趋化素样因子1(CKLF1)在人动脉粥样硬化斑块组织中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]⑴研究人正常动脉和动脉粥样硬化斑块(Atherosclerotic Plaques)组织中趋化素样因子1(Chemokine-like factor 1, CKLF1)mRNA的表达。⑵研究人正常动脉和动脉粥样硬化斑块组织中趋化素样因子1(CKLF1)蛋白水平的表达。[3]明确动脉斑块组织中CKLF1阳性表达细胞类型。[4]比较CKLF1在正常动脉和动脉粥样硬化斑块中表达水平的差异。
     [方法]应用实时定量PCR技术(Real-Time Quantitative PCR, RT-QPCR)和免疫组织化学染色(immunohistochemistry, IHC)技术,分别回顾性研究24例/17例动脉粥样硬化患者斑块组织和25例/10例正常人体动脉组织中CKLF1 mRNA和蛋白水平表达,观察CKLF1阳性表达细胞,分别比较其在正常动脉和动脉硬化斑块中表达量的差异。
     [结果]⑴CKLF1mRNA在正常动脉组织中存在基础表达(RQMedian=2.44),在动脉粥样硬化斑块中表达量明显上调(RQMedian=132.17, p<0.05)。
     ⑵CKLF1在正常动脉中阳性表达细胞为平滑肌细胞和内皮细胞,在动脉粥样硬化斑块中阳性表达细胞为平滑肌细胞、内皮细胞和巨噬细胞。
     ⑶CKLF1在动脉粥样硬化斑块内皮细胞、平滑肌细胞中的表达量明显高于正常动脉内皮细胞和平滑肌细胞(p<0.01)。
     ⑷动脉粥样硬化斑块组织中CKLF1与MCP-1的表达存在正相关性,相关系数r = 0.933(p<0.01)。
     [结论]⑴人动脉粥样硬化斑块组织中的平滑肌细胞、内皮细胞和单核巨噬细胞是CKLF1表达的主要来源。
     ⑵CKLF1在正常人动脉平滑肌细胞及内皮细胞中存在基础表达,且内皮细胞中CKLF1基础表达量较高。
     ⑶在人动脉粥样硬化斑块平滑肌细胞中CKLF1在mRNA水平和蛋白水平的表达较正常动脉均显著上调,说明CKLF1可能在动脉粥样硬化发病过程中起重要作用。
[Objective] [1]To observe the expression of Chemokine-like Factor1 (CKLF1) on mRNA standard in human atherosclerotic plaques and normal arteries. [2] To observe the expression of CKLF1 on protein standard in human atherosclerotic plaques and normal arteries. [3]To identify the types of CKLF1 positive expression cells. [4]To evaluate the distinction of the expression level of CKLF1 between normal arteries and atherosclerotic plaques.
     [Methods] Real-Time Quantitative PCR (RT-QPCR) was performed with 24 atherosclerotic plaque specimens and 25 normal artery specimens. Serial microscopic sections were used for immunohistochemistry (IHC) with CKLF1 antibody in 17 atherosclerotic specimens and 10 normal artery specimens. Then statistical analysis were performed to evaluate the difference of the expression level of CKLF1 between normal arteries and atherosclerotic plaques.
     [Results]⑴There is a foundational expression of CKLF1 mRNA in normal artery (RQMedian=2.44). And the expression of CKLF1 mRNA in atherosclerotic plaques were up-regulated significantly (RQMedian=132.17, p<0.05) compared with that of normal arteries.
     ⑵The endothelial cell (EC) and vascular smooth muscle cell (VSMC) are CKLF1 positive expression cells not only in normal arteries, but also in atherosclerotic plaques. Macrophage is CKLF1 Positive expression cell in atherosclerotic plaques too.
     ⑶The expression of CKLF1 protein in VSMC and EC of atherosclerotic plaques were up-regulated significantly compared with that in VSMC and EC of normal arteries.
     ⑷Positive correlation was found between the expression of CKLF1 and MCP-1 in atherosclerotic plaques, r = 0.933 (p<0.01).
     [Conclusions]⑴The endothelial cell (EC) and vascular smooth muscle cell (VSMC) and macrophage are the major CKLF1 positive expression cells.
     ⑵There is a foundational expression of CKLF1 in normal artery.
     ⑶The expression of CKLF1 in atherosclerotic plaques were up-regulated significantly compared with that in normal arteries, which means that CKLF1 may play an important role in the process of immune and inflammatory responses of atherogenesis.
