嗜水气单胞菌微胶囊口服灭活疫苗制备工艺的筛选及其对小鼠的免疫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1在已获得的嗜水气单胞菌灭活疫苗Ⅰ类新兽药证书的基础上将嗜水气单胞菌灭活疫苗进行微胶囊囊化,将其制备成嗜水气单胞菌微胶囊口服灭活疫苗。以嗜水气单胞菌(Ah)J-1株为芯材及大豆蛋白、麦芽糊精和阿拉伯胶等可被生物降解的物质为壁材,利用喷雾干燥微胶囊技术制备Ah微胶囊口服灭活疫苗。结果表明,喷雾干燥条件对疫苗微胶囊颗粒影响较大;其适宜条件为:进料温度40℃,进料速度60mL/h,大豆蛋白、麦芽糊精和阿拉伯胶之间最佳比例为3/9/4,进风温度和出风温度分别为195℃和90℃;制备的微胶囊疫苗颗粒的平均粒径为4.5-16.5um,平均含菌量为2.47×10~(13)mg~(-1)干粉,并将其拌入饵料中制成了可以直接通过饲喂而达到免疫效果的口服灭活疫苗。
     2受免动物血清抗体效价是评价特异性免疫效果的一个重要指标,抗体效价的高低通常显示了免疫的成败,因此建立评价抗体水平的方法至关重要。按照嗜水气单胞菌灭活疫苗制备规程制备灭活疫苗,采用腹腔注射法免疫小鼠,第一次免疫2周后进行第二次免疫。取二次免疫后28d的小鼠血清2倍比稀释包被96孔酶标板,建立检测抗体的间接ELISA方法,测定受免小鼠特异性免疫应答水平。用传统的全菌凝集实验检测随机选取的30份免疫组血清和20份对照组血清,结果表明免疫组与对照组的血清抗体稀释最高滴度分别为1:32和1:8。用此阳、阴性血清建立间接ELISA方法,然后用该方法检测上面的50份血清。免疫组与对照组的血清抗体稀释最高滴度分别为1:4096和1:32。以上结果表明,建立的间接ELISA方法可更准确地用于微囊化口服灭活疫苗免疫小鼠的血清抗体效价检测。
     3以嗜水气单胞菌(Ah)J-1株为材料,分别按照嗜水气单胞菌灭活疫苗制备规程制备灭活疫苗和喷雾干燥法制备微胶囊口服灭活疫苗。160只6-8周龄雌性小鼠分为4组,分别依次为注射AhJ-1全菌灭活疫苗组、口服微胶囊口服灭活疫苗组Ⅰ、Ⅱ和空白对照组,接种小鼠数每组40只。微胶囊口服灭活疫苗及全菌细胞灭活疫苗分别以直接拌入饵料法口服和腹腔注射免疫小鼠,空白对照组注射生理盐水(NS),检测各组小鼠体液免疫水平。结果显示,用间接ELISA检测抗体水平,显示微胶囊口服灭活疫苗组Ⅰ(0.1g/只)的抗体水平高于对照组,略低于全菌灭活疫苗免疫组,但两者差异不显著(p>0.05);微胶囊口服灭活疫苗组Ⅱ(0.06g/只)的抗体水平高于对照组,低于全菌灭活疫苗免疫组,两者差异显著(p<0.05),但微胶囊口服灭活疫苗组Ⅰ和Ⅱ的抗体高效价维持时间最长即第6周。在第2次免疫后的第4周,用50LD_(50)AhJ-1攻击,AhJ-1攻击各组的保护率依次为,全菌灭活疫苗腹腔注射组的免疫保护力最高(73.3%),其次为微胶囊疫苗组拌入饵料直接投喂组Ⅰ(0.1g/只)免疫保护力(63.3%),与全菌灭活疫苗组(73.3%)差异不显著(p>0.05);微胶囊疫苗组拌入饵料直接投喂组Ⅱ(0.06g/只)免疫保护力(40%),与全菌灭活疫苗组(73.3%)差异显著(p<0.05);空白对照组免疫保护力(0%)。表明所制备的嗜水气单胞菌微胶囊口服疫苗具有较好的癌苗性能。
Microencapsulated oral inactivated vaccines of Aeromonas hydrophila(Ah) were prepared by spray drying liquid o:w-emulsions in a laboratory spray dryer on the basis of one category new veterinary drug certificate of Aeromonas hydrophila awarded by china institute of veterinary drug control. Microencapsulated oral inactivated vaccines(MOIV) were prepared by a spray-drying method using a wall system consisting of gelatin、malt dextrin and soybean protein. The effects of technological parameters including the ratio of gelatin、malt dextrin and soybean protein, homogenization pressure,inlet temperature, feed temperature,and encapsulation efficiency (EE) were investigated.The resulting microcapsules were characterized in terms of AhJ-1 isomerization, storage stability and outer structures. The results showed that EE were significantly affected by the ratio of wall materials, homogenization pressure, inlet temperature, feed temperature and feed speed. The optimal condition was determined as follows.the ratio of soybean protein/malt dextrin/gelatin of 3/9/4,feed temperature of 40℃,inlet temperature of 195℃,outlet temperature of 90℃,homogenization pressure of 16 000r/pm and feed speed of 60ml/h. Scanning electron microscope(SEM) and acridine orange direct count (AODC) analysis showed that AhJ-1 microcapsules had a regular spherical shape with a mean diameter of 4.5-16.5um and smooth outer surface,the average bacterial mass of 2.47×10~(13) mg-lparticle-powder.The dry microencapsules remained physically stable for at least 6 months.The objective of the present study was to develop stable and usable fish oral vaccine microencapsulation to prevent the outbreak of Aeromonas hydrophila.。This paper describes a indirect enzyme-linked immunosorbent assay (ELISA) for rapid, specific and reliable assessment of the antibody immune response of vaccinated-with mice.Inactivated whole bacteria cells of Aeromonas hydrophila was prepared by the preparation rule of inactivated vaccine of Aeromonas hydrophila and intraperitoneally with mice 2 weeks again after the primary immunization. Before immunization, 2、6and 4 weeks after immunization, serum samples were collected from the caudal veins of mice. 30 shares of immunized-with group sera and 20 shares of control sera were randomly selected and tested with whole bacteria cells of Aeromonas hydrophila (Ah) antigen-based agglutination test. The results showed 30 immunized-with