10):1251~1266
    107胡克旭.高温下钢砼粘结滑移性能及钢砼门式框架抗火性能研究.同济大学硕士学位论文. 1989:32~33
    108何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨工业大学出版社, 2006:77~90
    109 V. K. R. Kodur, M. M. S. Dwaikat and M. B. Dwaikat. High-temperature Properties of Concrete for Fire Resistance Modeling of Structures. ACI Materials Journal.2008,105(5):517~527
    110 T. Z. Harmathy. A comprehensive creep model. Journal of Basic Engineering. 1967,89(2):496~502
    111 Guide for Determining the Fire Endurance of Concrete Elements. ACI 216-89, 1994
    112 F. J. Vecchio. Nonlinear Analysis of Reinforced Concrete Frames Subjected to Thermal and Mechanical Loads. ACI Structural Journal. 1987,84(6) :492~501
    113 Fire tests on building materials and structures-Part 20: Method from determination of the fire resistance of elements of construction (general principles). BS 476-3:1987, BSi, UK; 1987
    114李引擎.法国的建筑防火研究.建筑结构. 1987,17(1):3~6
    115莫鲁摘译.砼结构的耐火设计(原载美国《Fire Safety of Concrete Structures》1983:151~160).建筑结构. 1990,20(3):60~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700