引文
1 Breslow JL. Cardiovascular disease burden increases, NIH funding decreases[J]. Nat Med, 1997, 3(6): 600-601.
    2 Braunwald E. Shattuck Lecture-cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities[J]. N Engl J Med, 1997, 337(19): 1360-1369.
    3 Ross R. Atherosclerosis — an inflammatory disease. New Engl J Med,1999,
    340: 115~126. 4 James T,Willerson,Paul M,et al. Inflammation as a cardiovascular risk factor. Circulation, 2004,109:II2-II10.
    5 De Boer OJ,van der Wal AC , Bedker AE. Atherosclerosis, inflammation, and infection[J]. J Pathol, 2000,190(3):237-24.
    6 Lusis AJ. Atherosclerosis[J]. Nature, 2000, 407(6801): 233-241.
    7 Morre SA, Stooker W, Lagrand WK,et al. Microorganisms in the aetiology of atherosclerosis[J]. J Clin Pathol, 2000, 53(9): 647-654.
    8 Fabricant CG, Krook L, Gillespie JH: Virus-induced cholesterol crystals. Sience 1973, 181:566-567.
    9 Vercellotti GM. Proinflammatory and procoagulant effects of herpes simplex infection on human endothelium. Blood Cells, 1990, 16:209-216.
    10 Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab Invest. 1991, 64:5-15.
    11 Libby P, Fleet J, et al. Possible roles of cytokines in atherogenesis. R&L creative Communications, 1992, pp, 399-350.
    12 Sacks FM, Pfeffer MA, Moye LA, et al. For the cholesterol and recurrent events trial investigators after myocardial infarction in patients with average cholesterol levels. N Engl J Med.1996, 335(14): 1001-1009.
    13 Salonen JT, Yla-Herttuala S, et al. Autoantibody against oxidized LDL and progression of carotid atherosclerosis[J]. 1992, 339(8 798): 883-887.
    14 Cominacin L, Pasini AF, Garbin U,et al. Oxidized LDL binding to Ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species[J]. J Biol Chem. 2000, 275(17): 12,633.
    15 雷新军,马爱群,任冰稳. Ox-LDL 直接诱导人外周血单核细胞表达致炎细胞因子 mRNA[J]. 中国免疫学杂志,2004,20(2):93-96.
    16 Scanu AM,Fless GM. Lipoprotein(a). Heterogeneity and biological relevance. J Clin Invest. 1990, 85:17-9-1715.
    17 Bresolw JL. Transgenic mouse models of lipoprotein metabolism and atherosclerosis. Proc Matl Acad Sci USA. 1993, 90: 8314-8318.
    18 Berg K. Lp(a) lipoprotein: an important genetic risk factor for atherosclerosis. Monogr Hum Genet. 1992, 14:189-207.
    19 McCully KS. Homocysteine and vascular disease. The discovery of hyperhomocysteinemia as a major factor in the pathogenesis of arteriosclerosis offers new strategies and opportumities for prevention and treatment. Nat Med. 1996, 2(4):386-389.
    20 Clarke R, Daly L, et al. Hyperhomocysteinemia : An independent risk factor for vascular disease. N Engl J Med. 1991, 324: 1149-1155.
    21 Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium–derived relaxing factor and related oxides of nitrogen. J Clin Invest. 1993, 91(1): 308-318.
    22 Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl Med. 1988, 318: 1315-1320.
    23 Ruderman N, Williamson J. Glucose and diabetic vascular disease. FASEB J. 1992, 6: 2905-2914.
    24 Schmidt Am, Haseu M, Popov D, et al. The receptor for advanced glycation endproducts (AGEs) has a central role in vessel wall interaction and gene activation in response to AGEs in the intravascular space. Proc Natl Acad Sci USA. 1994, 91: 8807-8811.
    25 Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996,136:297-306.
    26 Rosano GM, Sarrel PM, et al. Beneficial effect of estrogen on exercise-induced myocardial ischaemia in women with coronary artery disease. Lancet. 1993, 342:133-136.
    27 Reardon CA,Blachowicz L,White T,et al.Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein Edeficient mice. Arterioscler Thromb Vasc Biol, 2001,21:1011-1016.
