高强塑积热变形淬火碳分配钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发低成本、加工性能和服役性能优良的高强度汽车钢,是节能减排、又保持汽车安全性的有效途径。因此,为开发具有超高强度、兼具良好塑性且成本低廉的高性能汽车钢,本文提出两种新型的钢材热变形可控淬火一体化处理方法:分别是热成形-淬火碳分配(Hot Stamping-Quenching & Partitioning, HS-QP)工艺和形变诱导铁素体相变-淬火碳分配(Deformation Induced Ferrite Transformation-Quenching & Partitioning,DIFT-QP)工艺。通过该工艺获得了高强度且具良好塑性的复相钢,其性能满足第三代汽车钢高性能的要求。并利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热膨胀仪和力学性能测试等多种方法研究了HS-QP和DIFT-QP先进超高强塑积钢的微观组织与力学性能。本文的主要研究内容及取得的结果如下:
     首先,结合现有的研究结果,提出变形、相变和碳分配同时实现的高强度钢设计思想,即利用奥氏体区变形来细化组织,利用Q&P工艺实现对硬相马氏体和软相残余奥氏体的调控。同时,提出了一种新型的钢材热变形可控淬火一体化处理方法:热成形-淬火碳分配(HS-QP)工艺。HS-QP工艺包括:首先将钢迅速加热到奥氏体化温度等温一段时间进行热变形,使奥氏体晶粒细化。然后快速淬火到Ms和Mf之间某一淬火温度,以获得部分的过饱和马氏体和未发生马氏体相变的奥氏体。之后在特定淬火温度等温一段时间,使碳由马氏体向残余奥氏体分配,此时马氏体中的碳含量下降,奥氏体中的碳含量升高,从而使残余奥氏体富碳且能够稳定至室温。最后淬火到室温以获得细化的马氏体和残余奥氏体复相组织。通过合理的工艺参数设计,低碳硼钢(0.22C-1.58Mn-0.81Si-0.022Ti-0.0024B)经过HS-QP处理后,其延伸率达到14%以上,抗拉强度达1500MPa以上,达到了预期目标。与仅用热成形工艺处理的性能相比,其强塑积可以从11000MPa%提高到22000MPa%。其微观组织主要是细化了的马氏体和残余奥氏体所组成的纳米级双相复合组织。残余奥氏体厚度在20~40nm之间,马氏体板条厚度在100~200nm之间。
     其次,把形变诱导铁素体相变(DIFT)的细化晶粒技术引入Q&P处理工艺当中,提出了一种新型的热处理方法:形变诱导铁素体相变-淬火碳分配(DIFT-QP)工艺,利用形变诱导铁素体相变技术来细化晶粒并获得铁素体,利用Q&P工艺使钢发生相变且进行碳分配来实现对硬相马氏体和软相残余奥氏体的调控。DIFT-QP处理工艺包括:首先将钢迅速加热到奥氏体化温度等温一段时间;然后快速冷却到临界温度附近,在此温度附近进行形变诱导相变,使得晶粒细化且生成形变诱导铁素体;之后再淬火到一个特定淬火温度(Ms~Mf ),以获得马氏体和残余奥氏体组织;然后在此温度保温一段时间实现碳分配,使碳原子从过饱和马氏体到未转变奥氏体充分扩散以稳定奥氏体,高密度位错为碳原子提供有利的扩散通道。最后再淬火到室温,获得细板条位错型马氏体+细薄残余奥氏体+形变诱导铁素体的复相组织。低碳硼钢(0.22C-1.58Mn-0.81Si-0.022Ti-0.0024B)经过合适的DIFT-QP处理,其抗拉强度达1700MPa,屈服强度超过900MPa,延伸率在15%以上,达到了预期目标,其微观组织为细板条位错型马氏体+细薄残余奥氏体+形变诱导铁素体的复相组织。并初步讨论了DIFT-QP处理过程中细化复相组织的演化规律,对DIFT-QP工艺处理过程中的马氏体形成机制进行了分析。
     最后,提出了HS-QP工艺获得的细化复相组织演化模型,其演变过程为:应变初期,位错晶体学滑移而形成多种组态的小角位错界面,即亚晶界,包括变形带和位错墙等,大角度晶界的迁移性较高,原始晶界在应力作用下发生弯曲,奥氏体会形成不稳定的伸长的组织单元和亚晶。随着应变的增加,位错界面取向差增大并转变为随机取向界面,当累积应变达到一定程度后,这些亚晶会发生断裂,最终导致细晶粒的形成。形变奥氏体中的位错为随后Q&P处理时形成的马氏体所继承,马氏体转变的形核和长大会受到形变所产生的亚晶界的影响而细化,细化的马氏体组织对于细化晶粒起着重要的作用,它会在相变过程中进一步分割细小晶粒。并对变形+相变+碳分配获得细化复相组织的晶粒细化机制和塑性增强机制进行了分析。由于细化的复相组织能够使高强度钢具有较好强度和塑性,加之获得这种复合组织的工艺简单,且热变形可控淬火一体化处理工艺可以降低成本节约资源。因此,新型一体化处理工艺具有工业应用的广泛前景。
It is an effective way for energy saving, environmental protection and automobile safety to explore high strength steels, which have low cost, better processing property and service performance. Therefore, in order to develop advanced high strength steels which possess ultra-high strength with corresponding plasticity, low cost and good quality steel, we put forward two advanced heat treatment methods: Hot Stamping-Quenching & Partitioning (HS-QP) and Deformation Induced Ferrite Transformation-Quenching & Partitioning (DIFT-QP). The new types of high strength multiphase steels with corresponding plasticity were obtained through hot deformation plus Q&P process. The performances of steels meet the requirements of excellent properties of the third generation high strength automobile steel. The new designed steels were characterized and measured by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal expansion device (TED) and Zwick T1-FR020TN A50 universal testing machine. The main contents and important results are showed as follows.
     Firstly, according to the results of the present study, we recommend the integration of hot deformation, phase transformation and carbon partitioning can be conducted to obtain refined multiphase microstructure. Grain refinement can be realized through hot deformation at austenitizing temperature. Quenching and partitioning process is used to obtain hard phase martensite and soft phase retained austenite. Also,we put forward a technologically advanced heat treatment method of combination of hot stamping and controlled quenching: Hot Stamping-Quenching & Partitioning (HS-QP). HS-QP process includes: The first step is an austenitizing at a temperature and austenite is deformed at higher temperature so as to refine the grain size. The second step is a rapid quenching to a specific quenching temperature between martensite start temperature (Ms) and martensite finish temperature (Mf) to fabricate partially transformed supersaturated martensite and untransformed austenite. The third step is a carbon partitioning treatment from supersaturated martensite to untransformed austenite to increase the carbon content of untransformed austenite in absence of carbide formation. Finally, a refined multiphase microstructure of carbon-depleted martensite and carbon-enriched retained austenite films is fabricated at room temperature. Through proper optimize manufacturing process parameters, the new type of high strength steel (0.22C-1.58Mn-0.81Si-0.022Ti-0.0024B) with tensile strength higher than 1500 MPa, elongation higher than 14% was obtained during the HS-QP process, and the anticipant results were achieved. Compared with the sample treated only by hot stamping, the product of strength and elongation of the sample treated by HS-QP process can increase from 11000MPa% to 22000MPa%。The results showed that a mixed microstructure of HS-QP steel was made up of refined martensite lathes (about 100~200nm) and slender interlath retained austenite (about 20~40nm).
