Cu-TBAF催化三甲氧基芳基硅烷及固载催化剂在C-C、C-N键形成反应中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由金属催化炔烃加成得到C-C键,由金属催化含氮化合物芳香化合成得到C-N键,以及在反应中金属催化剂的催化循环利用等问题在有机合成化学中均占有重要地位。本论文围绕这三个主题进行相关的有机合成研究。本论文共分二部分:1、C-N键的形成及由炔烃加成得到C-C键的合成反应。2、催化剂的催化循环利用。
     第一部分综述了近年来各种金属催化的C-N键的形成反应及由炔烃加成得到C-C键的合成反应,并研究和探讨了Cu-TBAF催化三甲氧基芳基硅烷在过渡金属催化下对富电子官能团的反应:(1)在室温下,三甲氧基芳基硅烷经过催化量的TBAF、Cu(OAc)_2和P(C6F5)3催化活化后,再加入含氮化合物,经室温搅拌后得到含氮的芳烃化合物。在通过对反应的部分机理研究时发现:铜和磷配体的存在有助于实现催化量的TBAF催化舌化三甲氧基芳基硅烷。反应产率从中等到优,首次实现了在中性情况下催化量的氟源对硅烷的活化,具有操作简便、反应条件温和等优点。这改变了以往硅烷需要当量的强碱或是氟源从而实现自身的活化。这将对低毒、易制备、易储存的硅烷的工业化推广和发展提供了一条较为绿色的通道。(2)在室温下,三甲氧基芳基硅烷经过催化量的TBAF、Cu(OAc)_2和PPh3催化活化后,再加入催化量的铑、当量的炔烃化合物和水,经过加热回流搅拌后得到芳基烯烃化合物。并且我们还通过机理研究证明此加成反应中并不涉及1,4-Rh迁移。反应产率从中等到优,再次实现了在中性情况下催化量的氟源对硅烷的活化,具有操作简便、反应条件温和、产物区域选择性高等优点。
     第二部分研究了在Suzuki反应中,将钯金属(?)合附着在含磷配体的固体附着物上,以磷酸钾作碱,氮气保护下,在甲苯溶剂中加热回流中得到了一系列的芳基硼酸和芳基溴化物的偶联产物。反应产率从中等到优秀,具有操作简便、反应条件温和、金属催化剂及配体可反复利用等优点。
ABSTRACT
     The problem which contained of the forming of C-C bond from the metal catalyzed addition of alkynes, the forming of C-N bond from the arylation of nitrogen cotained compounds, and the reusing of the catalyst. In this paper, it focuses on these three topics of about organic synthesis research. This paper has two parts. The first part focuses on the forming of C-N bond and the forming of C-C bond from the addition of alkynes. The second (?)art focuses on the reuse of catalyst.
     The first part of the paper has an overview of the various metal-catalyzed C-N bond formation reaction, and by the addition of alkynes to be C-C bond synthesis reaction in recent years. (1) Under the room tempera(?)are, the nitrogen compounds was added to the solution after the aryl trimethoxysilane was activated by catalytic amount of TBAF, Cu(OAc)_2 and P(C_6F_5)_3. The nitrogen-containing aromatic compounds were obtained through the solution was stired under room temperature. A new discovery was found when researching on the part of the mechanism of the reaction:the exist of Cu and the Phosphorus ligands can be helpful to the catalytic amount of TBAF catalyzed aryl trimethoxysilane. The silane was catalyzed by a catalytic amount of Fluoride source under neutral (?) ndition at the first time. A series of substrates were achieved with the yield from medium to good. It has many advantages like simple, mild reaction condition, etc. The low toxicity, easy preparation, easy storage of silane which will provide a more green method to be promoted of industrialization and development. (2) U (?)der the room temperature, a catalytic amount of rhodium, equivalent alkyne compounds and water were added after the trimethoxy aryl silane was catalyzed by catalytic amount of TBAF, Cu(OAc)2 and PPh_3, then stirring and reflex. A series of substrates of aryl olefin compounds were achieved with the yield from medium to good. The silane was catalyzed by a catalytic amount of fluoride source under the neutral condition again. It provides a simple, mild condition, high regional selective to synthesis the aryl olefin compounds.
