粘细菌Sorangium cellulosum AHB103-1产生新型抗肿瘤物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘细菌是一类非常独特的革兰氏阴性菌,具有复杂的群体行为和产生丰富的药理活性次级代谢物的能力。本论文对Sorangium cellulosum AHB103-1的生物学特性进行了研究,并对它进行了分类鉴定;研究了发酵过程中产生的挥发性物质与抗肿瘤次级代谢物的关系;利用MTT实验法对抗肿瘤次级代谢物进行了活性筛选和分离纯化,得到两种具有较强抗癌活性的物质迪本霉素和米赫霉素;对迪本霉素进行了摇瓶发酵工艺条件的优化;并初步研究了它的抗肿瘤机制。
     对Sorangium cellulosum AHB103-1菌株进行形态学和生理生化特征的研究,根据《伯杰细菌鉴定手册》第二版(第二卷,The Proteobacteria,C部分,George M. Garrity,2005),鉴定为纤维堆囊菌(Sorangium sp.)。采用SPME/GC/MS方法对发酵过程中菌体产生的挥发性物质进行了研究,结果表明部分化合物含量的变化曲线与抗肿瘤活性的变化曲线类似,其中乙酸和4-苯甲酰-2氢-吡喃-3-酮最为重要,它们含量的变化可以做为发酵控制的一个指标。
     Sorangium cellulosum AHB103-1菌株产生的次级代谢物对人肝癌细胞HepG2、小鼠黑色素瘤B16、人乳腺癌细胞MDA-MB231、人胃癌细胞SGC7901都有很高的活性,次级代谢物在不高于60℃的条件下活性基本没有变化,对强日光和紫外光不敏感,在pH3~8时较稳定。
     利用MTT法,以人肝癌细胞HepG2细胞株为模型,采用液液萃取、Sephadex LH-20柱分离、低压C18柱分离和HPLC、结晶等手段制备出2种具有较高抗肿瘤活性的物质,通过对其NMR、TOF MS/MS、UV、IR等图谱的解析,确定了它们的分子量分别为392、370 Da,分子式分别为C24H44N2O2和C18H30N2O6。根据系统命名法和国际惯例,化合物C24H44N2O2的系统名称为3,12-二乙基-1,15-二氮杂双环[13.7.0]二十二烷-2,16-二酮([3S,12R]3,12-diethyl-1,15-diaza-bicyclo [13.7.0]docosane-2,16-dione),拟命名为Dieobone(迪本霉素);化合物C18H30N2O6的系统名称为2,6,7,8,20-五羟基-4,13-二氮杂四环[9.8.1. 04,9.013,19]二十烷-5-酮( [2R,6R,7S,8R,20R]-2,6,7,8,20-pentahydroxy-4,13-diaza -tetracyclic[9.8. 1.04,9.013,19]eicosane-5-one),拟命名为Mehyazaone(米赫霉素)。通过江南大学教育部科技查新文献检索中心对它们进行了查新(名称、结构、性质和研究现状等),查新号为201136000L080497,国内外均未见公开文献报道与之相同结构的物质。
     设计了一种以葡萄糖为唯一碳源,以天冬酰胺为唯一氮源,添加1 mg/L CoCl2的简单合成培养基来研究各种营养成分包括乙酸钠、丙酸钠、甘油、各种氨基酸、无机盐以及磷酸盐的影响。简单合成培养基中添加丙酸钠能显著提高迪本霉素含量55.63%,加入乙酸钠只有略微的促进,加入甘油则会强烈抑制迪本霉素产量至46.71%。加入丝氨酸和色氨酸相应提高迪本霉素的产量100.42%和126.90%,加入苏氨酸则降低了迪本霉素产量至47.64%。不同浓度的磷酸盐对迪本霉素的产量都表现出抑制作用。
     在复杂发酵培养基(培养基A)发酵过程中,添加效果较好的树脂有四种:HPD100,XAD-2,XAD-16,D101。其中XAD-16大孔树脂效果最好,达54.66 mg/L。XAD-16大孔树脂较佳添加量为15~25 g/L,摇瓶装液量在75~125 mL/500mL时迪本霉素含量较高,发酵温度在28~32℃较佳。
     PB实验的结果表明复杂发酵培养基中各因素影响显著的顺序为马铃薯淀粉>MgSO4·7H2O>脱脂奶粉>丝氨酸>丙酸钠>酵母粉。BB实验优化发酵培养基得到迪本霉素产量预测值最大时的各组分浓度:马铃薯淀粉12.49 g/L,脱脂奶粉9.77 g/L,MgSO4·7H2O 1.43 g/L,预测值为99.89 mg/L。验证实验迪本霉素含量为90.42 mg/L,而优化前为55.46 mg/L,提高了63.04%。
     迪本霉素和米赫霉素对四种肿瘤细胞株HepG2,MDA-MB231,B16和SGC7901均有良好的抗肿瘤效果。与临床药相比,迪本霉素和米赫霉素对HepG2的细胞毒作用虽然比埃博霉素B低,与表柔比星和紫杉醇类似,但都远高于依立替康和奥沙利铂。而且它们对老鼠正常脾细胞的毒活性远低于HepG2,B16,SGC7901细胞。这表明迪本霉素和米赫霉素在一定的浓度范围内对肿瘤细胞具有选择性的抑制作用,是相对安全的。
     倒置显微镜下观察经迪本霉素处理24 h后的HepG2细胞,可发现样品对细胞的生长表现出明显的抑制作用。荧光显微镜下观察发现HepG2细胞经迪本霉素处理后,细胞核变小、皱缩,可见致密强荧光;部分细胞核碎裂,形成凋亡小体,出现小的荧光点。扫描电镜观察发现,对照组HepG2细胞表面布满丝状微绒毛,而经迪本霉素处理后HepG2细胞膜表面微绒毛明显变稀疏直至完全消失,细胞膜上出现较多的凋亡小体,细胞核有碎裂现象出现。琼脂糖凝胶电泳结果显示经迪本霉素处理后HepG2细胞出现明显的DNA条带,包含180~200 bp的寡核苷酸片段。利用流式细胞仪进行检测,结果表明:在试验浓度范围内,迪本霉素通过将细胞周期阻滞在S期来抑制HepG2细胞增殖;通过引起HepG2细胞线粒体膜电位ΔΨm下降但不影响细胞膜完整性诱导凋亡;迪本霉素通过上调Caspase-3蛋白、Bax蛋白和p53蛋白的表达量,下调Bcl-2蛋白的表达量来诱导细胞凋亡。
Myxobacteria are a class of very unique gram-negative bacteria, with complex social behavior and the ability of producing abundant secondary metabolites with pharmacological activity. In this thesis, the biological characteristics of Sorangium cellulosum AHB103-1 were studied and the classification was identified. The relationship between the volatile substances and the anti-tumor secondary metabolites produced during fermentation process was studied. Anti-tumor secondary metabolites were screened by MTT test and two strong anti-tumor substances were purified and named as Dieobone and Mehyazaone. The fermentation process conditions of Dieobone were optimized. Its anti-tumor mechanism was also preliminarily discussed.