     Secondly, grain refining technique of Deformation Induced Ferrite Transformation (DIFT) is introduced to Q&P process. We proposed another novel heat treatment processes: Deformation Induced Ferrite Transformation-Quenching & Partitioning (DIFT-QP). Grain refinement and generation of ferrite can be realized through DIFT. Quenching and partitioning process is used to obtain hard phase martensite and soft phase retained austenite. DIFT-QP process includes: The first step is an austenitizing at a temperature with a period of time; The second step is a rapid quenching to a specific quenching temperature near the intercritical temperature and microstructure is deformed at this temperature so as to refine the grain size and produce ferrite. The third step is a rapid quenching to a specific quenching temperature between martensite start temperature (Ms) and martensite finish temperature (Mf) to fabricate partially transformed supersaturated martensite and untransformed austenite. The fourth step is a carbon partitioning treatment from supersaturated martensite to untransformed austenite to increase the carbon content of untransformed austenite in absence of carbide formation. High dislocation density can provide diffusing channel for carbon, which is very important to improve the stability of retained austenite. Finally, a refined multiphase microstructure of carbon-depleted martensite, carbon-enriched retained austenite films and deformation induced ferrite is fabricated at room temperature. Through proper optimize manufacturing process parameters, the new type of high strength steel (0.22C-1.58Mn-0.81Si-0.022Ti-0.0024B) with tensile strength higher than 1700 MPa, with the yield strength above 900 MPa and elongation more than 15% was obtained during the DIFT-QP process, and the anticipant results were achieved. The refined multiphase microstructure is made up of carbon-depleted martensite, carbon-enriched retained austenite films and deformation induced ferrite. The evolution of refined multiphase microstructure of DIFT-QP process was revealed and the mechanism of martensite formation during DIFT-QP process was analyzed.
     Lastly, the evolution model of refined multiphase microstructure treated by HS-QP process has been proposed: in the initial deformation stage, dislocation crystallographic slips result in the formation of multiple configuration of small angle dislocation interface, namely the sub-grain boundary, deformation zone and dislocation wall, etc. Big-angle grain boundary is easy to move in the initial deformation stage and the original grain boundary becomes curved under the condition of stress. Austenite may become unstable and elongated microstructure unit and sub-grain. With the increase of rolling reduction dislocation interface orientation convert to random orientation interface. The cumulative strain to a certain extent, these sub-grains may fracture and lead to formation of refined grain. Dislocation in austenite treated by hot deformation was inherited for the martensite during Q&P process. Nucleation and growth of martensite transformation were affected by sub-grain boundary generated by deformation. The role of refined martensite is very important to refine grain size and grain can be further segmented to small grain. Moreover, the mechanisms of microstructure refinement and elongation enhancement of the refined multiphase microstructure obtained by hot deformation, phase transformation and carbon partitioning have been analyzed. The refined multiphase microstructure can make high strength steel perform good strength and toughness and the combined heat treatment process is simple. Also, the combination of hot deformation and Q&P process can reduce cost and save resources. Therefore, the new combined heat treatment process will have wide prospect of industrial applications.
引文
[1] Chabanier J, Energy and global warming-challenges for the steel industry: Arcelor case, Rev Métall-Cah Inf Tech., 2005, 102(1), 8-11.
    [2] Eketorp S, Proposal for a future steel plant and research programme, Trans. Iron Steel Inst. Jpn., 1976, 16(1), 1-10.
    [3] Wright JK, Taylor IF, Philp DK, A review of progress of the development of new ironmaking technologies, Miner. Eng., 1991, 4(7-11), 983-1001.
    [4] McWilliams A, Lightweight Materials in Transportation, May, 2007.
    [5] Choia K, Seo CH, Lee H, Kimc SK, Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel, Scripta Mater., 2010, 63(10), 1028-1031.
    [6] Tsuji N, Maki T, Enhanced structural refinement by combining phase transformation and plastic deformation in steels, Scripta Mater., 2009, 60(12), 1044-1049.
    [7] Bhadeshia HKDH, Phase transformations contributing to the properties of modern steels, Bulletin of the Polish Academy of Sciences, Tech. Sci., 2010, 58(2), 255-265.
    [8] Wehg YQ, Kang YL, Steel rolling technology progress in China in the past ten years, China Metall., 2010, 20(10), 11-23.
    [9] Fine C, Roth R, Lightweight materials for transport: developing a vehicle technology roadmap for the use of lightweight materials, MIT Roundtable: The future of manufacturing innovation-advanced technologies, March 29, 2010.
    [10] Weng YQ, Progress of theory and controlled technology of ultrafine grained steel, Kang T'ieh/Iron and Steel (Peking) , 2005, 40(3), 1-8.
    [11] Peter J, Peaslee KD, Robertson DGC, Review of progress in developing continuous steelmaking, Iron and Steel Technol., 2005, 2(2), 53-60.
    [12] Tang LX, Liu JY, Rong AY, Yang ZH, A review of planning and scheduling systems and methods for integrated steel production, European J. Operational Res., 2001, 133(1), 1-20.
    [13] Huang TD, Conrardy C, Dong P, et al., Engineering and production technology for lightweight ship structures, Part II: Distortion mitigation technique and implementation, Journal of Ship Production, 2007, 23(2), 82-93.
    [14] Yu Q, Review and prospect of weathering steel, Journal of Iron and Steel Research, 2007, 19.
    [15] Xiao GZ, Zhu FX, Di HS, Development and application progress of high strength steel plate for large oil storage tank, Dongbei Daxue Xuebao/Journal of Northeastern University 2007, 28(2), 154-157.
    [16] Senuma T, Physical metallurgy of modern high strength steel sheets, ISIJ Int., 2001, 41(6), 520-532.
    [17] Heimbuch R, An overview of the auto/steel partnership and research needs, Advanced high-strength steels: fundamental research issues workshop, Arlington, Virginia, 2006.
    [18] Yan B, Progresses and challenges in forming of AHSS, Workshop on Forming of AHSS, Ohio State University, April 29, 2009.
    [19] Matlock DK, Krauss G, Speer JG, New microalloyed steel applications for the automotive sector, Mater. Sci. Forum, 2005, (500-501), 87-96
    [20] Matlock DK, Speer JG, Third generation of AHSS: Microstructure design concepts, Microstructure and Texture in Steels, 2009, 185-205.
    [21] Matlock DK, Microstructural aspects of advanced high strength sheet steels, Advancd High Strength Steel Workshop, 60-72, October, 2006.
    [22] Moor ED, Speer JG, Matlock DK, Kwak JH, Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels, ISIJ Int., 2011, 51(1), 137-144.
    [23] Matlock DK, Br?utigam VE, Speer JG, Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Mater. Sci. Forum, 2003, 426-432(2), 1089-1094.
    [24] Speer JG, Matlock DK, De Cooman BC, et al., Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51(9), 2611-2622.
    [25] Speer JG, Streicher AM, Matlock DK, et al., Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. In: Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of Austenite Formation andDecomposition. 2003, 505-522.
    [26] Hsu TY. Design of structure, composition and heat treatment process for high strength steel, Mater. Sci. Forum, 2007, 561-565(3), 2283-2286.
    [27] Altan T, Hot stamping boron-alloyed steels for automotive parts, Stamping J. An AFM Publication, 2007, 14–15.
    [28] Engels H, Schalmin O, Müller-Bollenhagen C, Controlling and monitoring of the hot stamping process of boron alloyed heat treated steels, Proc. New development in steel metal forming technology, Stuttgart, Germany, 2006, 135-150.
    [29] Kolleck R, Steinhoefer D, Feindt JA, Bruneau P, Manufacturing methods for safety and structural body parts for lightweight body design, IDDRG, Conf. Proc., 2004, 167-173.
    [30] Mori K, Maki S, Tanaka Y, Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating, Annals of the CIRP, 2005, 54(1), 209-212.
    [31] Naganathan A, Hot Stamping of manganese boron steel (technology review and preliminary finite element simulations), THESIS, Presented in partial fulfillment of the requirements for the degree master of science in the graduate school of the Ohio State university, 2010.