group sera with the highest dilution rate of 1:32 and 20 control one with the highest dilution rate of 1:8 was observed.To develop indirect-ELISA method,the above positive and negative sera which were determined by agglutination test were used. Further the same sera were tested with indirect-ELISA developed in this study.The results showed that 30 immunized-with group sera with the highest dilution rate of 1:4 096 and 20 control one with the highest dilution rate of 1:32 was detected. According to the results, it could be concluded that the indirect-ELISA developed in this study was used as a reliable diagnostic tool to anlayze antibdy titers of immunized-with mice.
     To investigate the immunological effects induced by the microencapsulated oral inactivated vaccine, 160 elderly female mice were divided into randomly four groups,immunized-with orally group, intraperitoneally vaccinated-with group and control group, 40 mice in each group. Mice were immunized with microencapsulated oral inactivated vaccine for 7 days, inactivated whole cell vaccine of Aeronomas hydrophila and normal saline (NS) intraperitoneally respectively. The level of antibody titers in mice serum was determined by indirect ELISA . The results showed that the specific antibody response of immunized-with orally group mice was induced during the second week after immunization and effective protection against Aeomonas hydrophila, with responses similar to those observed in intraperitoneally-vaccinated with whole bacterial cells vaccine mice and an effective protection against Aeomonas hydrophila, with responses similar to those observed in intraperitoneally-vaccinated with whole bacterial cells vaccine mice. There was a significant difference in the antibody levels between the mice immunized with the microencapsulated oral vaccine and whole bacterial cells vaccine and the control group.The protection afforded by the microencapsulated oral inactivated vaccine and the existing whole bacterial cells vaccine was superior to that provided by intraperitoneally-vaccinated with NS. A time-course study indicated persistence of high specific antibody titers up to 6 weeks post-vaccination when microsperes were fed to mice. Challenge test were processed after 6 weeks post-vaccination and the relative percentage survival (RPS) was analyzed. The relative percentage survival of the vaccine fed groups were 63.3% (microencapsulated oral inactivated vaccine groupⅠ)、40%(microencapsulated oral inactivated vaccine groupⅡ)、73.3%(whole bacterial cells group)and 0%( control group) respectively.
引文
[1] Duff, D.C.E, The oral immunization of trout against Bacterium sahnonicida.J, lmmun. 1942,44:37-94.
    [2] 杨先乐等.鱼用疫苗的现状及其发展趋势.水产学报.Vol.1996,20(2):159-167.
    [3] Austin B.Bacterial fish pathogens Disease in farmed and wild fish(3rd).Chjchester Praxis Publishing Ltd.1999,237-251.
    [4] KuzykMA,BurianJ,MachanderD,etal.An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirichettsi as a bmonis.Vaccine.2001,19(17-19):2337-2344
    [5] 孙建和,严亚贤,陈怀青,等.嗜水气单胞菌亚单位疫苗的研制.中国兽医学报,1996,16(1):11-14.
    [6] Coil M. The glycoprotein G of rhabdoviruses. Arch Virol, 1995,140 (5):827-851.
    [7] Christie K E. Immunization with viral antigens: infectious pancreatic necrosis. Dev Biol Stand, 1997,90:i91-199.
    [8] Manning, L eong J C. Expression in Escherichia coli of the large genomic segment of infectious pancreatic necrosis virus. Virology, 1990, 179 (1):16-25.
    [9] Winton J R. Immunization with viral antigens: infectious haematopoietic necrosis. Dev Biol Stand, 1999, 90:211-220.
    [10] Oberg L A, Wirkkula J, Mourich D, et al. Bacterially expressed nucleoprotein of infectious hematopoietic necrosis virus augments protective immunity induced by the glycoprotein vaccine in fish. J Viroi, 1991, 65 (8):4486-4489.