     AHB103-1 was identified as Sorangium cellulosum(Sorangium sp.) on the basis of morphological, physiological and biochemical characteristics analyse,according to Bergey’s manual of systematic bacteriology (Second Edition,Part C,2005). The volatile substances produced during fermentation period were identified by SPME/GC/MS and the tendency of some volatile compounds was found to be similar to the formation curves of the anti-tumor secondary metabolites. In which acetic acid and 4-(benzoyl)-2H-pyran-3-ketone were the most important because of higher content, which could be used as a parameter of fermentation control.
     Secondary metabolites produced by Sorangium cellulosum AHB103-1 have strong antitumor activity against human liver cancer cell line (HepG2), human breast cancer cell line (MDA-MB231) , mouse melanoma cell line (B16) and human gastric cancer cells (SGC7901). The activity of secondary metabolites was changed a little below 60℃. It was not sensitive to strong sunlight and UV light, and remained stable at pH3~8.
     HepG2 cells were chosen as a model cell line using MTT method. Two high anti-tumor activity component was obtained by using extraction, column separation by atmospheric Sephadex LH-20 and crude C18, HPLC, and crystallization purification. The data of NMR, TOF MS/MS, UV, and IR spectrums were analysed. The results showed that the molecular weight of two compounds were 392 and 370 Da and their molecular formulae were C24H44N2O2 and C18H30N2O6, respectively. According to systematic nomenclature, the compound C24H44N2O2 was named as [3S,12R]3,12-diethyl-1,15-diaza-bicyclo [13.7.0]docosane-2,16-dione) systematically and supose the common name as Dieobone, and the compound C18H30N2O6 named as [2R,6R,7S,8R,20R]-2,6,7,8,20-pentahydroxy-4,13-diaza -tetracyclic [9.8. 1.04,9.013,19]eicosane-5-one systematically and supose the common name as Mehyazaone. They were identified as a new substance by Station of Science and Technology of Education of Minister, Jiangnan University (Novelty Search No. 201136000L080497).
     A simple synthetic medium with glucose as the sole carbon source, asparagine as the sole nitrogen source, and Co ion as main trace elements was developed to study the effects of various nutrients including sodium acetate, propionate, glycerol, the amino acids, inorganic salts and phosphate. Dieobone yield was significantly increased by 55.63% with the addition of sodium propionate,and only a slight promotion with the addition of sodium acetate.However, Dieobone yield was strongly inhibited by 46.71% with the addition of glycerol.Moreover, Dieobone yield was correspondingly increased by 100.42% and 126.90% with the supplement of serine and tryptophan, but reduced by 47.64% with the supplement of threonine.Different concentrations of phosphate showed inhibition effects,too.