    [32] Naderia M, Ketabchia M, Abbasia M, Bleckb W, Analysis of microstructure and mechanical properties of different high strength carbon steels after hot stamping, J. Mater. Process. Technol., 2011, in press.
    [33] Karbasian H, Tekkaya AE, A review on hot stamping, J. Mater. Process. Technol., 2010, 210(15), 2103-2118.
    [34] Tackle G., Forch K, Sartorious A, Heat treatable and surface hardening steels for vehicle and machine construction, Steel, 1993, 2, 118-176.
    [35] Thelning KE, Steel and its heat treatment, Butterworths, 1984, 409-419.
    [36] Leslie WC, The physical metallurgy of steels, McGraw-Hill international book Company, USA, 1981, 269 -281.
    [37] Kapadia BM, Hardenability concepts with application to steel, A.I.M.E., Warrendale, USA, 1978, 448.
    [38] Morral JE, Cameron JB, Boron hardenability mechanisms, the Metallurgical Society of the A.I.M.E., 1980.
    [39] Mejia I, Bedolla-Jacuinde A, Maldonado C, Cabrera JM, Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron, Mater. Sci. Eng., A, 2011, 528(13-14), 4468-4474.
    [40] Hwanga B, Suhb DW, Kima SJ, Austenitizing temperature and hardenability of low-carbon boron steels, Scripta Mater., 2011.in Press,
    [41] Naderi M, Hot stamping of ultra high strength steels. Doctoral Theses, RWTH Aachen. 2007.
    [42] Gerdemann FLH, Microstructure and hardness of 9260 steel heat-treated by the quenching and partitioning process, Diploma Thesis, Aachen University of Technology, Germany, 2004.
    [43] Moor ED, Matlock DK, Speer JG, Merwin MJ, Austenite stabilization through manganese enrichment, Scripta Mater., 2011, 64 (2), 185–188
    [44] De Moor E, F?jer, C, Penning J, Clarke AJ, Speer JG, Erratum: Publisher's Note: Calorimetricstudy of carbon partitioning from martensite into austenite, Phys. Rev. B - Condensed Matter and Materials Physics, 2010, 82(18), 189901
    [45] Rizzo FC, Edmonds DV, He K, et al., Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials 2005.
    [46] Speer JG, Edmonds DV, Rizzo FC, et al., Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State Mater. Sci., 2004, 8(3-4), 219-237.
    [47] Speer JG, Hackenberg RE, Decooman BC, Matlock DK, Influence of interface migration during annealing of martensite/austenite mixtures, Philos. Mag. Lett.. 2007, 87 (6), 379-382.
    [48] De Moor E, Gibbs PJ, Speer JG, Matlock DK, Schroth JG, Strategies for third-generation advanced high-strength steel development, Iron and Steel Technol., 2010, 7(11), 133-144.
    [49] Thomas G.A, Speer JG., Matlock DK, Quenched and partitioned microstructures produced via gleeble simulations of hot-strip mill cooling practices, Metall. Mater. Trans. A, 2011, 1-8.
    [50] Moor ED, Matlock DK., Speer JG. Merwin MJ, Austenite stabilization through manganese enrichment, Scripta Mater., 2011, 64(2), 185-188
    [51] Edmonds DV, He K, Rizzo FC, et al., Microstructural features of a new martensitic steel heat treatment: quenching and partitioning. In: 1st Int. Conf. on Super High Strength Steels, Rome, 2005, 1-20.
    [52] Edmonds DV, He K, Rizzo FC, et al., Quenching and partitioning martensite-A novel steel heat treatment. Mater. Sci. Eng., A, 2006, 438-440(PICMT), 25-34.
    [53] Santofimia MJ, Zhao L, Sietsma J, Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metall. Mater. Trans. A, 2009, 40(1), 46-57.
    [54] Zhong N, Wang XD, Wang L, et al., Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process, Mater. Sci. Eng., A, 2009, 506(1-2), 111-116.
    [55] Wang XD, Zhong N, Rong YH, et al., Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process, J. Mater. Res., 2009, 24(1), 261-267.
    [56] Ehrhardt B, Gerber T, Schaumann TW, Approaches to microstructural design of TRIP and TRIP aided cold rolled high strength steels, In: Proc. of Inter. Conf. on advanced high strength sheet steels for automotive applications, Colorado, USA, 2004, 46-55.
    [57] Kim D, Speer JG, De Cooman BC, Isothermal transformation of a CMnSi steel below the MS temperature, Metall. Mater. Trans. A, 2011, 1-11.
    [58] Covarrubias O, Guerrero MP, Colas R, Petrov R, Transformation behaviour of Si and Mn bearing low carbon steels, Proceedings of the international conference on TRIP-aided high strength ferrous alloys, GRIPS, Aachen: Mainz 2002, 227-230.
    [59] Kim SJ, Lee CG, Effects of heat treatment and alloying elements on the microstructures and mechanical properties of 0.15%C transformation-induced plasticity-aided cold-rolled steel sheets, Metall. Mater. Trans. A, 2001, 32, 505-514.
    [60] Mahieu J, Dooren DV, Barbé, L, et al., Influence of Al, Si and P on the kinetics of interitical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification, Steel Res., 2002, 73, 267-273.
    [61] Zhang Z, Liu Y, Liang X, She Y, The effect of Nb on recrystallization behavior of a Nb micro-alloyed steel, Mater. Sci. Eng., A, 2008, 474 (1-2), 254-260.
    [62] Pereloma EV, Timokhina IB, Hodgson PD, Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb, Mater. Sci. Eng., A, 1999, 273-275 (15), 448-452.
    [63] Holloman JH, J. Appl. Phys., 1947, 18, 1421-1425.
    [64] Cohen, M, Transaction of American Society for Metals, 1949, 41, 35-42.
    [65] Zwaag, SVD, Zhao L, Kruijver SO, et al., Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steel, ISIJ Int., 2002, 42, 1565-1570.
    [66] Bai DQ, Chiro AD, Yue S, Stability of retained austenite in a Nb microalloyed Mn-Si TRIP steel, Mater. Sci. Forum, 1998, (284-286), 253-262.
    [67] Pereloma EV, Timokhina IB, Hodgson PD, Transformation behaviour in thermomechanically processed C-Mn-Si TRIP steels with and without Nb, Mater. Sci. Eng., A, 1999, (273-275), 448-452.
    [68] Sugimoto K, Usui N, Kobayashi M, Effects of volume fraction and stability of retained austenite on ductility of TRIP-Aided dual-Phase Steels, ISIJ Int., 1992, (32), 1311-1318.
    [69] Sugimoto K, Iida T, Sakaguchi J, Retained austenite characteristics and tensile properties in a TRIP type bainitic sheet steel, ISIJ Int., 2000, (40), 902-908.
    [70] Streicher AM, Speer JG, Matlock DK, et al., Quenching and partitioning response of a Si-added TRIP sheet steel, In: J.G. Speer, Editor, Proceedings of the international conference on advanced high strength sheet steels for automotive applications, AIST, Warrendale, PA, 2004, 51-62.
    [71] Edmonds D, Matlock D, Speer J, The recent development of steels with carbide-free acicular microstructures containing retained austenite, La Metallurgia Italiana, 2011, 41-49.
    [72] Thomas GA, Speer JG, Matlock DK, Michael J, Application of electron backscatter diffraction techniques to quenched and partitioned steels, Microsc. Microanal., 2011, 31, 1-6.
    [73] Hong SC, Ahn JC, Nam SY, et al., Mechanical properties of high-Si plate steel produced by the quenching and partitioning process, Met. Mater. Int. 2007, 13(6), 439-445.