     The second part of the paper is about the study in the Suzuki reaction, palladium was attached to the phosphorus-containing ligand solid fixtures, providing the potassium phosphate as base, a series of aryl-boric acid and the aryl bromide coupling products were obtained with the yie(?) from medium to good after the stiring and reflexing in toluene solvent that under the protection of nitrogen. It has merits of simple operation, mild reaction conditions and metal catalyst and ligand can be used repeatedly, etc..
引文
1. (a) Ley, S. V.; Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew. [J] Chem. Int. Ed.2003,42,5400-5449. (b) Martinez, G. R.; Walker, K. A. M.; Herschfield, D. R.; Bru; o, J. J.; Yang, D. S.; Moloney, P. 4-Dihydroquinolin-2(1H)-ones as combined inhibitors of thromboxane A2 synthase and cAMP phosphodiesterase. [J] J. J. Med. Chem.1992,35(4),620-628. (c) Herman, W. A.; Kocher, C. Essays on organometallic chemistry.9. N-Heterocyclic carbenes. [J] Angew. Chem. Int. Ed.1997,36(20),2162-2187. (d) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation. [J] Acc. Chem. Res.1998,31(12),805-818. (e) Hartwig, J. F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates:scope and mechanism. [J] Angew. Chem., Int. Ed.1998,37(15),2046-2067 (f) Lange, J. H. M.; van Stuivenberg, H. H.; Coolen, H. K. A. C.; Adolfs, T. J. P.; McCreary, A. C.; Keizer, H. G.; Wals, H. C.; Veerman, W.; Borst, A. J. M.; de Looff, W.; Verveer, P. C.; Kruse, C. G. Bioisosteric Replacements of the Pyrazole Moiety of Rimonabant:Synthesis, Biological Properties, and Molecular Modeling Investigations of Thiazoles, Triazoles, and Imidazoles as Potent and Selective CB1 Cannabinoid Receptor Anta onists. [J] J. Med. Chem.2005, 48(6),1823-1838. (g) Quan, M. L.; Lam, P. Y. S.; Han, Q.; Pinto, D. J. P.; He, M. Y.; Li, R.; Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J.-H.; Alexander, R. S.; Bai, S.; Luettgen, J. M.; Knabb, R. M.; Wong, P. C.; Wexler, R. R.Discovery of 1-(3'-Aminobenzisoxazol-5'-yl)-3-trifluoromethyl-N-[2-fluoro-4[(2'-dimethylaminomethyl) imidazol-l-yl]phenyl]-1H-pyrazole-5-carboxyamide Hydrochloride (Razaxaban), a Highly Potent, Selective, and Orally Bioavailable Factor Xa Inhibitor. [J] J. Med.Chem.2005,48(6),1729-1744. (h) Barche'chath, S. D.; Tawatao, R. I.; Corr, M.; Carson, D. A.; Cottam, H. B. Inhibitors of apoptosis in lymphocytes:synthesis and biological evaluation of compounds related to pifithrin-alpha. [J] J. Med. Chem.2005,48(20),6409-6422. (i) Voets, M.; Antes, I.; Scherer, C.; Mu" ller-Vieira, U.; Biemel, K.; Barassin, C.;Marchais-Oberwinkler, S.; Hartmann, R. W. Heteroaryl-Substituted Naphthalenes and Structurally Modified Derivatives:Selective Inhibitors of CYP11B2 for the Treatment of Congestive Heart Failure and Myocardial Fibrosis. [J] J. Med. Chem.2005,48(21),6632-6642.