     Four resins showed good effect for Dieobone yield during fermentation process, namely, HPD100, XAD-2, XAD-16, D101. Macroporous resin XAD-16 showed the best effect with Dieobone level up to 54.66 mg/L. Dieobone yield reached better level with conditions as follows: macroporous resin XAD-16 addition level 15~25 g/L, liquid volume in flask 75~125 mL/500mL and the fermentation temperature 28~32℃.
     The results of PB experiment showed that the significantly different order of the factors in the fermentation medium was: potato starch> MgSO4?7H2O> skim milk powder> serine> sodium propionate> yeast. Fermentation medium was optimized by BB experiment. At the optimum concentrations of each component (potato starch 12.49 g/L, skim milk powder 9.77 g/L, MgSO4.7H2O 1.43 g/L), the predictive value of Dieobone was 99.89 mg/L. The yield of Dieobone for validation experiment was 90.42 mg/L, and was increased by 63.04%, comparing to 55.46 mg/L before optimization.
     MTT assay result indicated that Dieobone and Mehyazaone had good antitumor effect on four tumor cell lines, namely, HepG2, MDA-MB231, B16 and SGC7901 in vitro. Compared with clinical drugs, the cytotoxic activity of Dieobone and Mehyazaone on HepG2 were lower than Epothilone B, similar with Taxol and Epirubicin, but far higher than Irinotecan and Oxaliplatin. Moreover, their cytotoxic activity on normal mouse spleen cell was far lower than HepG2 cell and B16 cell.
     After treatment with Dieobone for 24h HepG2 cells showed significant cell growth inhibition on inverted microscope observation. The nucleus of HepG2 cells treated with Dieobone become smaller, shrunken observed under fluorescence microscope. Strong compact fluorescent was shown and part of the cell nuclei appeared fragmented. The apoptotic bodies formed, and small fluorescent spots appeared. The observation by scanning electron microscopy showed that the treated HepG2 cell surface microvilli became thin or complete disappeared while the control HepG2 cell covered with silk microvilli. More apoptotic bodies occured on the cell membrane, and the fragmentation of nuclei appeared. The results of agarose gel electrophoresis showed the apparent DNA ladder, containing 180~200bp oligonucleotide fragment. The results of flow cytometry analysis showed that Dieobone suppressed HepG2 cell lines proliferation with cell cycle arrested in the S-phase in the experimental concentration range. It induced apoptosis in the experimental concentration range by causing mitochondrial membrane potentialΔΨm to decline, and markedly upregulated the expression of caspase-3, Bax and p53 mRNA, while downregulated the expression of Bcl-2 mRNA.
引文
[1] Reichenbach H. Myxobacteria, producers of novel bioactive substances[J].J Ind Microbiol Biotechnol, 2001, 27: 149–156.
    [2] George M. Garrity.Bergey’s manual of systematic bacteriology(second edition,Part C) [M]. 2005, 2: 1059-1144.
    [3] Schroder J,Reichenbach H. The fatty acid composition of vegetative cells and myxospores of Stigmatella aurantiaca(Myxobacterales) [J]. Arch Microbiol, 1970,71: 384-390.
    [4] Fautz E L Grotjahn,Reichenbach H. Hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria and flavobacteria[J]. In Reichenbach and Weeks (Editors), The Flavobacterium-Cytophaga Group, Verlag Chemie,Weinheim,1981,127-133.
    [5] Yamanaka S, Fudo R, Kawaguchi A,et al. Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids [J]. J Gen Appl Microbiol,1988,34: 57-66.
    [6] Kleinig H. Membranes from Myxococcus fulvus(Myxobacterales)containing carotenoid glucosides.I.Isolation and composition [J].Biochim Biophys Acta, 1972,274: 489-498.
    [7] Keller K H, Grady M , Dworkin M. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus [J].J Bacteriol,1983,155: 1358-1366.
    [8] Lampky J R,Brockman E R. Fluorescence of Myxococcus stipitatus [J].Int syst Bacteriol,1977,27: 161.
    [9] Link H F. Observationes in Ordines plantarum naturales. Dissertatio prima, complectens Anandrarum ordines Epiphytas, Mucedines Gastomycos et Fungos [J]. Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunds, 1809, 3: 1-42.
    [10] Berkeley M J. Introduction to Cryptogamic Botany [on Stigmatella and Chondromyces] [M]. London,Bailliere, 1857: 313-315.
    [11]Thaxter R. On the Myxobacteriaceae, a new order of Schizomycetes [J]. Bot Gaz.1892,17: 387-410.
    [12]刘新利,李越中.粘细菌次级代谢产物及其在农业上的应用价值[J].中国农业科技导报,2007,9(3): 44-51.
    [13] Norén B. On the production of antibiotics by myxobacteria Svensk [J]. Bot Tidskr, 1953,47: 402-410.
    [14] Oxford A E. Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium [J]. J Bacteriol,1947,53: 129-138.
    [15] Janssen G R, Wireman J W, Dworkin M. Effect of temperature on the growth of Myxococcus xanthus[J]. J Bacteriol, 1977, 103: 561-562.
    [16] Ringel S M,Greenough R C, Roemer S,et al. Ambruticin(W 7783), a new antifungal antibiotic [J]. J antibiot. 1977, 30: 371-375.