    [74] De Cooman BC, Speer JG, Quench and partitioning steel: a new AHSS concept for automotive anti-intrusion applications, Steel Res. Int. 2006, 77(9-10): 634-640.
    [75] De Cooman BC, Speer JG, Microstructure-properties relationships in quench and partition (Q&P) steel, implications for automotive anti-instrusion applications. In: Proc. 3rd Int. Conf. on Advanced Structural Steels. Inst. Metals and Materials, Gyeongju, Korea, 2006, 798-805.
    [76] Speer JG, Rizzo Assun??o FC, Matlock DK, et al., The "quenching and partitioning" process: background and recent progress, Mat. Res., 2005, 8(4), 417-423.
    [77] Edmonds DV, He K, Miller MK, et al., Microstructural features of quenching and partitioning : A new martensitic steel heat treatment. Mater. Sci. Forum, 2007, 539-543(part 5), 4819-4825.
    [78] Rizzo F, Martins AR, Speer JG, et al., Quenching and partitioning of Ni-added high strength steels, Mater. Sci. Forum, 2007, 539-543(part 5): 4476-4481.
    [79] De Moor E, Lacroix S, Clarke AJ, et al., Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels, Metall. Mater. Trans. A, 2008, 39(11), 2586-2595.
    [80] Thomas, GA, Speer JG, Matlock DK, Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production, Iron Steel Tech., 2008, 5(10), 209-217.
    [81] Wang XD, Zhong N, Rong YH, et al., Novel ultrahigh-strength nanolath martensitic steel by quenching- partitioning-tempering process, J. Mater. Res., 2009, 24(1), 261-267.
    [82] Matsumura Y, Yada H, Evolution of ultrafine-grained ferrite in hot successive deformation, Trans. ISIJ, 1987, 27, 492-498.
    [83] Hodgson PD, Hickson MR, Gibbs RK, Scripta Mater., 1999, 40, 1179.
    [84] Weng YQ, Physical metallurgy for ultra-fine grain steels, Proceedings on HIPERS-21, POSCO, Korea, 2000, 9.
    [85] Hong SC, Lee KS, In?uence of deformation induced ferrite transformation on grain refinement of dual phase steel, Mater. Sci. Eng., A, 2002, 323(1-2), 148-159.
    [86] Dong H, Sun XJ, Deformation induced ferrite transformation in low carbon steels, Curr. Opin. Solid State Mater. Sci., 2005, 9, 269-276.
    [87] Mukherjee K, Hazra SS, Militzer M, Grain refinement in dual-phase steels, Metall. Mater. Trans. A, 2009, 40(9), 2145-2159.
    [88] William D. Callister, Jr., Materials science and engineering, John Wiley & Sons. Inc., New York, USA. 2007.
    [89] Martin JW, Precipitation hardening, second edition: theory and applications, Butterworth-Heinemann, 1998.
    [90] Ivanova VS, Role of dislocations in the strengthening and failure of metals, Nat. Lending Lib., 1967.
    [91] Totten GE, Steel heat treatment: metallurgy and technologies, second edition, CRC, 2006.
    [92] Weng YQ, Ultra fine grained steels, first edition, 2009, 86-136.
    [93] Herrera C, Ponge D, Raabe D, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater., 2011, 59(11), 4653-4664.
    [94] Bhadeshia HKDH, TRIP-Assisted Steels? ISIJ Int., 2002, 42, 1059-1060.
    [95] Sakuma Y, Matsumura O, Takechi H, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions, Metall. Mater. Trans. A, 1991, 22 (2), 489-498.
    [96] Grassel O, Frommeyer G, Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels, Mate. Sci. Technol., 1998, 14(12), 1213-1217.
    [97] Kovalev A, Jahn A, Wei A, Scheller PR, Characterization of the TRIP/TWIP effect in austenitic stainless steels using Stress-Temperature-Transformation (STT) and Deformation-Temperature- Transformation (DTT) Diagrams, Steel Res. Int., 2011, 82(1), 45-50.
    [98] Owen WS, The effect of silicon on the kinetics of tempering, Trans.ASM,1954, 46, 812-829.
    [99] Leslie WC, Rauch GC, Precipitation of carbides in low-carbon Fe-Al-C alloys, Metall. Trans. A, 1978, 9A, 343-349.
    [100] Kiese J, New Lightweight steels for automobil&applications-potential and risk, Hashimoto S, Jansto S, Mohrbacher H, et al eds. Proceedings of international conference on niobium microalloyed sheet steel for automotive applications, Araxa MG,Brazil, 2005, 203-212.
    [101] Frommeyer G, Brüx U, Shear band induced plasticity and high-strength of Fe-Mn-Al-C triplex steels, Plasticity, Alaska, 2007.
    [102]徐祖耀,钢热处理的新工艺,热处理, 2007, 22(1), 1-11.
    [103]徐祖耀,钢的组织控制与设计(一),上海金属, 2007, 29(1), 1-8.
    [104]徐祖耀,钢的组织控制与设计(二),上海金属, 2007, 29(2) , 1-8.
    [105]徐祖耀,我国应尽早发展高强度钢,中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告,北京,化学工业出版社, 2007, 403-406.
    [106]徐祖耀,用于超高强度钢的淬火-碳分配-回火(沉淀) (QPT)工艺,热处理, 2008, 2(2), 1-5.
    [107]徐祖耀,自主创新发展超高强度钢,上海金属, 2009, 31(2) , 1-6.
    [108]徐祖耀,淬火-碳分配-回火(Q-P-T)工艺浅介,2009, 34(6), 1-8.
    [109]徐祖耀,将淬火-碳分配-回火(Q-P-T)及塑性成形一体化技术用于TRIP钢的创议,热处理, 2010, 25(4), 1-5.
    [110] Chandhok VK, Hirsh JP, Dulis EJ, Effect of cobalt on carbon activity and diffusivity in steels, Trans. AIME., 1962, 224, 858.
    [111] Speich GR, Dabkowski DS, Porter LF, Strength and toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co. Metall. Trans., 1973, 4,303.
    [112] Schmidt M, Hemphill R, Innovations in ultrahigh strength steel technology, Proc. 34th sagamore army materials research conf., G. B. Olson, M. Azrin and E. S. Wright eds., U. S. Army Materials Technology Laboratory, Watertown, MA, 1990, 239-260.
    [113] Sakuma Y, Matsumura O, Takechi H, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn, Metall. Mater. Trans. A, 1991, 22, 489.
    [114] Zackay VF, Parker ER, Fahr D, et al., The enhancement of ductility in high-strength steels, Trans. ASM., 1967, 60, 252.
    [115] Gr?ssel O, Frommeyer G, Derder C, et al., Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels, J. Phys. IV. France, 1997, 7, 383-392.
    [116] Frommeyer G, Brux U, Neumann P, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 2003, 43(3), 438-446.
    [117] Wang C, Shi J, Wang CY, Hui WJ, et al., Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing. ISIJ Int. 2011, 51(4), 651-656.
    [118] Dong H., Sun XJ., Cao WQ., Liu ZD., et al., On the performance improvement of steels through M 3 structure control, Advanced Steels, 2011, 35-57.
    [1] Vandeputte S, Vanderschhuern D, Claessens S, Martinez LT, Modern steel grades covering all needs of the automotive industry, 9th international conference on steel sheet metal, Leuven, 2001, 405-414.
    [2] Philip TV, Ultra high strength steels, Metals Handbook, 10th edition, 1991, Vol.1, 428-430.
    [3]徐祖耀,钢热处理的新工艺,热处理, 2007, 22(1), 1-11.
    [4]徐祖耀,用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺,热处理, 2008, 2(2), 1-5.
    [5] Kapadia B, Prediction of the boron hardenability effect in steel, A comprehensive review, Hardenability concepts with applications to steel, Con. Proc. Chicago, 24-26 Oct. 1977, 448-482.