    [11] Noonan B, Enzmann PJ, Trust TJ. Recombinant infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus glycoprotein epitopes expressed in Aeromonas salmonicida induceprotective immunity in rainbow trout (Oncorhynchus mykiss).Appl Environ Microbiol 1995;61:358-691.
    [12] Vaughan L M, Smith P R, Foster T J. Anaromatic-dependent mutant of the fish pathogen Aeromonas salmonicida is attenuated in fish and is effective as a live vaccine aginst the salmonid disease furunculosis. Infect Immun, 1993, 61 (5): 2172-2181.
    [13] Hernanz M C, Flano dei Castillo E, Lopez F P, et al. Molecular characterization of the Aeromonas hydrophila aroA gene and potential use of an aurotrophic aroA motant as a live attenuated vaccine.Infect Immun, 1998, 66 (5):1813-1821.
    [14] Lawrence M L,Cooper R K, Thune R L. Attenuation, persistence, and vaccine potential of an Edwardsiella ictal uri purA mutant. Infect lmmun 1997,65 (11):4642-4651.
    [15] Lawrence M L,Cooper R K, Thune R L. Attenuation, persistence, and vaccine potential of an Edwardsiella ictal uri purA mutant [J]. Infect lmmun 1997,65 (11):4642-4651.
    [16] Vanderheijden N, Alard P, Lecomte C, et al. The attenuated V60 strain of channel catfish virus possesses a deletion in ORF50 coding for a potentially secreted glycoprotein. Virology,1996,218(2):422-426.
    [17] Midtlyng P J. Novel vaccines&new vaccination strategies for fish. Bull Eur Ass Fish Pathol, 1997, 17: 239-244.
    [18] Davis H L,Mc Clusk ieM J. DNA vaccines for viral diseases.Micro Infect, 1999, 1 (1): 7-21.
    [19] Anderson E D,Mourich D V, Leong J C, et al Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Mol Mari B io Biotech, 1996, 5: 105-113.
    [20] 夏永娟,黄威权.新型鱼用疫苗的研究进展.中国水产科学.2003,3:87-89.
    [21] Lorenzen N, Lorenzen E, Einer-Jensen K, et al.Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss)following DNA vaccination. Fish Shellfish immunol 1998;8: 61-70.
    [22] Trexler G.S.Anderson E, Lapatm SE.et al.Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. 1999,38(3): 183-190.
    [23] Lorenzen E, Einer-Jensen K, Martinussen T, et al. DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus:a dose-response and time-course study. Aquat Anita Health 2000;12:67-80.
    [24] Kim CH,.lohnson MC,Drennan JD,et al.DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish.Virol.2000,74(15):7048-7054.
    [25] Heppell J, Lo renzen N,A rm strong N K, et al. Development of DNA vaccines for fish: vector design, intramuscular injection and antigen exp ression using viral haemorrhagic septicemia virus genes as model.Fish Shellfish Immunol, 1998, 8:271-287.
    [26] Gomez Ch iarriM, Ch iaveriniL A. Evaluation of eukaryo tic pro2 motets for the construction of DNA vaccine for aquacultrue.Genet A nnl, 1999, 15 (325):121-124.
    [27] Corbeil, Blanco M, deKinkelin P., Benmansour A. Combined DNA immunization with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity and nonspecific response in rainbow trout. Virology 1998;249:297-306.
    [28] Joosten, P. H. M., Aviles-Trigueros, M., Sorgeloos.,et al. Oral vaccination of juvenile carp (Cyprinus carpio) and gilthead seabream (Sparus aurata) with bioencapsulated Vibrio anguillarumbacterin. Fish &Shellfish Immunology. 1995:5, 289-299.
    [29] 余俊红,沈继红,王祥红,等.鳗弧菌口服微胶囊疫苗的制备及其对鲈鱼的免疫效果,中国水产科学.2001(2):76~80.
    [30] Romalde J.L. et al. Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis Aquaculture.2004:119-129
    [31] Johnson, K.A., Amend, D.F., Efficacy of Vibrio anguillarum and Yersinia ruckeri bacterins applied by oral and anal intubation of salmonids.Fish Shellfish lmmunol. 1983.(5): 289-299.
    [33] Lillehaug, A., Oral immunization of rainbow trout, Salmo gairdneri Richardson, against vibriosis with vaccines protected against digestive degradation. Journal of Fish Diseases. 1989 (12):579-584.