(j) Viglenda, T.; Ott, I.; Kircher, B.; Schumacher, P.; Schuster, D.; Langer, T.; Gust, R.Synthesis and pharmacological evaluation of 1H-imidazoles as ligands for the estrogen receptor and cytotoxic inhibitors of the cyclooxygenase. [J] J. Med. Chem.2005,48(20),6516-6521. (k) Jiang, W.; Guan, J.; Macielag, M. J.; Zhang, S.; Qiu, Y.; Kraft, P.; Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.; Lundeen, S.; Sui, Z. Pyrroloquinolone PDE5 Inhibitors with Improved Pharmaceutical Profiles for Clinical Studies on Erectile Dysfunction. [J] J. Med. Chem.2005, 48(6),2126-2133. (1) Hutzler, J. M.; Melton, R. J.; Rumsey, J. M.; Schnute, M. E.; Locuson, C. W.; Wienkers, Inhibition of cytochrome P450 3A4 by a pyrimidineimidazole:evidence for complex heme interactions. [J] L. C. Chem. Res. Toxicol.2006,19(12),1650-1659. (m) Wiglenda, T.; Gust, R. Structure-activity relationship study to understand the estrogen receptor-dependent gene activation of aryl-and alkyl-substituted 1 H-imidazoles. [J] J. Med. Chem.2007,50(7),1475-1484. (n) Davey, D. D.; Adler, M.; Arnaiz, D.; Eagen, K.; Erickson, S.; Guilford, W.; Kenrick, M.; Morrissey, M. M.; Ohlmeyer, M.; Pan, G.; Paradkar, V. M.; Parkinson, J.; Polokoff, M.; Saionz, K.; Santos, C.; Subramanyam, B.; Vergona, R.; Wei, R. G.; Whitlow, M.; Ye, B.; Zhao, Z. S.; Devlin, J. J.; Phillips, G.Design, synthesis, and activity of 2-imidazol-l-ylpyrimidine derived inducible nitric oxide synthase dimerization inhibitors. [J] J. Med. Chem.2007,50(6),1146-1157.
    2. Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. [J] Chem. Rev.1995,95(7),2457-2483.
    3. Mitchell, T. N. Palladium-catalyzed reactions of organotio compounds. [J] Synthesis 1992, (9),803-815.
    4. Kosugi M.L, Ameyama M, Migita T. Palladium-catalyzed aromatic amination of aryl bromides with N,N-di-ethylamino-tributyltin. [J] Chem. Lett.1983, (12) 927-928.
    5. Guram A S, Rennels R A, Buchwald S L. A simple catalytic method for the conversion of aryl bromides to arylamines. [J] Angew. Chem. Int.Ed. Engl.1995,34(12):1348-1350.
    6. Guram A S, Rennels R A, Buchwald S L. A simple catalytic method for the conversion of aryl bromides to arylamines. [J] Angew. Chem. Int.Ed. Engl.1995,34(12):1348-1350.
    7. (a) Venkatesh, C. Sundaram, G. S. M. Ila, H. Junjappa, H. Palladium-catalyzed intramolecular N-arylation of heteroarenes:a no el and efficient route to benzimidazo[1,2-a]quinolines. [J] J. Org. Chem.2006,71(3),1280-1283. (b) Carril, M.; SanMartin, R.; Dominguez, E.; Tellitu, I. Sequential palladium-catalysed C-and N-arylation reactions as a practical and general protocol for the synthesis of the first series of oxcarbazepine analogues. [J]Tetrahedron.2007,63(3),690-702. (c) Kitawaki, T.; Hayashi, Y.; Ueno, A.; Chida, N. One-step construction of carbazoles by way of the palladium-catalyzed double N-arylation reaction and its application to the total synthesis of murrastifoline-A. [J] Tetrahedron Lett 2007,62(29),6792-6801. (d) Palladium-mediated N-arylation of heterocyclic diamines:insights into the origin of an unusual chemoselectivity. Noemi C.-S. Jean, L. Maddaluno, J. Lasne, M. C. Rouden, J. [J] J. Org. Chem.2007,72(6), 2030-2039.
    8. Lipschutz B. H, Veda H. Aromatic Aminations by Heterogeneous NiO/C Catalysis [J] Angew. Chem. Int. Ed. Engl.2000,39(24):4492-4494.