    28 Joris T, Nunnari JJ, et al. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 1983,113:141-158.
    29 Faggiotto A, Ross R, Harker L. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984, 4: 323-340.
    30 Wood KM, Cadogan MD, et al. The distribution of adhesion molecules in human atherosclerosis. Histopathology. 1993, 22:437-444.
    31 Bevilacqua MP , Pober JS, et al. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987, 84: 9238-9242.
    32 Kume N, Gilmbrone M Jr. Lysophosphatidylcholine transceiptionally induces growth factor gene expression in cultured human endothelial cell. J Clin Invest. 1994, 93: 907-911.
    33 LandmesserU, HornigB, DrexlerH. Endothelial function: a critical determinant in atherosclerosis? Circulation, 2004, 109: II27-II33.
    34 Frank PG, Lisanti MP. Caveolin-1 and caveolae in atherosclerosis: differential roles in fattystreak formation and neointimal hyperplasia. Curr Opin Lipidol, 2004, 15(5): 523-529.
    35 Gokece N, KeaneyJF Jr, Hunter LM. Risk stratification for postoperative cardiovascular events vias noninvasive assessment of endothelial function: a prospective study. Circulation, 2002, 105: 1567-1572.第 83 页, 共 90 页
    36 Huo Y, Ley K. Adhesion molecules and atherogenesis.Acta Physiol Scand, 2001, 173: 35-43.
    37 Gerrity RG, Goss JA, Soby L. Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis. 1985, 5: 55-66.
    38 Rollins BJ. JE/MCP-1: An early response gene encodes a monocyte-specific cytokine. Cancer Cells. 1991, 3: 517-524.
    39 Wang J, Sica A, Peri G, et al. Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human bascular smooth muscle cells. Atherosclerosis. 1991, 11: 1166-1174.
    40 Nelken N, Coughlin S, et al. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest. 1991, 8: 1121-1127.
    41 Viedt C, Vogel J, Athanasiou T, et al. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol, 2002, 22: 914-920。
    42 Quinn MT, Parthasarathy S, Steinberg D. Endothelial cell-derived chemotactoc activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci USA 1985, 82: 5949-5953.
    43 Seifert PS, Hugo F, et al. Isolation and characterization of a complement- activating lipid ectracted from human atherosclerotic lesions. J Exp Med. 1990, 172: 547-557.
    44 Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Atherosclerosis. 1989, 9: 895-907.
    45 Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. Ⅱ . Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Atherosclerosis. 1989, 9: 908-918.
    46 Wight TN. The extracellular matrix and atherosclerosis. Curr Opin lipidol. 1995, 6: 326-334.
    47 DiazB,L opez-BeresteinG. A distinct element involved in lipopolysaccharideactivation of the tumor necrosis factor-alpha promoter in monocytes. J Interferon Cytokine Res, 2000, 20:7 41-748.
    48 Hurt-Camejo E, Camejo G, et al. Effect of arteral proteoglycans and glycosaminoglycans on low density lipoprotein oxidation and its uptake by human macrophages and arterial smooth cells. Arterioscler Thromb. 1992, 12: 569-583.
    49 Steinberg D, Parthasarathy S, et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989, 320:915-924.
    50 Frostegard J, Wu R, et al. Induction of T-cell activation by oxidized low density lipoprotein. Arterioscler Thromb. 1992, 12: 461-467.
    51 Lipton BA, Parthasarathy S, et al. Components of the protein fraction of oxidized low density lipoprotein stimulate interleukin-1 alpha production by rabbit arterial macrophage-derived foam cells. J Lipid Res. 1995, 36: 2232-2242.
    52 Ricci R, Sumara G, Sumara I, et al. Requirement of JNK2 for scavenger receptor A-mediated foamcell formation in atherogenesis. Science, 2004, 306(5701): 1558-1561。
    53 Acton SL, Scherer Pe, et al. Expression cloning of SR-BI, a CD 36 related class B scavenger receptor. J Biol Chem. 1994, 269: 21003-21009.
    54 Elomaa O, Kangas M, et al. Cloning of a nobel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell. 1995, 80: 603-609.
    55 Geng Y-J, Holm J, et al. Expression of the macrophage scavenger receptor in atheroma. Relationship to immune activation and the T-cell cytokine interferon-γ. Arterioscler Thromb Vasc Biol. 1995, 15: 1995-2002.
    56 Clinton S, Underwood R, et al. Macrophage-colony stimulating factor gene experimental and human atherosclerosis. Am J Pathol. 1992, 140: 301-316.