    [34] Joonsten, P.H.M., Tiemersma, E., Threels, A., et al., Oral vaccination of fish against Vibrio anguillarum using alginate microparticles. Fish Shellfish Immunol. 1997(7): 471-485.
    [35] Amend, D.F., Potency testing of fish vaccines. International symposium on fish biologics: serodiagnotics and vaccines. Dev. Biol. Stand. 1981 (49): 447-454.
    [36] Croy, T.R.&D.F.Amend., Immunization of sockeye salmon(Oncorhynchus nerka)against vibriosis using the hyperosmotic infiltration technique.Aquac., 1977(12):317-325.
    [37] 陈秀男,郭光雄.疫苗在鱼病防治上的应用.中国水产.1987(411):320~390.
    [38] Horne, M.T.,.Technicai aspects of the administration of vaccines.Fish Vaccinology. Karger, Basel, Switzeland, pp. 1997:79-89.
    [1] 毕殿洲.药剂学.北京:人民卫生出版社.1999.124.
    [2] Ranney M W.Microencapsulation Technology.Noyes Development, Park Ridge,NJ,1969.
    [3] YollesS, Leafe DI,MeyerFJ.Pharm Sci, 1975,64:115.
    [4] JaniP, Halbert GW, LangridgeJ,et al.JPharm,1990,41821.
    [5] Kranz, Hlemut W.Encapsulated Ethylenediamine Treactate for Use in Bleaches and Cletergents Containing Active Oxygen.GerOffen.2,141,280.
    [6] Yoshimoto, Masahiro.Microencapsulation Composition and KIT and Process for Producing Microcapsules.Eur.Pat.AppI.EP342,685.
    [7] Mosier, Benjamin. Production of Weighted Liquid Center Microcapsults.U.S.3,676,363,1972.
    [8] 彭洪修,古宏晨,郑志凤等.化工新型材料,2000(12):70~79.
    [9] 洪宗国.微型胶囊在胶粘剂中的应用.中国胶粘剂,2000,10(3):38~40.
    [10] Augustin, M.A., et al. Microen-capsulation food ingredients.Food AustraIlia, 2001, 53:220-223.
    [11] Sebastien Gouin. Microencapsulation: industrial appraisal of existing technologies and trends[J].Trends in food science & technology,2004,15:330-347.
    [12] Cleland J.L., et al. Recombinant human growth hormone poly (lacticcoglycolic acid) microsphere formulation development.Adv Drug Dell Rev, 1997, 28:71-75.
    [13] Sparks, R.E., Jacobs, I.C., Mason, N. S.. Microencapsulation.Drug Manufacture, Technical Series,1999, 3:177-222.
    [14] Quellet, C.,Taschi,. Ubbink,J. B.Com positematerial. USpat 2001,0008635.
    [15] Schmitt, C.,Sanchez, C., et al. Effect of protein aggregates on the complex coacervation between beta-lactoglobulin and acacia gum at pH4.2.Food Hydrocolloids,2000,14:403.
    [16] Gallagher P M, Coffey M P, Krukonis V J, et al. Supercritical fluid science and technology. ACS Symp. Series 406, Washington D C: ACS, 1989, 334-336.
    [17] Matson D W, et al. Rapid expansion of supercritical fluid solutions: solute formation of Powders,thin films,and fibers.lnd.Eng.Chem.Res,1987, 26(11):2298-2306.
    [18] Riberio Dos Santos I, Richard J, Thies C, et al. A supercritical fluid-based coating technology 2:Soubility considerations.Journal of Micriencapsulation, 2003, 20(1):97-109.
    [19] Thies C, Riberio Dos Santos I, Richard J,et al.A supercritical fluid-based coating technology 1:Processconsideration.Journalof Micriencapsulation,2003, 20(1):87-96.
    [20] Shine,A.D.,Gelb,J. Microencapsulation process using supercritical fluids. PCT WO 9815348 A 1.
    [21] Gallagher P M, Coffey M P, Krukonis V J, et al. Supercritical fluid science and technology. ACS Symp. Series 406, Washington D C: ACS, 1989, 334-336.
    [22] Mayya KS, Bhattaxharyya A, Argillier J F., Microencapsulation by complex coacervation:influence ofsurfactant.Polym Int,2003,52:644-677.
    [23] Ugwoke MI, Verbeke N, Kinget R.Mecroencapsulation of apomorphine HCI with gelation.INt Pharm. 1997,148:23-32.
    [24] 陆继锋,金劲松.复凝聚法制备农药微胶囊的研究.安徽农业科学,1999,27(3):201~203.
    [25] 王光远,罗名科.复合凝聚法制备辛硫磷微胶囊剂的研究.农药,1998,37(11):14~16.
    [26] Jones D S, Pearce k J.An investigation of the effects of some propranolol hydrochloride by the solvent evaporation method.Int Pharm, 1995,118:199-205.
    [27]Sajcerv C,Vinay G,Archua R,et al.Oral controlled released formation of diclofenacsodium(DFS) by microencapsulation.2002,19(6):753~760.
    