    9. (a) Jerphagnon, T. Klink, G. P. M. V. Vries, J. G. D. Koten, G. V. Aminoarenethiolate-Copper(I)-Catalyzed Amination of Aryl Bromides. [J] Org. Lett.2005, 7(23).5241-5244. (b) Altman, R. A. Buchwald, S. L.4,7-Dimethoxy-1,10-phenanthroline: An excellent ligand for the Cu-catalyzed N-arylation of imidazoles. [J] Org. Lett.2006.8(13), 2779-2782. (c) Hosseinzadeh, R. Tajbakhsh, M. Alika(?)mi, M. An improved protocol Copper-catalyzed N-arylation of diazoles with aryl (?)romides using KF/Al_2O_3. [J] Tetrahedron Lett 2006,47(29),5203-5205. (d) Phillips, D. P. Hudson, A. R. Nguyen, B. Lau, T. L. McNeill, M. H. Dalgard, J. E. Chen, J. H. Penuliar, R. J. Miller, T. A. Zhi, L. Copper-catalyzed N-arylation of oxindoles. [J] Tetrahedron Lett 2006,47(40),7137-7138. (e)Liu, Y. H. Chen, C. Yang, L. M. Diazabutadiene:a simple and efficient ligand for copper-catalyzed N-arylation of aromatic amines. [J] Tetrahedron Lett 2006,47(52), 9275-9278. (f) Starkov, P. Zemskov, I. Sillard, R. Tsubrik, O. Maeorg, U. Copper-catalyzed N-arylation of carbamate-protected hydrazones with organobismuthanes. [J] Tetrahedron Lett 2007,48(7),1155-1157. (g) Nandurkar, N. S. Bhanushali, M. J. Bhor, M. D. Bhanage, B. M. N-Arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate). [J] Tetrahedron Lett 2007,48(37),6573-6576. (h) Venkanna, G. T. Sridhar, C. Kumar, K. B. S. Kantam M. L. Copper fluorapatite catalyzed N-arylation of heterocycles with bromo and iodoarenes. [J] Tetrahedron Lett 2007,47(23), 3897-3899. (i) Zhu, L. Guo, P. Li, G. Lan, J. Xie, R. You, J. Simple Copper Salt-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with A yl and Heteroaryl Halides. [J] J. Org. Chem.2007,72(22),8535-8538. (j) Ma, H. C. Jiang, X. Z. N-Hydroxyimides as Efficient Ligands for the Copper-Catalyzed N-Arylation of Pyrrole, Imidazole, and Indole. [J]J. Org. Chem.2007,72(23),8943-8946.
    10. Bolm, C. Correa, A. Iron-catalyzed N-arylation of nitrogen nucleophiles. [J] Angew. Chem. Int. Ed.2007,46(46),8862-8865.
    11. Jadhav, V. H. Dumbre, D. K. Phapale, V. B. Borate, H. B. Wakharkar, R. D. Efficient N-arylation of amines catalyzed by Cu-Fe-hydrotalcite. [J] Cat. Comm.2007,8(1),65-68
    12. Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. New synthetic applications of aryllead triacetates. N-arylation of azoles. [J]J. Org. Chem.1995,60(17),5678-5682.
    13. Fedorov, A. Y.; Finet, J.-P. N-Phenylation of azole derivatives by triphenylbismuth derivatives/cupric acetate. [J]Tetrahedron Lett.1999,40(14),2747-2748.
    14. (a) Lam, P. Y.; Clark, C. G.; Sauber, S.; Adams, J.; Winters, M. P.; Chan, D. M.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions (?) a arylboronic acid/cupric acetate arylation. [J] Tetrahedron Lett.1998,39(19),2941-2944. (b) Collman, J. P.; Zhong, M. An Efficient Diamine Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles. [J] Org Lett.2000,2(9),1233-1236. (c) Collman, J. P.; Zhong, M.; Zeng, L.; Costanzo, S. [Cu(OH) TMEDA]2C12-Catalyzed Coupling of Arylboronic Acids with Imidazoles in Water. [J] J. Org. Chem.2001,66(4),1528-1531; (d) Collman, J. P.; Zhong, M.; Zhang, C.; Costanzo, S. Atalytic Activities of Cu(Ⅱ) Complexes with Nitrogen-Chelating Bidentate Ligands in the Coupling of Imidazoles with Arylboronic Acids. [J] J. Org. Chem.2001,66(23),7892-7897.(e) Lan, J.-B.; Chen, L.; Yu, X.-Q.; You, J.-S.; Xie, R.-G. A simple copper salt catalyzed the coupling of imidazole with arylboronic acids in protic solvent. [J] Chem. Commun.2004, (2) 188-189; (f) Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.; Choudary, B. M. An Efficient Base-Free N-Arylation of Imidazoles and Amines with Arylboronic Acids Using Copper-Exchanged Fluorapatite. [J] J. Org. Chem.2006,71(25),9522-9524.