    [6] Maitrepierre Ph, Thivellier D, Vernis JR, Microstructure and hardenability of low-alloy boron containing steels, Hardenability concepts with applications to steel, Con. Proc. Chicago, 24-26 Oct. 1977, 421-447.
    [7] Grange RA, Mitchell JB, Trans. ASM, 1961, 53, 157.
    [8]张世中,钢的过冷奥氏体转变曲线图集,北京,冶金工业出版社, 1993, 1-10.
    [9] Liu YC, Sommer F, Mittemeijer EJ, Abnormal austenite ferrite transformation behavior in substitute Fe-base alloys, Acta Mater., 2003, 51(2), 507-519.
    [10]戎咏华,分析电子显微学导论,北京,高等教育出版社, 2006, 65-67.
    [11]梁新邦,李久林,陶立英, GB/T 228-2002,金属材料室温拉伸试验方法,北京,中国标准出版社, 2002.
    [1] Vaissiere L, Laurent JP, Reihardt A, Development of pre-coated boron steel for applications on PSA Peugeot citro?n and RENAULT bodies in white, International body engineering conference & exhibition, July 2002, Paris, France, 909.
    [2] Garcia Aranda L, Ravier P, Chstel Y, Hot stamping of quenchable steels: material data and process simulations, IDDRG, Conf. Proc., 2003, 155-164.
    [3] Kolleck R, Steinhoefer D, Feindt JA, Bruneau P, Manufacturing methods for safety and structural body parts for lightweight body design, IDDRG, Conf. Proc., 2004, 167-173.
    [4] Merklein M, Lechler J, Geiger M, Characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5, CIRP Annals-Manuf. Technol., 2006, 55(1), 229-232.
    [5] Liu HS, Xing ZW, Bao J, Song BY, Investigation of the hot-stamping process for advanced high-strength steel sheet by numerical simulation, J. Mater. Eng. Perform., 2010, 19(3), 325-334.
    [6] Geiger M, Merklein M, Hoff C, Basic investigation on the hot stamping steel 22MnB5, Proceedings of the Sheet Metal 2005 Conf., 2005, 795-802.
    [7] Kolleck R, Veita R, Merklein M, Lechler J, Geiger M, Investigation on induction heating for hot stamping of boron alloyed steels, CIRP Annals-Manuf. Technol., 2009, 58(1), 275-278.
    [8] Mori K, Maki S, Tanaka Y, Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating, CIRP Annals-Manuf. Technol., 2005, 54(1), 209-212.
    [9] Hoffmann H, So H, Steinbeiss H, Design of hot stamping tools with cooling system, CIRP Annals-Manuf. Technol., 2007, 56(1), 269-272.
    [10] Bardelcik A, Salisbury CP, Winkler S, Wells MA, Worswick MJ, Effect of cooling rate on the high strain rate properties of boron steel, Int. J. Impact Eng., 2010, 37(6), 694-702.
    [11] Aranda LG, Ravier P, Chastel Y, Hot stamping of quenchable steels: material data and process simulations, IDDRG, Conf. Proc., 2003 Conference, 164-166.
    [12] Mori K, Saito S, Maki S, Warm and hot punching of ultra high strength steel sheet, CIRP Annals- Manuf. Technol., 2008, 57(1), 321-324.
    [13] Young CH, Bhadeshia HKDH, Strength of mixtures of bainite and martensite, Mater. Sci. Technol., 1994, 10(3), 209-214.
    [14] Speer JG, Matlock DK, De Cooman BC, et al., Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51(9), 2611-2622.
    [15] Matlock DK, Brautigam VE, Speer JG, Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Mater. Sci. Forum, 2003, 426-432(2), 1089-1094.
    [16] Speer JG, Matlock DK, Recent developments in low-carbon sheet steels, JOM, 2002, 54(7), 19-24.
    [17] Rizzo FC, Martins AR, Speer JG, et al., Quenching and partitioning of Ni-added high strength steels, Mater. Sci. Forum, 2007, 539-543, 4476-4481.
    [18] Clarke A, Speer JG, Matlock DK, Microstructure and carbon partitioning in a 0.19%C-1.59%Mn-1.63%Si trip sheet steel subjected to quenching and partitioning (Q&P), Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials, 2005, 99-108.
    [19] Edmonds DV, He K, Miller MK, et al., Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment, Mater. Sci. Forum, 2007, 4819-4825.
    [20] De Cooman BC, Speer JG, Microstructure-properties relationships in quench and partition (Q&P) steel, implications for automotive anti-instrusion applications, Proc. 3rd Inter. Conf. on Advanced Structural Steels, 2006, Inst. Metals and Materials, Gyeongju, Korea,798-805.
    [21] De Cooman BC, Speer JG, Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications, Steel Res. Int., 2006, 77(9-10), 634-640.
    [22] Thomas GA, Speer JG., Matlock DK, Quenched and partitioned microstructures produced via gleeble simulations of hot-strip mill cooling practices, Metall. Mater. Trans. A, 2011, 1-8.
    [23] Streicher AM, Speer JG, Matlock DK, et al., Quenching and partitioning response of a Si-added TRIP sheet steel, International Conference on Advanced High Strength Sheet Steels for Automotive Applications-Proceedings, Winter Park, CO, 2004; Baker, M. A., Ed. Winter Park, CO, 2004, 51-62.
    [24] Speer JG, Streicher AM, Matlock DK, et al., Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures, Materials Science and Technology 2003 Meeting, Chicago, IL, 2003; Damm, E. B.; Merwin, M. J., Eds. Chicago, IL, 2003, 505-522.
    [25] Speer JG, Rizzo Assuncao FC, Matlock DK, et al., The "quenching and partitioning" process: Background and recent progress, Mater. Res., 2005, 8(4), 417-423.
    [26] Hong SC, Ahn JC, Nam SY, et al., Mechanical properties of high-Si plate steel produced by the quenching and partitioning process, Met. Mater. Int, 2007, 13(6), 439-445.
    [27] De Moor E, Lacroix S, Clarke AJ, Penning J, et al., Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels, Metall. Mater. Trans. A, 2008, 39(11), 2586-2595.
    [28] Thomas GA, Speer JG, Matlock DK, Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production, Iron and Steel Technol., 2008, 5(10), 209-217.
    [29] Bhattacharya D, An overview of advanced high strength steels (AHSS), Advanced High Strength Steel Workshop, Arlington, Virginia, USA, October 22-23, 2006.
    [30] Das D, Chattopadhyay PP, Influence of martensite morphology on the work-hardening behavior of high strength ferrite martensite dual-phase steel, J. Mater. Sci., 2009, 44(11), 2957-2965.
    [31] Chakraborti PC, Mitra MK, Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels, Mater. Sci. Eng., A, 2007, 466(1-2), 123-133.
    [32] Saeidi N, Ekrami A, Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels, Mater. Sci. Eng., A, 2009, 523(1-2), 125-129.
    [33] Bhadeshia HKDH, Properties of fine-grained steels generated by displacive transformation, Mater. Sci. Eng., A, 2008, 481-482, 36-39.
    [34] Jimenez JA, Carsi M, Ruano OA, Frommeyer G, Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel, Mater. Sci. Eng., A, 2009, 508(1-2), 195-199.
    [35] Rodríguez-Martíneza JA, Pescib R, Rusinekc A, Ariasa A, Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures, Inte. J. Solids Struct., 2010, 47(9), 1268-1284.
    [36] Ryua JH, Kimb DI, Kimc HS, Bhadeshia HKDH, Strain partitioning and mechanical stability of retained austenite. Scripta Mater., 2010, 63(3), 297-299.