    [28] Thomas G A,Seton L,Davoy R G,et al.Using a eulsion membrane system for the encapsulation of organic and inorganic substreates within inorganic microcapsule.Chem Commun.2002,1072~1073.
    [29] Higashizka E.Pesticide microencapsulation with ceramic and degradable particle used in building materials.J P.233710, 2001-08~20.
    
    [3o]谈定生,严年喜,施亚钧.无机粉体的聚合物胶囊化过程研究.高分子材料科学与工程, 1999,15, (6): 10.
    
    [30]GaleW, Matson,Minneapolis,Minn.Microcapsule-contaming Paper.US Pat,3516846,1970.
    
    [31]Hans Eberhard Praetzel, Schubertstr, Herbert Jenkner.Shaped articles comprising self-extingushing compositions of plastics and microcapsulation containing flame-abating compounds and process for producing the same. US Pat,3660321,1972.
    
    [32]Chen Jingden, Kerry Kovacs, Margaret T Thomas, et al.Methods for the producting of microcapsulesusing functionalized isocyanate. US Pat 5011885,1991.
    
    [33]MarvinGoldberg, Marlboro N J, David M Kellneer, et al.Antiperspirant/deodorant containing Microcapsules. US Pat.517fi903.1993.
    
    [34]RobertP Arens, North St Paul, Norman P Sweeny,et al.Encapsulation process. US Pat ,3423489,1969.
    
    [35] William Morris, Mark C. Steinhoff and Philip K. Russell Potential of polymer microencapsulation technology for vaccine innovation. Vaccine, 1994,12(1):5~11.
    
    [36] Neil Foster ,Barry H. Hirst.Exploiting receptor biology for oral vaccination with biodegradable particulates .Advanced Drug Delivery Reviews, 2005,57: 431~450.
    
    [37] David J. Brayden, Mark A. Jepson and Alan W. Baird.Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting .Drug Discovery Today, 2005,10: 1145~1157.
    