    [17] Bedorf N, Schomburg D, Gerth K , et al. Isolation and structure elucidation of soraphen A sub(1 alpha ), a novel antifungal macrolide from Sorangium cellulosum[J]. Liebigs Annalen der Chemie [LIEBIGS ANN. CHEM.].1993,9: 1017-1021.
    [18] H¨ofle G,Bedorf N, Gerth K,et al. Epothilons process for preparing the same and their use as medicaments and as plant protecting agents.WO 93/10121.
    [19] Gerth K, Bedorf N, H¨ofle G, et al. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria). Production, physico-chemical and biological properties [J]. J Antibiot, 1996, 49: 560–563.
    [20] Bollag D M, Mcqueney P A, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action [J]. Cancer Res,1995,55: 2325-2333.
    [21] Richard J K, Paraskevi G, Ernest H. Activities of the microtuble-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel(Taxol) [J].J Biol Chem,1997,272: 2534-2541.
    [22] Brigitte K, Heinrich S, Gerhard H, et al. Cruentaren, a New Antifungal Salicylate-Type Macrolide from Byssovorax cruenta (Myxobacteria) with Inhibitory Effect on Mitochondrial ATPase Activity [J]. J antibiot,2006, 59: 664–668.
    [23] Jong W A, Kyoung H J, Hyeong C Y,et al. Bithiazole Metabolites from the Myxobacterium Myxooccus fulvus [J].Chem Pharm Bull, 2007,55(3): 477-479.
    [24] Guo W J,Tao W Y. Phoxalone, a novel macrolide from Sorangium cellulosum: structure identification and its anti-tumor bioactivity in vitro [J]. Bio Lett, 2008,30: 349–356.
    [25] Jong H K,Jong W A. A New Cytotoxic Spiroketal from the Myxobacterium Sorangium cellulosum [J]. Archives of Pharmacal Research, 2009,32(6): 841-844.
    [26]王大红.粘细菌Stigmatella WXNWJ-B产生新型抗肿瘤抗生素的研究[D]:[博士学位论文].无锡:江南大学生物工程学院, 2010.
    [27] Gerth K, Pradella S, Perlova O, et al. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium [J]. J Biotechnol, 2003,106: 233-253.
    [28] Pradella S, Hans A, Spr?er C, et al. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56[J]. Arch Microbiol. 2002,178: 484–492.
    [29] Chen H,Keseler I,Shimkets L. Genome size of Myxococcus xthanus determined by pulsed-field gel-electrophoresis [J]. J Bacteriol,1990,172: 4206-4213.
    [30] Neumann B,Pospiech A,Schairer H U. Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta [J]. J Bacteriol,1992,174: 6307-6310.
    [31] Kroos L,Kuspa A,Kaiser D. A global analysis of developmentally regulated genes in Myxococcus xthanus [J].Dev Biol,1986,117: 252-266.
    [32] Reichenbach H, Heunert H H, Kuczka H. Myxococcus spp. (Myxobacterales): Schwarmentwicklung und Bildung von Protocysten.Film E 778, Encyclopaedia Cinematographica,Gottingen.Institut furden Wissenschaftlichen Filmen. 1965b.
    [33] Reichenbach H, Heunert H H, Kuczka H. Schwarmentwicklung und Morphogenese bei Myxobakterien-Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C893,Gottingen. Institut fur den Wissenschaftlichen Filmen. 1965c.
    [34]周璐,李越中,李健.粘细菌的多细胞形态发生及其分子调控[J].生物化学与生物物理进展,1999,26(6): 544-547.
    [35]吴斌辉,李越中,胡纬等.纤维堆囊菌的多细胞形态发生过程[J].微生物学报,2002,42(6):657-661.
    [36] Dworkin M,Gibson S M. A system for studying microbial morphogenesis:rapid formation of microcysts in Myxococcus xanthus [J]. Science(Wash. D.C.), 1964,146: 243-244.
    [37] McCurdy H D, Khouw B T. Studies on Stigmatella brunnea [J].Can J Microbiol ,1969,15: 731-738.
    [38] Sarao R, McCurdy H D, Passador L. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum [J]. Can J Microbiol, 1985,31: 1142-1146.
    [39] Gonzalez F, Vargas A, Arias J M ,et al. Phosphatase activity during development cycle of Myxococcus xanthus [J]. Can J Microbiol,1991,37: 74-77.
    [40] Gonzalez F, Arias J M, Montoya E. Phosphatase activity in the life cycle of Myxococcus coralloides [J]. D J Gen Microbiol,1987,133: 2327-2332.
    [41] Gonzalez F, Arias J M, Montoya E. Production of acid and alkaline phosphatases by Myxococcus coralloides [J].Folia Microbiol,1989,34:185-194.
    [42] Watson B F,Dworkin M. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus [J]. J Bacteriol , 1968, 96: 1465-1473.
    [43] Reichenbach H, Dworkin M. Studies on Stigmatella aurantiaca (Myxobacterales) [J]. J Gen Microbiol, 1969,58: 3-14.