    57 George J, Mulkins M, Shaish A, et al. Interleukin(IL)-4 deficiency does not influence fatty streak formation in C57BL/6 mice. Atherosclerosis, 2000, 153: 403-411.
    58 Lee TS, Yen HC, Pan CC, et al. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice.Arterioscler Thromb Vasc Biol, 1999, 19(3): 734-742.
    59 Park SK, Yang WS, Lee SK, et al. TGF-beta(1)down-regulates inflammatory cytokine-induced VCAM-1 expression in cultured human glomerular endothelial cells. Nephrol Dial Transplant, 2000, 15: 596-604.
    60 Ronda N, Bernini F, Giacosa R, et al. Normal human IgG prevents endothelial cell activation induced by TNF-alpha and oxidized low density lipoprotein atherogenic stimuli. Clin Exp Immunol, 2003, 133(2): 219-26.
    61 Libby P, Aikawa M. Mechanisms of plaque stabilization with statins. Am J Cardiol, 2003, 91(suppl 4): 4B-8B.
    62 Libby P, Clinton SK. The role of macrophages in atherogenesis. Curr Opin Lipidol. 1993, 4: 355-363.
    63 Libby P, Geng Y-J, et al. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol. 1996, 7: 330-335.
    64 Galis Z, Sukhova G, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA. 1995, 92: 402-406.
    65 Bobrushev YV, Lord RS. Ultrastructural recognition of cells with dendritix cell morphology in human aortic intima. Contactions of Vascular dendritic cells in atheroresistant and athero-prone areas of the normal aorta. Arch Histol Cytol. 1995, 58: 307-332.
    66 Jaffe EA, Minick CR, et al. Synthsis of basement collagen by cultured Human endothelial cells[J]. J Exp Med. 1991, 144(1): 209-225.
    67 Nicoletti A, Caligiuri G, et al. The macrophage scavenger receptor A directs modified proteins to antigen presentation[J]. Eur J immunol. 1999, 29(2): 512-521.
    68 Hakkinen T, Karkalo K,et al. Macrophages, smooth muscle cells, endothelia cells and T-cells expression CD40-CD40L in fatty streaks and more advanced human atherosclerotic lesions. Colocalization with epitopes of oxidized low-densitylipoprotein, scavenger receptor and CD16(Fc gammar RⅢ)[J]. Virchows Arch. 2000, 437(4): 396-405.
    69 Schmitz G, Herr As, Rothe G. T-lymphocytes and monocytes in atherogenesis[J]. Herz, 1998,23(3): 168-177.
    70 Stille W, Dittmann R, et al. Atherosclerosis due to chronic arteritis caused by chlamyolia pneumonia: A tentative hypothesis[J]. Infection. 1997, 25(5): 281-285.
    71 Wostson ML. Chemokines-linking receptors to response. Immunology. 2002, 105(2): 121-124.
    72 Vicari AP. Caux C. Chemokines in cancer. Cytokine and Growth Factor Rewiews. 2002, 13(2): 143-154.
    73 Matloubian M, David A, et al. A Transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol. 2000, 1(4): 298-304.
    74 Ajuebor MN, Swain MG. Role of chemokines and chemokine receptors in the gastrointestinal tract. Immunology. 2002,105(2): 137-143.
    75 韩文玲,马大龙. 趋化因子及其受体. 免疫学新进展,2002,人民卫生出版社.
    76 Baggiolini M. Chemokines in pathology and medicine. Journal of Internal Medicine. 2001, 250(2): 91-104.
    77 Thelen M. Dancing to the tune of chemokines. Nature Immuno. 2001, 2(2): 116-122.
    78 Wang JM, Deng X, et al. Chemokines and their role in tumor growth and metastasis. J Immunol Methods. 1998, 220(1-2)1-17.
    79 Sehgal A, Keener C, et al. CXCR4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol. 1998, 69(2): 99-104.
    80 Miyamoto M, Shimizu Y, et al. Effect of interleukine-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells. Cancer Immunol Immunother. 1998, 47(1): 47-57.
    81 Clemons MJ, Marshall E, et al. A randomized Phase-Ⅱstudy of BB-10010 (macrophage inflammatory protein-1 alpha) in patients with advanced breast cancer receiving 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy. Blood. 1998, 92(5): 1532-1540.