    [37] Jing C, Suh DW, Oh CS, Wang Z, Kim SJ, Effects of phosphorous addition on mechanical properties and retained austenite stability of 0.15 C-1.5 Mn-1.5 Al TRIP-aided cold rolled steels, Met. Mater. Int., 2007, 13(1), 13-19.
    [38] Murata M, Kobayashi J, Sugimoto KI, Stretch-flangeability of ultra high-strength low alloy TRIP-aided sheet steels with mixed structure matrix of bainitic ferrite and martensite, Tetsu-To-Hagane, Journal of the Iron and Steel Institute of Japan, 2010, 96(2), 84-92.
    [39] Krauss G, Steels: heat treatment and processing principles, 2nd ed. ASM, Materials Park, OH, 1990.
    [40] Koistinen DP, Marburger RE, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 1959, 7(1), 59-60.
    [41] Rizzo FC, Edmonds DV, He K, et al., Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Int. Conf. on Solid-Solid Phase Transformations in Inorganic Materials, Phoenix, AZ, 2005, 535-544.
    [42] Zhong N, Wang XD, Wang L, et al., Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process, Mater. Sci. Eng., A, 2009, 506(1-2), 111-116.
    [43] Edmonds DV, Speer JG, Martensitic steels with carbide free microstructures containing retained austenite, Mater. Sci. Technol., 2010, 26(4), 386-391.
    [44] Hsu HC, Lin YC, Wang SH, Kao FH, et al., Inducement of bainite and carbide transformation from retained austenite based on a high strain rate, Scripta Mater., 2010, 62(6), 372-375.
    [45] Menapace C, Lonardelli I, Tait M, Molinari A, Nanostructured/ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders, Mater. Sci. Eng., A, 2009, 517(1-2), 1-7.
    [46] Cao WQ, Wang CY, Shi J, Dong H, Application of quenching and partitioning to improve ductility of ultrahigh strength low alloy steel, Mater. Sci. Forum, 2010,654-656, 29-32
    [47] Caballero FG, GarciA-Mateo C, Chao J, Santofimia MJ, et al., Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic Steels, ISIJ int., 2008, 48(9), 1256-1262.
    [48] Ryu JH, Kim DI, Kim HS, Bhadeshia HKDH, et al., Strain partitioning and mechanical stability of retained austenite, Scripta Mater., 2010, 63(3), 297-299.
    [49] Chiang J, Lawrence B, Boyd JD, Pilkey AK, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Mater. Sci. Eng., A, 2011, 528(13-14), 4516-4521.
    [50] Kokosza A, Pacyna J, Mechanical stability of retained austenite in unalloyed structural steels of various carbon content, Arch. Metall. Mater., 2010, 55(4), 1001-1006.
    [51] Cha PR, Kim J, Kim WT, Kim S, Effect of transformation induced stress and plastic deformation on austenite/ferrite transition in low carbon steel, Plasticity, 2009, 376-378.
    [52] Calcagnotto M, Ponge D, Raabe D, Effect of grain refinement to 1μm on strength and toughness of dual-phase steels, Mater. Sci. Eng., A, 2010, 527(29-30), 7832-7840.
    [53] Norstron, Scand J. Metall. 1976, 5, 41-45
    [54] Chakraborty J, Chattopadhyay PP, Bhattacharjee D, Manna I, Microstructural refinement of bainite and martensite for enhanced strength and toughness in high-carbon low-alloy steel, Metall. Mater. Trans. A, 2010,41(11), 2871-2879.
    [55] Lacroix G, Pardoen T, Jacques PJ, The fracture toughness of TRIP-assisted multiphase steels, Acta mater., 2008, 56(15), 3900-3913.
    [56] Ravishankar KS, Udupa KR, Rao PP, Development of austempered ductile iron for high tensile and fracture toughness by two-step austempering process, Indian Foundry Journal, 2008, 54(4), 35-40.
    [57] Chakraborty J, Bhattacharjee D, Manna I, Austempering of bearing steel for improved mechanical properties, Scripta Mater., 2008, 59(2), 247-250.
    [58] Lied U, Traintb S, Wernera EA, Comput. Mater. Sci., 2002, 25, 122.
    [59] Belyakov A, Tsuzaki K, Miura H, Sakai T, Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation, Acta Mater., 2003, 51(3), 847-861.
    [60] Belyakov A, Sakai T, Miura H, Kaibyshev R, Grain refinement under multiple warm deformation in 304 type austenitic stainless steel, ISIJ Int., 1999, 39(6), 592-599.
    [61] Tsuji N, Ueji R, Minamino Y, Saito Y, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property, Scripta Mater., 2002, 46(4), 305-310.
    [62] Hall EO, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B, 1951, 64, 747-753.
    [63] Petch NJ, The cleavage of polycrystals, J. Iron Steel Inst., 1953, 174(1), 25-28.
    [64] Bhadeshia HKDH, Phase transformations contributing to the properties of modern steels, Bulletin of the Polish Academy of Sciences, Tech. Sci., 2010, 58(2), 255-265.
    [65] Naderi M, Durrenberger L, Molinari A, Bleck W, Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures, Mater. Sci. Eng., A, 2008, 478(1-2), 130-139.
    [66] Barcellona A, Palmeri D, Effect of Plastic Hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel, Metall. Mater. Trans. A, 2009, 40(5), 1160-1174.
    [67] Smallman RE, Bishop RJ, Modern physical metallurgy and materials engineering: science, process, applications: Butterworth-Heinemann, 1999.
    [68] Bhadeshia HKDH, Honeycombe RWK, Steels: microstructure and properties. 3rd ed. London: Butterworth-Heinemann, 2006.
    [69] Kaputkin DE, Kaputkina LM, Prokoshkin SD, Transformation of retained austenite during tempering of high carbon steel, J. Phys. IV, 2003, 112, 275-278.
    [70] Hsu TY, Yexin C, Weiye C, Effect of isothermal martensite on properties of an AISI 52100 ball bearing steel, Metall. Mater. Trans. A, 1987, 18(8), 1531-1532.
    [71] Lin JP, Wang LY, Tian HB, Sun GH, Wang ZB, Research and progress of hot stamping of ultrahigh strength steel, Hot Working Technol., 2008, 37(21),140-144.
    [72] Barcellona A, Palmeri D, Effect of Plastic Hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel, Metall. Mater. Trans. A, 2009, 40(5), 1160-1174.
    [73] Turetta A, Bruschi S, Ghiotti A, Investigation of 22MnB5 formability in hot stamping operations, J. Mater. Process. Technol., 2006, 177(1-3), 396-400.
    [74] Bariani PF, Bruschi S, Ghiotti A, Turetta A, Testing formability in the hot stamping of HSS, CIRP Annals-Manuf. Technol., 2008, 57(1), 265-268.
    [75] Min J, Lin J, Li J, Bao W, Investigation on hot forming limits of high strength steel 22MnB5, Comput. Mater. Sci., 2010, 49(2), 326-332.
    [76] Kadkhodapoura J, Butzb A, Ziaei Rada S, Mechanisms of void formation during tensile testing in a commercial, dual-phase steel, Acta Mater., 2011,59(7), 2575-2588
    [77] Georgieva IY, TRIP steels-A new class of high-strength steels with high plasticity, Met. Sci. Heat Treat., 1976, 18(3), 209-218.
    [78] Dini G, Ueji R, Najafizadeh A, Monir-Vaghefi SM, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density, Mater. Sci. Eng., A, 2010, 527(10-11), 2759-2763.
    [79] Klueh RL, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 2005, 50(5), 287-310.
    [80] Ahmad E, Manzoor T, Hussain N, Thermomechanical processing in the intercritical region and tensile properties of dual-phase steel, Mater. Sci. Eng., A, 2009, 508(1-2), 259-265.