    [44] Gerth K,Reichenbach H. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). 1. General characterization of system [J]. Arch Microbiol,1978,117:173-182.
    [45] Reichenbach H, Hofle G. Production of bioactive secondary metabolites.In: Dworkin M,Kaiser D. MyxobacteriaⅡ[M].Washington DC:American Society for Microbiology, 1993,347-397.
    [46] Dworkin M. Recent advances in the social and development biology of the Myxobacteria [J].Microbiol Revs,1996,6: 70-102.
    [47]王赫,张庆林.粘细菌代谢产物的研究进展[J].国外医学药学分册, 32(4),2005,8: 246-250.
    [48] Hofle G. 1992.Isolation and structure elucidation.In:GBF(Ed.),Scientific Annual Report.Braunschweig[M],pp.40-42.
    [49] Dietmar Schummer, Dietmar Schomburg, Herbert Irschik, et al. Antibiotics from Gliding Bacteria, LXXV. Absolute Configuration and Biosynthesis of Tartrolon B, a Boron-Containing Macrodiolide from Sorangium cellulosum[J]. Liebigs Annalen.1996,6: 965-969.
    [50] Hofle G,Reichenbach H.The biosynthetic potential of the myxobacteria.In: Kuhn W,Fiedler H P.(Eds).Sekundarmetabolismus bei Mikroorganismen[M].Attempo Verlag,Tubingen,pp.61-78.
    [51] Reichenbach H, Hofle G. Production of bioactive secondary metabolites.In: DworkinM,Kaiser D. MyxobacteriaⅡ[M].Washington DC:American Society for Microbiology, 1993,307-332.
    [52] Helge Bj?rn Bode Dr, Silke C Wenzel Dipl-Chem, Herbert Irschik Dr, et al. Unusual Biosynthesis of Leupyrrins in the Myxobacterium Sorangium cellulosum[J]. Angewandte Chemie International Edition.2004,43(32): 4163-4167.
    [53] Wenzel S C, Mu¨ller R. Myxobacteria-‘microbial factories’for the production of bioactive secondary metabolites[J]. Mol Biosyst. 2009, 5: 567-574.
    [54]马辉.海洋粘细菌活性菌株筛选及菌株HW-1次生代谢产物研究[D]:[硕士学位论文].上海:华东师范大学,2007.
    [55] Hardt I,Steinmetz H,Gerth K,et al. New natural epothilones from Sorangium cellulosum, strains So ce90/B2 and So ce90/D13: isolation, structure elucidation, and SAR studies[J]. J. Nat. Prod,2001,64: 847–856.
    [56] Campbell E A, PavlovaO, Zenkin N, et al. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase[J]. EMBO, 2005, 24(4): 674– 682.
    [57] Kujat C, Bock M, Kirschning A. Synthesis of the C1-C5 and C6-C24 Fragments of the RNA Polymerase Inhibitors Ripostatin A and B [J]. Synlett, 2006, 3: 0419-0422.
    [58] Irschik H, Augustiniak H, Gerth K, et al. The ripostatins, novel inhibitors of eubacterial RNA polymerase isolated from myxobacteria[J].J Antibiot(Tokyo),1995,48(8):787-92.
    [59] Gerhard H, Heinrich S, Klaus G, et al. Ambruticins VS: new members of the antibruticin family from Sorangium cellulosum [J].Liebigs Ann Chem,1991,941-945.
    [60] Perlova O, Gerth K, Kaiser O, et al. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56 [J]. J Biotechnol, 2006, 121(2): 174-191.
    [61] Gerth K,Washausen P,Hofle G, et al.The jerangolids:Afamily of new antifungal compounds from Sorangium cellulosum(Myxobacteria).Production,physico-chemical and biological properties of jerangolid A[J]. J Antibiot, 1996, 49:71-75.
    [62] Bode, Helge Bjorn, Zeggel, et al. Steroid biosynthesis in prokaryotes: identification of myxobacteria steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca [J].Molecular Microbiology,2003,47(2): 471-481.
    [63] Stefan Beyer, Brigitte Kunze, Barbara Silakowski, et al. Metablic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg al 5 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90[J]. Biochimica et Biophsica Acta, 1999,1445: 185-195.
    [64]黎志凤,Etienne Nguimbi,李越中,等.埃博霉素(Epothilones)的PKS/NRPS杂合基因簇[J].生物工程学报,2003,19(5): 81-84.
    [65] Helge B Bode, Rolf M. Analysis of myxobacterial secondary metabolism goes molecular. [J]. J Ind Microbiol Biotechnol,2006,33: 577-588.
    [66] Christopher T W,Sarah E O,Tanya L S. Polyketide-nonribosomal peptide epothilone antitumor agents :the EpoA,B,C subunits[J].J Ind Microbiol Biotechnol,2003,30: 448-455.
    [67]李越中,李健,周璐,等.我国粘细菌资源的分离与鉴定[J].微生物学报, 2000, 40(6): 652-656.