    15. Tan, D. Q. and Robert A..B. Ligand- and Base-Free Copper(II)-Catalyzed C-N Bond Formation:Cross-Coupling Reactions of Organoboron Compounds with Aliphatic Amines and Anilines. [J] Org. Lett.2003,5(23),4397-4400.
    16. Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.; DeShong, P.; Clark, C. G. Copper-Promoted C-N Bond Cross-Coupling with Hypervalent Aryl Siloxanes and Room-Temperature N-Arylation with Aryl Iodide. [J] J. Am. Chem. Soc.2000,122(31), 7600-7601.
    17. Song, R. J.; Deng C. L.; Xie, Y. X.; Li, J. H. Solvent-free copper/iron co-catalyzed N-arylation reactions of nitrogen-containing heterocycles with trimethoxysilanes in air. [J] Tetrahedron Lett.2007,48(44),7845-7848.
    18. Kumada, M. Nickel and palladium complex catalyzed cross-coupling reactions of organometallic reagents with organic halides. [J] Pure Appl Chem.1980,52,669-679.
    19. (a) de Meijere, A.; Meyer, F. E. Fine Feathers Make Fine Birds:The Heck Reaction in Modern Garb [J]Angew. Chem., Int. Ed. Engl.1994,33,2379-2411. (b) Beletskaya, I. P.; Cheprakov, A. V. The Heck Reaction as a Sharpening'tone of Palladium Catalysis. [J] Chem. Rev.2000,100,3009-3066.
    20. (a) Stille, J. K. The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles [New Synthetic Methods (58)] [J] Angew. Chem., Int. Ed. Engl. 1986,25,508-524. (b)Farina, V.; Krishnamurthy, V.; Scott, W. J; The Stille reaction. [S]Org. React.1997,50,1-652.
    21. (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. [J]Chem. Rev.1995,95,2457-2483. (b)Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles,1995-1998. [J] J. Organomet. Chem.1999,576,147-168.
    22. (a) Sonogashira, K. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Permagon:New York,1991; pp 521-549.
    23. (a) Hatanaka, Y.; Hiyama, T. Highly selective cross-coupling reactions of organosilicon compounds mediated by fluoride ion and a palladium catalyst.[J]Synlett 1991,845-853. (b) Hiyama, T. Palladium-catalyzed cross-coupling reaction of organometalloids through activation with fluoride ion. [J]Pure Appl. Chem.1994,66,1471-1478.
    24. (a) Fagnou, K.; Lautens, M. Rhodium-Catalyzed Carbon-Carbon Bond Forming Reactions of Organometallic Compounds. [J]Chem. Rev.2003,103,169-196.
    25. Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. Hydroxorhodium complex-catalyzed carbon-carbon bond-forming reactions of silanediols with alpha,beta-unsaturated carbonyl compounds. Mizoroki-Heck-type reaction vs conjugate addition. [J]J.Am. Chem. Soc.2001,123,10774-10775.