    [81] Abdollah-Zadeh A, Salemi A, Assadi H, Mechanical behavior of CrMo steel with tempered martensite and ferrite-bainite-martensite microstructure, Mater. Sci. Eng., A, 2008, 483, 325-328.
    [82] Wang JG, Zhao DQ, Pan MX, Shek CH, Mechanical heterogeneity and mechanism of plasticity in metallic glasses, Appl. Phys. Lett., 2009, 94, 031904.
    [83] Rong C, Zhang Y, Kramer MJ, Liu JP, Correlation between microstructure and first-order magnetization reversal in the SmCo5/α-Fe nanocomposite magnets, Phys. Lett. A, 2011, 375(10), 1329-1332.
    [84] Chan KS, Changes in fatigue life mechanism due to soft grains and hard particles, Int. J. Fatigue, 2010, 32(3), 526-534.
    [85] Dong H., Sun XJ., Cao WQ., Liu ZD., et al., On the performance improvement of steels through M 3 structure control, Advanced Steels, 2011, 35-57.
    [86] Cao WQ, Shi J, Wang CY, Xu L, et al., The 3rd generation automobile sheet steels presenting with ultrahigh strength and high ductility, Advanced Steels, 2011, 209-227.
    [1] Speer JG, Matlock DK, De Cooman BC, et al., Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51(9), 2611-2622.
    [2] Speer JG, Matlock DK, Recent developments in low-carbon sheet steels, JOM Journal of the Minerals, Metals and Materials Society, 2002, 54(7), 19-24.
    [3] Matlock DK, Br?utigam VE, Speer JG, Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, Mater. Sci. Forum, 2003, 426-432(2), 1089-1094.
    [4] Speer JG, Streicher AM, Matlock DK, et al., Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures, In: Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of Austenite Formation and Decomposition. ISS and TMS, Warrendale, PA, 2003, 505-522.
    [5] Moor ED, Speer JG, Matlock DK, Kwak JH, et al., Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels, ISIJ Int., 2011, 51(1), 137-144.
    [6] Matlock DK, Speer JG, Processing opportunities for new advanced high-strength sheet steels, Mater. Manuf. Processes, 2010, 25(1), 7-13.
    [7] Liu HP, Lu XW, Jin XJ, Dong H, Shi J, Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process, Scripta Mater., 2011, 64(8), 749-752.
    [8] Liu HP, Jin XJ, Dong H, Shi J, Martensitic microstructural transformations from the hot stamping, quenching and partitioning process, Mater. Charact., 2011, 62(2), 223-227.
    [9] Weng YQ, Physical metallurgy for ultra-fine grain steels, Proceedings on HIPERS-21, POSCO, Korea, 2000, 9.
    [10] Dong H, Sun XJ, Deformation induced ferrite transformation, Ultra-Fine Grained Steels, 2009, 86-136
    [11] Weng YQ, Kang YL, Steel rolling technology progress in China in the past ten years, China Metallurgy, 2010, 20(10), 11-27.
    [12] Chung JH, Park JK, Kim TH, Kim KH, et al., Study of deformation-induced phase transformation in plain low carbon steel at low strain rate, Mater. Sci. Eng., A, 2010, 527(20), 5072-5077.
    [13] Militzer M, Brechet Y, Phenomenological model for deformation-induced ferrite transformation, Metall. Mater. Trans. A, 2009, 40(10), 2273-2282.
    [14] Basabe VV, Jonas JJ, The ferrite transformation in hot deformed 0.036% Nb austenite at temperatures above the Ae3, ISIJ Int., 2010, 50(8), 1185-1192.
    [15] Yin YY, Fang F, Fan ZJ, Microstructure and mechanical properties of hot rolled TRIP steel based on dynamic transformation of undercooled austenite, Adv. Mater. Res., 2011, 152-153, 1038-1043.
    [16] Hao L, Xiao N, Zheng C, Li D, Mechanical properties and temper resistance of deformation induced ferrite in a low carbon steel, J. Mater. Sci. Technol., 2010, 26(12), 1107-1113.
    [17] Hong SC, Lee KS, Influence of deformation induced ferrite transformation on grain refinement of dual phase steel, Mater. Sci. Eng., A, 2002, 323(1-2), 148-159.
    [18] Eghbali B, Study on the ferrite grain refinement during intercritical deformation of a microalloyed steel, Mater. Sci. Eng., A, 2010, 527(15), 3407-3410.
    [19] Isasti N, Jorge-Badiola D, Taheri ML, Lopez B, et al., Effect of composition and deformation on coarse-grained austenite transformation in Nb-Mo microalloyed steels, Metall. Mater. Trans. A, 2011, 1-14.
    [20] Yi HL, Lee KY, Bhadeshia HKDH, Stabilisation of ferrite in hot rolled-TRIP steel, Mater. Sci. Technol., 2011, 27(2), 525-529.
    [21] Chung JH, Park JK, Kim TH, Kim KH, et al., Study of deformation-induced phase transformation in plain low carbon steel at low strain rate, Mater. Sci. Eng., A, 2010, 527(20), 5072-5077.
    [22] Thomas G.A, Speer JG., Matlock DK, Quenched and Partitioned Microstructures Produced via Gleeble Simulations of Hot-Strip Mill Cooling Practices, Metall. Mater. Trans. A, 2011, 1-8.
    [23] Yoozbashi MN, Yazdani S, Wang TS, Design of a new nanostructured high-Si bainitic steel with lower cost production, Mater. Des., 2011, 32(6), 3248-3253.
    [24] Santofimia MJ, Nguyen-Minh T, Zhao L, Petrov R, New low carbon Q&P steels containing film-like intercritical ferrite, Mater. Sci. Eng., A, 2010, 527(23), 6429-6439.
    [25] Murata M, Kobayashi J, Sugimoto KI, Stretch-flangeability of ultra high-strength low alloy TRIP-aided sheet steels with mixed structure matrix of bainitic ferrite and martensite, Journal of the Iron and Steel Institute of Japan, 2010, 96(2), 84-92.
    [26] Sugimoto K, Murata M, Song SM, Formability of Al-Nb bearing ultra high-strength TRIP-aided Sheet Steels with bainitic ferrite and/or martensite matrix. ISIJ Int. 2010, 50 (1), 162-168.
    [27] Wang C, Shi J, Wang CY, Hui WJ, Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing, ISIJ Int., 2011, 51(4), 651-656.
    [28] Mintz B, Lewis J, Jonas JJ, Importance of deformation induced ferrite and factors which control its formation, Mater. Sci. Technol., 1997, 13(5), 379-388.
    [29] Mukherjee K, Hazra SS, Militzer M, Grain refinement in dual-phase steels. Metall. Mater. Trans. A, 2009, 40(9), 2145-2159.
    [30] Liu Z, LI D, Qiao G, Investigation on deformation induced ferrite (A kind of martensite) transformation above Ae3 temperature in a low carbon steel, Acta Metall. Sinica, 2005, 41(11), 1127-1135.
    [31] Krauss G, Steels: Heat treatment and processing principles, 2nd ed. ASM International, Metals Park, OH, USA, 1990.
    [32] Koistinen DP, Marburger RE, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall. 1959, 7(1), 59-60.
    [33] Carlone P, Palazzo GS, Development and validation of a thermo-mechanical finite element model of the steel quenching process including solid-solid phase changes, Int. Appl. Mech., 2011, 46(8), 955-971.
    [34] Clarke AJ, Speer JG, Miller MK, Hackenberg RE, et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment, Acta Mater., 2008, 56(1), 16-22.
    [35] Moor ED, Matlock DK, Speer JG, Merwin MJ, Austenite stabilization through manganese enrichment, Scripta Mater., 2011, 64(2), 185-188
    [36] Rizzo FC, Edmonds DV, He K, et al., Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process, Int. Conf. on Solid-Solid Phase Transformations in Inorganic Materials, Phoenix, AZ, 2005, 535-544.