    [68] Reichenbach H, Gerth K, Irschik H, et al. Myxobacteria: a source of new antibiotics[J]. Trends Biotechnol,1988,6:115–121.
    [69] Reichenbach H. Biology of the myxobacteria: ecology and taxonomy[M]. In: Dworkin, M., Kaiser, D. (Eds.), Myxobacteria II. American Society for Microbiology, Washington, DC,1993,pp.13–62.
    [70] Cole J R, Cascarelli A L, Mohn W W, et al. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol[J]. Appl Environ Microbiol. 1994,60: 3536-3542.
    [71] Sanford R A, Cole J R, Tiedje J M. Characterization and description of Anaeromyxobacter dehalogenans gen.nov., sp. nov., an aryl-halorespiring facultative anaerobic Myxobacterium[J]. Appl Environ Microbiol,2002,68: 893–900.
    [72] Dawid W. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiol Rev, 2000,24: 403–427.
    [73] Iizuka T, Jojima Y, Fudou R, et al. Isolation of myxobacteria from the marine environment[J]. FEMS Microbiol Lett,1998,169: 317–322.
    [74] Fudou R, Iizuka T, Sato S, et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structure elucidation[J]. J Antibiot, 2001,54: 153–156.
    [75] Rolf M¨uller, Klaus Gerth. Development of simple media which allow investigations into the global regulation of chivosazol biosynthesis with Sorangium cellulosum So ce56[J]. J Biotechnol, 2006,121: 192–200.
    [76] Bode H B, Ring M W, Schwa¨r G, et al. Identification of Additional Players in the Alternative Biosynthesis Pathway to Isovaleryl-CoA in the Myxobacterium Myxococcus xanthus[J]. ChemBioChem, 2009, 10(1) : 128–140.
    [77] Mahmud T, Wenzel S C, Wan E, et al. A Biosynthetic Pathway to Isovaleryl-CoA in Myxobacteria: The Involvement of the Mevalonate Pathway[J]. ChemBioChem, 2005, 6(2): 322-330.
    [78] Reichenbach H, Dworkin M. The myxobacteria[M]. In: The Prokaryotes,2nd edn, vol IV(Balows A,HG Truper,M Dworkin, W Harder and KH Schleifer,eds).Springer Verlag,New York,pp.3416-3487.
    [79] Jeroen S D, Hans R, Irene W D, et al. Novel Pyrazines from the Myxobacterium Chondromyces crocatus and Marine Bacteria [J]. Eur J Org Chem,2005,4141–4153.
    [80] Trowitzsch W, Witte L, Reichenbach H. Geosmin from earthy smelling cultures of Nannocystis exedens (Myxobacterales) [J], FEMS Microbiol Lett, 1981,12: 257-260.
    [81] Dickschat J S, Wenzel S C. Biosynthesis of volatiles by the myxobacterium Myxococcus Xanthus [J]. Chembiochem, 2004, 5: 778-787.
    [82] Schulz S, Fuhlendorff J, Reichenbach H. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus [J]. Tetrahedron, 2004, 60: 3863-3872.
    [83] Wenzel S C, Kunze B, Gerhard H, et al. Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketidesynthaseand for module skipping in nonribosomal peptide biosynthesis [J]. ChemBio- Chem, 2005, 6: 375-385.
    [84] William E H, Albrecht B, Wulf P. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone[J]. Proc Natl Acad Sci USA, 1998, 95: 11268-11273.
    [85] Wulf P, Irmela S, Hans U S. Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, amyxobacterial pheromone[J]. Proc Natl Acad Sci USA, 1998, 95: 11263-11267.
    [86] ?ezanka T, Sobotka M, Prell A, et al. Relationship between Volatile Odorous Substances and Production of Avermectins by Streptomyces avermitilis[J]. Folia Microbiol, 2007, 52 (1): 26–30.
    [87] ?ezanka T, Prell A, Sigler K. Identification of Odorous Compounds from Nine Fermentor-Cultivated Streptomyces Strains[J]. Folia Microbiol, 2008, 53 (4): 315–318.
    [88]蒋德明,周秀文,田晓翔,等.基于16S rRNA和HSP60基因序列分析粘细菌孢囊杆菌亚目形态分类的种属之间的亲缘关系[J].微生物学报, 2008, 48(6):711-716.
    [89] George M Garrity. Bergey’s manual of systematic bacteriology(second edition,Part C) [M]. 2005, 2: 1068.
    [90]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001, 364-369.
    [91]丁彦博.粘细菌的分离纯化和分类鉴定[D] :[硕士学位论文].保定:河北大学生命科学学院,2004.
    [92]郭文杰.粘细菌的筛选及其产生的新型抗肿瘤抗生素[D]:[博士学位论文].无锡:江南大学生物工程学院, 2007.
    [93] Boland W, Ney P, Jaenicke L, et al. In Analysis of volatiles[M]. 1984, 371–380.