    26. (a)Denmark, S. E.; Amburgey, J. A new, general, and stereoselective method for the synthesis of trisubstituted alkenes. [J] J. Am. Chem. Soc.1993,115,10386. (b) Creton, I.; Marek, I.; Normant, J. F. Synthesis of polysubstituted stereodefined olefins via the reactivity of sp2 organo-gem-bismetallics. [J] Synthesis 1996,1499-1508. (c) Brown, S. D.; Armstrong, R. W. Synthesis of Tetrasubstituted Ethylenes on Solid Support via Resin Capture. [J] J. Am. Chem. Soc.1996,118,6331-6332. (d) Organ, M. G.:Cooper, J. T.; Rogers, L. R.; Soleymanzadeh, F.; Paul, T. Synthesis of stereodefined po/substituted olefins.1. Sequential intermolecular reactions involving selective, stepwise insertion of Pd(0) into allylic and vinylic halide bonds. The stereoselective synthesis of disubstituted olefins. [J] J. Org. Chem. 2000,65,7959-7970.
    27. (a) Suzuki, A. Organoborates in new synthetic reactions. [J] Acc. Chem. Res.1982,15, 178-184. (b) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. [J] Chem. Rev.1995,95,2457-2483. (c) Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles,1995-1998. [J] J. Organomet. Chem.1999,576,147-168. (d) Darses, S.; Genet, J. P. Potassium trifluoro(organo)borates:New perspectives in organic chemistry. [J] Eur. J. Org. Chem.2003,4313-4327.
    28. For Pd-catalyzed reactions, see:(a) Oh, C. H.; Jung, H. H.; Kim, K. S. The palladium-catalyzed addition of organoboronic acids to alkynes. [J] Angew. Chem. Int. Ed. 2003,42,805-808. (b) Oh, C. H.; Ahn, T. W.; Reddy, V.(?). Palladium-catalyzed addition of organoboronic acids to allenes. [J] Chem. Commun.2003,2622-2623. (c) For Rh-catalyzed reactions, see:Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids:1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodiumto 2-Alkenylarylrhodium Intermediate. [J] J. Am. Chem. Soc.2001, 123,9918-9919. (d) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. Merry-Go-Round Multiple Alkylation on Aromatic Rings via Rhodium Catalysis. [J] J. Am. Chem. Soc.2000, 122,10464-10465. (e) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martin-Matute, B. Rhodium-Catalyzed Coupling Reactions of Arylboronic Acids to Olefins in Aqueous Media. [J] J. Am. Chem. Soc.2001,123,5358-5359. (f) Lautens, M.; Yoshida, M. Regioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkynes with a Pyridine-Substituted Water-Soluble Ligand. [J] Org. Lett.2002,4,123-125. (g) Boiteau, J.; Imbos, R.; Minnaard, A. J.; Feringa, B. L. Rhodium-Catalyzed Asymmetric Conjugate Additions of Boronic Acids Using Monodentate Phosphoramidite Ligands. [J] Org. Lett.2003,5,681-684. (h) For Nicatalyzed reactions, see:Shirakawa, E.; Takahashi, G.; Tsuchimoto, T.; Kawakami, Y. Nickel-catalyzed hydroarylation of alkynes using arylboron compounds:selective synthesis of polysubstituted arylalkenes and aryldienes. [J] Chem. Commun.2001,2688-2689. (i) Houpis, I. N.; Lee, J. Nickel catalyzed reactions of nucleophiles with un-activated and partially activated Olefins and Acetylenes. [J] Tetrahedron 2000,56,817-846. (j) For review on the organozinc reagents see:Knochel, P.; Almena Perea, J. J.; Jones, P. Organozinc mediated reactions. [J] Tetrahedron 1998,54,8275-8319.
    29. Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids:1,4-Shift of Rhodium from 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate. [J] J. Am. Chem. Soc.2001,123,9918-9919.
    30. Fujii, T.; Koike, T.; Mori, A.; Osakada, K. Rhodium-catalyzed hydroarylation and-alkenylation of alkynes with silanediols. A crucial role of the hydroxy group for the catalytic reaction. [J] Synlett 2002,295-297.
    31. Lautens, M.; Yoshida, M. Regioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkynes with a Pyridine-Substituted Water-Soluble (?)igand. [J] Org. Lett.2002,4, 123-125.
    32. Mitchell, T. N. [M]In Metal-Catalyzed Cross-Coupling Reactions; de Mejijere, A., Diederich, F., Eds.; Wiley-VCH:Weinheim,2004; Vol.1, pp 125-162.