    82 Lukacs NW, Oliveira SH, et al. Chemokines and asthma: redundancy of function of a coordinated effect? J Clin Invest. 1999, 104(8): 995-999.
    83 Gutierrez-Ramos JC, Lloyd C, et al. Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions. Immunology Today. 1999, 20(11): 500-504.
    84 Horuk R. Chemokine receptors and HIV-1: the fusion of two major research fieles. Immunology Today. 1999, 20(2): 89-94.
    85 Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000, 95: 3032-3043.
    86 Reape TJ, Groot PH. Chemokines and atheroxclerosis. Atherosclerosis. 1999, 147(2): 213-225.
    87 Gerszten RE, Mach F, Sauty A, et al. Chemokines, leukocytes, and atherosclerosis [J]. J Lab Clin Med. 2000, 136(2): 87-9.
    88 Kuziel WA, Morgan SJ, Dawson TC, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2 [J]. Proc Natl Acad Sci USA. 1997, 94 (22): 12053-12058.
    89 Kowala MC, Recce R, Beyer S,et al. Characterization of atherosclerosis in LDL receptor knockout mice: macrophage accumulation correlates with rapid and sustained expressing of aortic MCP-1/JE[J]. Atherosclerosis. 2000, 149(2): 323-330.
    90 Klouche M, Rose-John S, Schmiedt W, et al. Enzymatically degraded, nonoxidized LDL induces human vascular muscle cell activation, from cell transformation, and proliferation[J]. Circulation. 2000, 101(15): 1799-1805.
    91 Boisvert WA, Curtiss LK, Terkeltaub RA. Interleukin-8 and receptor CXC2 in atherosclerosis[J]. Immunol Res. 2000, 21(2-3): 129-137.
    92 Schecter AD, Calderon TM, Berman AB,et al. Human vascular smooth musclecells possess functional CCR5 [J]. J Biol Chem. 2000, 275(8): 5466-547.
    93 Haque NS, Zhang XX, French DL, et al. CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells [J]. Circulation. 2000,102(7):786-792.
    94 Reape TJ, Rayner K, Manning CD, et al. Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques[J]. Am J Pathol. 1999, 154(2): 365-37.
    95 Boisvert WA, Santiago R, Curtiss LK,et al. A leukocyte homologue of the IL-8 receptor CXCR2 mediates the accumulation of macrophages in atherosclerotic lesion of LDL receptor-deficient mice [J]. J Clin Invest. 1998, 101(2): 353-363.
    96 Discipio RG, Daffern PJ, Schraufstatter IU,et al. Human polymorphonuclear leukocytes adhere to complement factor H through an interaction that involves αMβ2 (CD11b/CD18)[J]. J Immunol,. 1998, 160(8): 4057-4066.
    97 Shang XZ, Lang BJ, Issekutz AC. Adhesion molecule mechanisms mediating monocyte migration through synovial fibroblast and endothelial barriers: role for CD11/CD18, very late antigen-4(CD49d/ CD29), and vascular cell adhesion molecule-1 (CD106)[J]. J Immunol. 1998, 160(1): 467-474.
    98 Patel SS, Thiagarajan R, Willerson JT,et al. Inhibition of alpha(4) integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice[J]. Circulation. 1998, 97(1): 75-81.
    99 Simonini A, Moscucci M, Muller DWM,et al. IL-8 is an angiogenic factor in human coronary atherectomy tissue[J]. Circulation. 2000, 101(13):1519-1526.
    100 Salcedo R, Wasserman K, Young HA,et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells:In vivoneovascularization induced by stromal-derived factor-alpha[J]. Am J Patho. 1999, 154(4): 1125-1135.
    101 Abi-Younes S, Sauty A, Mach F,et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerosis plaques[J]. Circ Res. 2000, 86(2): 131-138.
    102 Mach F, Sauty A, Iarossi AS,et al. Differential expression of three Tlymphocyte-activating CXC chemokines by human atheroma-associated cells[J]. J Clin Invest. 1999, 104 (8): 1041-1050.
    103 Horvath C et al. Targeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targeted. Circ Res. 2002, 90: 488–494.
    104 K Ohtani, et al. Antimonocyte chemoattractant protein-1 gene therapy reduces experimental in-stent restenosis in hypercholesterolemic rabbits and monkeys. Gene Therapy. 2004, 11: 1273–1282.