    [94] Frauke C P,Ralf G B. Geosmin and Related Volatiles in Bioreactor-Cultured Streptomyces citreus CBS 109.60[J]. Appl Environ Microbiol, 1996, 4: 1295–1299.
    [95]陆震鸣.樟芝深层液态发酵及其三萜类化合物的研究[D] :[博士学位论文].无锡:江南大学生物工程学院,2009.
    [96] Mosmann T. Rapid colorimetic assay for celluar growth and survival:application to proliferation and cytotoxicity assay[J ]. J Immunol Met hods ,1983, 65: 552-631.
    [97]张炜.白花蛇舌草对肿瘤细胞信号传导通路的抑制[J],食品与生物技术学报,2006, 25 (1):50-53.
    [98] Shen H M, Ong C N, Shi C Y. Involvement of reactive oxygen species in a?atoxin B1-induced cell injury in cultured rathepatocytes[J]. Toxicology, 1995, 99:115-123.
    [99] Croes K, Casteels M, Asselberghs S,et al. Formation of a 2-methyl-branched fatty aldehyde during peroxisomalα-oxidation[J]. FEBS Lett,1997,412(3): 643-645.
    [100] Stefan S, Jeroen S D. Bacterial volatiles: the smell of small organisms[J]. Nat Prod Rep, 2007, 24: 814–842.
    [101] Epsky N D, Heath R R, Dueben B D,et al. Attraction of 3-Methyl-1-Butanol and Ammonia Identified from Enterobacter agglomerans to Anastrepha suspensa[J]. J Chem Ecol, 1998, 24: 1867-1880.
    [102] Bhaumik P,Koski M K,Glumoff T,et al. Structural biology of the thioester-dependentdegradation and synthesis of fatty acids[J]. Curr Opin Struct Biol, 2005,15: 621-628.
    [103] Bruce A, Verrall S, Hackett C A,et al. Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapqtain fungi[J]. Holzforschung, 2004, 58: 193-198.
    [104]程宝鸾.动物细胞培养技术[M].广州:华南理工大学出版社, 2000, 98-113.
    [105]张开山.海绵共附生放线菌抗肿瘤活性菌株的筛选及菌株A01059活性物质的研究[D]:[博士学位论文].海南:华南热带农业大学作物遗传育种专业, 2007.
    [106] Frykman S, Tsuruta H, Lau J, et al. Modulation of epothilone analog production through media design[J]. J Ind Microbiol Biotechnol, 2002,28: 17-20.
    [107] Regentin R, Frykman S, Lau J, et al. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains[J]. Appl Microbiol Biotechnol, 2003, 61:451-455.
    [108]郭文杰,陶文沂,许正宏,等.产高活性抗癌物质的粘细菌的定向筛选[J].天然产物研究与开发. 2007,19: 1032–1036.
    [109] Guo W, Tao G, Tao W, et al. A myxobacterium strain sorangium cellulosum AHB125 producing epothilone B and other anticancer substances[J]. Nat Prod Res, 2007,21(14):1256-1265.
    [110] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal Chem, 1959, 31 (3): 426-428.
    [111] AOAC International Official Method 994.12. Amino acids in feeds[M]. AOAC International, Gaithersburg,2000.
    [112] Ahuja S K, Ferreira G M, Moreira A R. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium [J]. Biotech Bioeng, 2004, 85: 666-675.
    [113] LaVerne D Boeck, Montgomery E Favret,Roger W Wetzel. Biosynthesis of thiopeptide antibiotic a 10255 in stirred reactors using a chemically defined medium supplemented with continuous nutrient feeds[J]. J Antibiot ,1992,45:1278–1285.
    [114] Sophie Untrau, Ahmed Lebrihi, G6rard Lefebvre, et al. Nitrogen Catabolite Regulation of Spiramycin Production in Streptomyces ambofaciens[J]. Curr Micro,1994,28: 111-118.
    [115] Hassan Hajjaj,Peter Niederberger,Philippe Duboc. Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium[J]. Appl Environ Microbiol, 2001,67: 2596–2602.
    [116] Hoischen C. Untersuchungen zum Zuckerstoffwechsel von Sorangium cellulosum[M]. Fakult¨at f¨ur Biologie der Universit¨at,T¨ubingen, 1986: 1-97.
    [117] Kerr J, Winterfold C M, Harmon B N. Apoptosis: its significance in cancer and cancer therapy[J]. Cancer, 1994, 73: 2013-2026.
    [118] Kerr J F R, Wyllie A H,Currie A R. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics[J]. British Journal of Cancer,1972, 26: 239-257. doi:10.1038/bjc.1972.33.
    [119] Kopp M, Irschik H, Pradella S, et al. Production of the tubulin destabilizer disorazol inSorangium cellulosum: Biosynthetic machinery and regulatory genes [J]. Chem Bio Chem, 2005, 6: 1277-1286.
    [120] Sandmann A, Sasse F, Müller R. Identification and analysis of the core biosynthetic machinery of tubulysin, a cytotoxin with potential anticancer activity [J]. Chem Biol, 2004, 11: 1071-1079.