    33. Manoso, A. S.; Ahn, C.; Soheili, A.; Handy, C. J.; Correia, R.; Seganish, W. M.; DeShong, P. Improved Synthesis of Aryltrialkoxysilanes via Treatment of Aryl Grignard or Lithium Reagents with Tetraalkyl Orthosilicates. [J] J. Org. Chem.2004,69,8305-8314
    34. Ley, S. V.; Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)[bond]O, C(aryl)[bond]N, and C(aryl)[bond]S bond formation. [J] Angew. Chem. Int. Ed.2003,42, 5400-5449. (b) Zhang, S.-L.; Li, L.; Fu, Y.; Guo, Q.-X. Theoretical Study on Copper(I)-Catalyzed Cross-Coupling between Aryl Halide(?) and Amides. [J] Organometallics 2007,26,4546-4554.
    35. Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. Rhodium-Catalyzed Hydroarylation of Alkynes with Arylboronic Acids:1,4-Shift of Rhodium rom 2-Aryl-1-alkenylrhodium to 2-Alkenylarylrhodium Intermediate. [J] J. Am. Chem. Soc.2001,123,9918-9919;
    36. Organosilanols have been reported to be reactive towards transmetalation with palladium, see: Oi, S.; Honma, Y.; Inoue, Y.Conjugate Addition of Organosiloxanes to,-Unsaturated Carbonyl Compounds Catalyzed by a Cationic Rhodium Complex. [J]Org. Lett.2002,4, 667-669
    37. N. Miyaura, A. Suzuki.Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds[J].Chem. Rev,1995,95(7):2457-2483.
    38. T. Schareina, R. Kempe. Combinatorial Libraries with P Functionalized Aminopyridines: Ligands for the Preparation of Efficient C(Aryl)-Cl Activation Catalysts[J]. Angew. Chem., Int. Ed,2002,41(9):1521-1523
    39. A. F. Littke, C. Y. Dai, G. C. Fu. Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic Acids with Aryl and Vinyl Halides and Triflates under Mild Conditions [J].J. Am. Chem. Soc,2000,122(17):4020-4028.
    40. G. Liu, M. Liu. Synthesis of silica-supported selenide palladium(O) complex and its catalytic properties for phenylation of acid chlorides and aryl iodides or bromides. [J]Cat. Commun. 2007,8:251-255
    41. Y. Uozumi, Y. Nakai. An Amphiphilic Resin-Supported Palladium Catalyst for High-Throughput Cross-Coupling in Water[J]. Org. Lett,2002,4(17):2997-3000.
    42. Y. Uozumi, H. Danjo, T. Hayashi. Cross-Coupling of Aryl Halides and Allyl Acetates with Arylboron Reagents in Water Using an Amphiphilic Resin-Supported Palladium Catalyst[J].J. Org. Chem,1999,64(9):3384-3388.
    43. M. R. Netherton, G.. C. Fu.Air-Stable Trialkylphosphonium Salts:Simple, Practical, and Versatile Replacements for Air-Sensitive Trialkylphosphir es. Applications in Stoichiometric and Catalytic Processes[J].Org. Lett,2001,3(26):4295-4298.
    44. I. J. S. Fairlamb, A. R. Kapdi, A. F. Lee. r~2-dba Complexes of Pd(0):The Substituent Effect in Suzuki-Miyaura Coupling[J].Org. Lett,2004,6(24):4435-4438.
    45. P. Braunstein, H.-P. Kormann, W. M.r-Z., R. P., G. Schmid, Strategies for the Anchoring of Metal Complexes, Clusters, and Colloids Inside Nanoporous Alumina Membranes [J]. Chem. Eur. J.2000,6(24):4637-4646.
    46. J. Cheng, F. Wang, J. H. Xu, Y. Pan, Z. G. Zhang, Palladium-catalyzed Suzuki-Miyaura reaction using aminophosphine as ligand[J]. Tetrahedron Lett,2003,44(37):7095-7098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700