    [38] J. E. Eyles, E. D. Williamson, I. D. Spiers, et al.Generation of protective immune responses to plague by mucosal administration of microsphere coencapsulated recombinant subunits. 2000,63:191-200.
    
    [39]Maloy, K.J., Donachie, A.M., et al.Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly (lactide-co-glycolide) microparticles. Immunology 1994,81:661-667.
    
    [40]Moore, A.,McGuirk,P., Adams, S.,et al.Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8_cytotoxic T lymphocytes and CD4-Thl cells. Vaccine 1995, 13:1741-1749.
    [1] Pemberton JM, Kicld SP, SchmidtR.Secreted enzyme of Aeromonas.FEMS Microbiology Letters, 1997,15:1-10.
    [2] Adams, M. R., & Moss, M. O. Food Microbiology (seconded.).Cambridge: Royal Society of Chemistry. 2000.
    [3] Amend, D.F., Potency testing of fish vaccines. International symposium on fish biologics: serodiagnotics and vaccines. Dev. Biol. Stand. 1981 (49): 447-454.
    [4] Croy,T.R.&D.F.Amend.,Immunization of sockeye salmon(Oncorhynchus nerka)against vibriosis using the hyperosmotic infiltration technique.Aquac., 1977(12):317-325.
    [5] Horne, M.T.,.Technical aspects of the administration of vaccines.Fish Vaccinology. Karger, Basel, Switzeland, pp. 1997:79-89.
    [6] Lillehaug, A., Oral immunization of rainbow trout, Salmo gairdneri Richardson, against vibriosis with vaccines protected against digestive degradation. Journal of Fish Diseases. 1989 (12):579-584.
    [7] Johnson, K.A., Amend, D.F.,Eifficacy of Vibrio anguillarum and Yersinia ruckeri bacterins applied by oral and anal intubation of salmonids. Fish Shellfish Immunol. 1983.(5): 289-299.
    [8] Joonsten, P.H.M.,Tiemersma,E.,Threels,A., et al., Oral vaccination of fish against Vibrio anguillarum using alginate microparticles.Fish Shellfish Immunol. 1997(7): 471-485.
    [9] Duff, D.C.P. The oral immunization of trout against Bacterium salmonicida.Immun. 1942, 44:37-94.
    [10] Maloy,K.J.,Donachie,A.M.,O'Hagan,D.T.et al.lnduction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles.Immunology.1994, 81,661-667.
    [11] Mayya KS, Bhattaxharyya A,Argillier J F.,Microencapsulation by complex coacervation:influence of surfactant.Polym Int,2003,52:644-677.
    [12] 陈怀青,陆承平.家养鲤科鱼暴发性传染病的病原研究.南京农业大学学报,1991,14(4):87-91.
    [13] 徐怀恕,杨学宋李筠等.对虾苗期细菌病害的诊断与控制[M].北京:海洋出版社,1999.170-171.
    [14] 陈怀青.鱼类免疫接种的理论与实践.国外水产,1995(3):7-10.
    [15] ChairM,Gapasin RSJ,DehasqueM,etal.Vaccination of Eurpean sea bass fry through bioencapsulation of Artemianaupl[J].Aqualnt,1994,2(4):254-261
    [16] Hart, S., Wrathmell, A.B., Harris, J.E.,Ontogeny of gut-associated lymphoid tissue (GALT) in the dogfish Scyliorhinus canicula L.Vet.Immunol. Immunopathol. 1986,12, 107-116.
    [17] JoostenPHM, TiemersmaE, Threels A,etaI.Oral vaccination of fish against Vibrio anguillarum using alginate microparticle[J].Fish&Shell fish Immunology, 1997,7(7):471-485.
    [18] 余俊红,沈继红,王祥红,等.鳗弧菌口服微胶囊疫苗的制备及其对鲈鱼的免疫效果,中国水产科学.2001(2):76-80.
    [1] 陆承平.致病性嗜水气单胞菌及其所致鱼病.水产学报1992,16(3):282-288.
    [2] AltweggM,GeissHK.Aeromonas as a human pathogen Crit Rev Microbiol, 1989,16:253-286.
    [3] N.C. Stuart, Treatment offish diseases. Vet. Rec. 1983 (112):173-177.