    [121]黄春芳,牛建昭,王继峰,等.白藜芦醇影响OVCAR3细胞生长并通过活化caspase-3诱导细胞凋亡的研究[J].北京中医药大学学报, 2009, 32(10):683-685.
    [122] Koyama S, Tanaka S, Haniu H, et al. YoshixolTR inhibits B16 melanoma cell growth in vivo and induces apoptosis-like (quantum thermodynamic) cell death[J]. Gen Pharmacol. 1999, 33: 161-172.
    [123] Ikeda K, Nagase H. Magnolo has the ability to induce apoptosis in tumor cells[J]. Biol Pharm Bull, 2002, 25(12): 1546-1549.
    [124] Iwamoto Y, Matsumoto Y, Ueoka R. Induction of apoptosis of human ling carcinoma cells by hybrid liposomes containing polyoxyethyenedodecyl ether[J]. Int J Pharm,2005, 292: 231-239.
    [125] Ogata A, Mitsui S, Yanagie H, et al. A novel anti-tumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells[J]. Biomed Pharmacother, 2005, 59: 240-244.
    [126] Zhang C X, Huang K X. Apoptosis induction on HL-60 cells of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus[J]. J Ethnopharmacol, 2005, 99: 385-390.
    [127] Zhang C X, Huang K X. Mechanism of apoptosis induced by a polysaccharide, from the loach Misgurnus anguillicaudatus (MAP) in human hepatocellular carcinoma cells[J]. Toxicol App Pharm, 2006, 210: 236-245.
    [128]斯佩克特D L,戈德曼R D,莱因万德L A.黄培堂等译.细胞试验指南[M].北京:科学出版社, 2001,108-109.
    [129] Cui F J, Li Y, Xu Y Y,et al. Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b from the cultured mycelia of Grifola frondosa GF9801[J]. Toxicology in Vitro, 2007,27(3): 417-427.
    [130] Jakopec S, Dubravcic K, Polanc S, et al. Diazene JK-279 induces apoptotis-like cell death in human cervical carcinoma cells[J]. Toxicology in Vitro, 2006,20: 217-226.
    [131] Sun H X, Zheng Q F, Tu J. Induction of apoptosis in Hela cells by 3-hydroxy-12-oleanen-27-oic acid from the rhizomes of Astilbe chinensis[J]. Bioorganic & Medicinal Chemistry, 2006,14: 1189-1198.
    [132] Lin X, Cai Y, Li Z X, et al. Structure determination, apoptosis induction, and telomerase inhibition of CFP-2, a novel lichenin from cladonia furcata[J]. Biochem Biophy Acta, 2003, 1622: 90-108
    [133] Brussel J P, Van Steenbrugge G J, Romijn J C, et al. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins [J]. Eur J Cancer, 1999, 35: 664-671.
    [134]张哲文,魏虎来,苏海翔,等.硒酸酯多糖诱导白血病多药耐药细胞凋亡的作用机制[J].中国临床药理学与治疗学,2005,10(5): 505-508.
    [135]韦玮,郭荣平,李锦清,等.不同序贯的西妥昔单抗与化疗药物联合对HepG2和Bel-7402细胞的增殖抑制作用[J].中山大学学报(医学科学版),2008,29: 556-561.
    [136] Wang D,Tao W Y. Nutrient regulation of bacterial growth and production of anti-tumor metabolites in Stigmatella WXNXJ-B fermentation[J]. World Journal of Microbiology and Biotechnology, 2010.doi:10.1007/s 11274-010-0399-2.
    [137] Peitsch M C, Muller C, Tschopp J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts[J]. Nucleic Acids Res, 1993, 21(18): 4206-4209.
    [138] Wei Z, Zhou F, Hai-ning Z,et al. Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells[J]. Journal of Neuro-Oncology, 2007, 81: 231–240.
    [139] Agarwal M L, Agarwal A, Taylor W R,et al. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts[J]. Proc Natl Acad Sci USA, 1995, 92: 8493-8497.
    [140] Lepik D, Jaks V, Kadaja L, et al. Electroporation and carrier DNA cause p53 activation, cell cycle arrest, and apoptosis[J]. Anal Biochem,2003,318(1): 52-59.
    [141] Park M, Chae H D, Yun J, et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest[J]. Cancer Res,2000,60: 542-545.
    [142] Parker M A, Anderson J K,Corliss D A,et al. Expression profile of an operationally-defined neural stem cell clone[J]. Exp Neurol,2005,194: 320-332.
    [143] Martin S J,Green D R. Protease activation during apoptosis: Death by a thousand cuts[J]. Cell, 1995,82: 349-352.
    [144] Chinnaiyan A, Dixit V. The cell-death machine[J].Curr Biol,1996,6: 555-562.
    [145] Henkart P A. ICE family proteases: Mediators of all apoptotic cell death[J]. Immunity,1996,4: 195-201.
    [146] Van Brussel J P, Van Steenbrugge G J, Romijn J C, et al. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins[J]. European Journal of Cancer, 1999,35: 664-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700