    105 韩文玲,李莹,张颖妹,马大龙等. 利用抑制性减数杂交技术(SSH)研究IL-10 抑制表达的新基因. 中华微生物学和免疫学杂志. 2000, 20(2): 128-131.
    106 Wenling Han, Yaxin Lou, et al. Molecular cloning and characterization of chemokine-like factor 1 (CKLF1), a novel human cytokine with unique structure and potential chemotactic activity. Biochem J. 2001, 357: 127-135.
    107 Han WL, Ding PG, Xu MX, et al. Identification of eight genes encoding chemokine-like factor super family members 1-8 ( CKLFSF1-8 )by in silico cloning and experimental validation. Genomics, 2003, 81 (6) : 609 - 617.
    108 Yaxia Tan, Dalong Ma, et al. Chemokine-like factor 1, a novel human cytokine, contributes to the airway remodeling in asthma. The Athema International Conference. 2001, Chicago, U.S.A.
    109 Yaxia Tan, Wenling Han, et al. Chemokine-like factor 1, a novel cytokine, contrivutes to airway damage, remodeling and pulmonary fibrosis. Chinese Medical Journal. 2004, 117(8): 1123-1129.
    110 韩文玲, 芮珉, 陈英玉等. 趋化素样因子 1(CKLF1)对骨髓细胞增殖活性的研究. 中国医学科学院学报. 2001, 23(2):119-122.
    111 Wenling Han, Donglan Xia, et al. Stimulating effect of chemokine like factors (CKLFs) on skeletal muscle cells. Cell Biology International. 2001, 25(10): 1053-1054.
    112 Donglian Xia, Yaxin Lou, et al. Overexpression of chemokine-like factor 2 promotes the proliferation and differentiation of C2C12 skeletal muscle cells.Biochemical and Biophysical Acta. 2002, 1591: 163-173.
    113 夏东岚, 陈英玉, 韩文玲等. 人趋化素样因子 2(CKLF2)对 BALB/C 3T3细胞的促增殖和抗调亡作用研究. 中华微生物学和免疫学杂志. 2003, 23(1): 5-8.
    114 王露, 张颖妹, 钟英成等. 人类新细胞因子(CKLF-1)在大肠杆菌种的表达与鉴定. 中华微生物学和免疫学杂志. 2003, 23(3): 199-202.
    115 石爽, 张颖妹, 邱晓彦等. 抗人趋化素样因子 1 羧基端多肽抗体的制备、鉴定及组织芯片分析. 中国医学科学院学报. 2004, 26(5): 496-499, I01.
    116 Yingyu Chen, Ting Zhang, et al. Preparation and characterization of monoclonal antibody against CKLF1 using DNA immunization with in vivo electroporation. Hybridoma. 2005, 24(6): 305-308.
    117 Broxmeyer HE, Sherry L, Lu S. Enhancing and suppressing effect of recombinant murine macrophage inflammatory protein on colony formation in vitro by bone marrow myeloid progenitor cells. Blood. 1990, 76: 1110-1116.
    118 Jang IK, Broxmeyer HE. A novel chemokine, macrophage inflammatory protein-relate protein-2, inhibits colony formation of bone marrow myeloid progenitors. J Immunol. 1995, 155: 2661.
    119 克晓燕, 贾丽萍, 洪景梅等. 新的人趋化素样因子对骨髓造血干/祖细胞的体外刺激作用. 中华血液学杂志. 2002, 23(6): 301-303.
    120 岳黎敏, 唐军民, 苏安英等. 新型 CKLF1 对家兔红系造血祖细胞增殖分化的影响. 解剖学报. 2004, 35(8): 382-385.
    121 谭亚夏, 钟南山. 趋化素样因子 1 在支气管肺损伤与重建中的作用. 中华结核和呼吸杂志. 2002, 25(7): 433.
    122 徐志伟, 邓鸿业, 马大龙. 人趋化素样因子-1的体内表达对BXSB狼疮鼠发病影响的研究. 中华风湿病学杂志. 2001, 5(3): 162-164.
    123 程爱新, 韩文玲, 马大龙等. 趋化素样因子 1(CKLF1)对关节软骨细胞增殖和代谢的影响. 北京大学学报(医学版). 2003, 35: 339-401.
    124 沈晨阳, 张小明, 何培英. 趋化素样因子 1 对大鼠血管平滑肌增殖活性的影响. 中华实验外科杂志. 2006, 23(4): 540-541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700