    [37] Zhong N, Wang XD, Wang L, et al., Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process, Mater. Sci. Eng., A, 2009, 506(1-2), 111-116.
    [38] Suh DW, Ph.D. Thesis, Seoul National Univ., 2000.
    [39] Enomoto M, Aaronson HI, Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe-CX alloys, Metall. Mater. Trans. A, 1986, 17(8), 1385-1397.
    [40] Krauss G, Steels: Heat treatment and processing principles, ASM international, Metals Park, OH, USA, 1990.
    [41] Kojima A, Watanabe Y, Terada Y, et al., Ferrite grain refinement by large reduction per pass in non-recrystallization temperature region of austenite, ISIJ Int., 1996, 36(5), 603-610.
    [42] Zaky AI, El-Morsy A, El-Bitara T, Effect of different cooling rates on thermomechanically processed high-strength rebar steel, J. Mater. Process. Technol., 2009, 209(3), 1565-1569.
    [43] Farahat AIZ, Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steels, J. Mater. Process. Technol., 2008, 204(1-3), 365-369.
    [44] Narayana Murty SVS, Torizuka S, Microstructure-mechanical properties correlation in ultrafine grained steels processed by large strain warm deformation, ISIJ Int., 2008, 48(8), 1088-1095.
    [45] Tamura I, Ouchi C, Tanaka T, Sekine H, Thermo-mechanical processing of high strength low alloy steels, Butterworth, Guilford, UK, 1988.
    [46] Wu D, Zhuang L, Effect of thermomechanical controlled processing on the microstructure and mechanical properties of Fe-C-Mn-Si multiphase Steels, ISIJ Int., 2006, 46(7), 1059-1066.
    [47] Basuki A, Aernoudt E, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, J. Mater. Process. Technol., 1999, 89-90(19), 37-43.
    [48] Dan WJ, Li SH, Zhang WG, Lin ZQ, The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel, Mater. Des., 2008, 29(3), 604-612.
    [49] Sugimoto KI, Kobayashi M, Hashimoto SI, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel, Metall. Mater. Trans. A, 1992, 23(11), 3085-3091.
    [50] Goel NC, Sangal S, Tangri K, A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite: Part I. derivation of flow curve equations, Metall. Mater. Trans. A, 1985, 16(11), 2013-2021.
    [1] Tsuji N, Maki T, Enhanced structural refinement by combining phase transformation and plastic deformation in steels, Scripta Mater., 2009, 60(12), 1044-1049.
    [2] Yokota T, Garc?′a Mateo C, Bhadeshia HKDH, Formation of nanostructured steels by phase transformation, Scripta Mater., 2004, 51(8), 767-770.
    [3] Bhadeshia HKDH, Edmonds DV, The bainite transformation in a silicon steel, Metall. Mater. Trans. A, 1979, 10(7), 895-907.
    [4] Swallow E, Bhadeshia HKDH, High resolution observations of displacements caused by bainitic transformation, Mater. Sci. Technol., 1996, 12(2), 121-125.
    [5] Tsuji N, Uejia R, Minaminoa Y, Saitoa Y, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property, Scripta Mater., 2002, 46(4), 305-310.
    [6] Tsuji N, Ultrafine grained steels managing both high strength and ductility, International Conference on Advanced Structural and Functional Materials, Journal of Physics: Conference Series 165 (2009) 012010.
    [7] Wang TS, Li Z, Zhang B, Zhang XJ, et al., High tensile ductility and high strength in ultrafine-grained low-carbon steel, Mater. Sci. Eng., A, 2010, 527(10-11), 2798-2801.
    [8] Ueji R, Tsuji N, Minamino Y, Koizumi Y, Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite, Acta Mater., 2002, 50(16), 4177-4189.
    [9] Belyakov A, Miura H, Sakai T, Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel, Mater. Sci. Eng., A, 1998, 255(1-2), 139-147.
    [10] Sakai T, Dynamic recrystallization microstructures under hot working conditions, J. Mater. Process. Technol., 1995, 53(1-2), 349-361.
    [11] Sakai T, Ohashi M, Dislocation substructures developed during dynamic recrystallization in polycrystalline nickel, Mater. Sci. Technol.,1990, 6,1251-1257
    [12] Dudova N, Belyakov A, Sakai T, Kaibyshev R, Dynamic recrystallization mechanisms operating in a Ni-20% Cr alloy under hot-to-warm working, Acta Mater., 2010, 58(10), 3624-3632.
    [13] Tsuji N, Ueji R, Ito Y, Saito Y. Recrystallization-Fundamental aspects and relations to deformation microstructure. Proceedings of the 21st RIS? International Symposium on Material Science. RIS? National Laboratory, Denmark, 2000, 607.
    [14] Ameyama K, Matsumura N, Tokizane M, Ultra-fine austenite grains obtained by thermomechanical processing in low and medium carbon steels, Netsu Shori(J. Jpn. Soc. Heat Treat.), 1988, 28(4), 233-240.
    [15] Takaki S, Iizuka S, Tomimura K, Tokunaga Y, Influence of cold working on recovery and recrystallization of lath martensite in 0. 2% carbon steel, Journal of the Japan Institute of Metals, 1991, 55(11), 1151-1158.
    [16] Hayashi T, Saito M, Tsuzaki K, Nagai K, Proceedings of the 4th international conference on recrystallization and related phenomena, The Japan Institute of Metals, Sendai, 1999,333.
    [17] Kamikawa N, Huang X, Tsuji N, Hansen N, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed, Acta Mater., 2009, 57(14), 4198-4208.
    [18] Okitsu Y, Takata N, Tsuji N, A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation, Scripta Mater., 2009, 60(2), 76-79.
    [19] Tsuji N. New routes for fabricating ultrafine-grained microstructures in bulky steels without very-high strains, Adv. Eng. Mater., 2010, 12(8), 701-707.
    [20] Ueji R, Okitsu Y, Nakamura T, Takagi Y, et al., Mechanical properties of 15% Mn steel with fine lamellar structure consisting of ferrite and austenite phases, 15th International Conference on the Strength of Materials, Journal of Physics: Conference Series, 240(2010) 012029.
    [21] Song R, Ponge D, Raabe D, Kaspar R, Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing, Acta Mater., 2005, 53(3), 845-858.
    [22] Tsuji N. Ways to manage both strength and ductility in nanostructured steels, Advanced Steels, 2011, 119-129.
    [23] Ohmori A, Torizuka S, Nagai K, Strain-hardening due to dispersed cementite for low carbon ultrafine-grained steels, ISIJ Int., 2004, 44(6), 1063-1071.
    [24] Yoda R, Shibata K, Morimitsu T, Terada D, Tsuji N, Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing, Scripta Mater., 2011, 65(3), 175-178.
    [25] Dong H. Sun XJ. Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci.,2005, 9(6), 269-276.
    [26] Weng YQ, Sun XJ, Dong H, Deformation induced ferrite transformation in microalloyed steels: theory and application, Mater. Sci. Forum, 2007, (561-565), 2491-2508
    [27] Weng YQ, Ultra fine grained steels, first edition, 2009, 86-136.
    [28] Beladi H, Kelly GL, Hodgson PD, Ultrafine grained structure formation in steels using dynamic strain induced transformation processing, Int. Mater. Rev., 2007, 52(1), 14-28.
    [29] Bhadeshia HKDH, Honeycombe RWK, Steels: microstructure and properties, Butterworth-Heinemann, 2006, 17-38.
    [30] Meyers MA, Chawla KK, Mechanical behavior of materials, Cambridge University Press, 2003, 404-421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700