    [4] lrie T, Watarai T, lwasaki T..Protection aganinst experimential Aeromonas infection in carp by oral immunisation with bacterial antigen entrapped liposomes.Fish Shellfish.Immunoi,2005,18(3):235-242.
    [5] 陈怀青,陆承平.家养鲤科鱼暴发性传染病病原研究.南京农业大学学报,1991,14(4):87-91.
    [6] 朱立平,陈学清,主编,免疫学常用实验方法,北京:人民军医出版社,2000.
    [7] Roberson B S,Stolen J S,Fletcher T C.Bacterial agglutination.Techniques in Fish immunology, Fair Haxan N J:SOS Publictions, 1990,81~86.
    [8] 秦磊,姚火春,陆承平.嗜水气单胞菌与迟缓爱德华氏菌灭单位二联疫苗对小鼠的免疫效果.中国兽医学报.2000,53-55.
    [1] S.D.Putney,P.A. Burke,Improving protein therapeutics with sustained-release formulations, Nat. Biotechnol. 1998,2 (16):153-157.
    [2] S.Cohen,L.Chen,RonN.Apte,Controlled release of peptides and proteins from biodegradable polyester microspheres: an approach for treating infectious diseases and malignancies, React. Polym. 1995,25:177-187.
    [3] H. Sah, R. Toddywala, Y.W. Chien, Continuous release of proteins from biodegradable microcapsules and in vivo evaluation of their potential as a vaccine adjuvant, J. Control. Release 1995,35:137-144.
    [4] M. Singh, X.M. Li, J.P. McGee, T. et al. Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice,Vaccine.1997,15(5):475-481.
    [5] K.S. Jaganathan, P. Singh, D. Prabakaran, Development of a single-dose stabilized poly (D,L-lactide-co-glycolide) miceospheres-based vaccine against hepatitis B.Pharm.Pharmacol. 2004,56:1243-1250.
    [6] Grave, K., and Nafstad, I. Prescription of veterinary drugs in fish farming. Veterinary Record. 1995,137:51-52.
    [7] Ellis, A. E. General principles of fish vaccination. In Fish Vaccination (A. E.Ellis, ed.)pp. 1988,1-31. London: Academic Press.
    [8] 陈怀青,陆承平.家养鲤科鱼暴发性传染病病原研究.南京农业大学学报,1991,14(4):87-91.
    [9] 陈怀青,陆承平.嗜水气单胞菌表层蛋白及外膜蛋白的初步分析.南京农业大学学报,1993,16(2):6-73
    [10] 严亚贤,孙建和,陈怀青,等.嗜水气单胞菌菌毛的提纯及特性分析.南京农业大学学报,1995,18(3):88-935
    [11] 严亚贤,陈怀青,陆承平.嗜水气单胞菌S蛋白提纯及其特性分析.微生物学报,1996,36:144-150.
    [12] 孙建和,严亚贤,陈怀青,等.致病性嗜水气单胞菌保护性抗原的研究.中国人兽共患病杂志,199713:20-23.
    [13] Hart, S., Wrathmell, A. B., Harris, J. E. & Grayson, T. H. Gut immunology in fish: a review. Developmental and Comparative Immunology. 1988, 12:453-480.
    [14] Neil Foster, Barry H. Hirst.Exploiting receptor biology for oral vaccination with biodegradable particulates.Advanced Drug Delivery Reviews, 2005,57:431-450.
    [15]Joosten, P. H. M., Aviles-Trigueros, M., Sorgeloos, P.et al.. Oral vaccination of juvenile carp (Cyprinus carpio) and gilthead seabream (Sparus aurata) with bioencapsulated Vibrio anguillarum bacterin. Fish &Shellfish Immunology .1995,5,289~299.
    
    [16]Joosten, P. H. M, Aviles-Trigueros,et al. Oral vaccination of juvenile carp (Cyprinus carpio) and gilthead seabream (Sparus aurata) with bioencapsulated Vibrio anguillarum bacterin. Fish &Shellfish Immunology.1995:5,289~299.
    
    [17]L. Shi, M.J. Caulfield, R.T. Chem, R.A. et al.Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres, J.Pharm. Sci. 2002, 91: 1020~1035.
    
    [18]David J,Brayden, Mark A. Jepson et al.Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting Drug Discovery Today.2005,10:1145-1157.
    
    [19] J.H. Eldridge, J.K. Staas, J.A. Meulbroek,et al,Biodegradable and biocompatible poly (lactide-co-glicolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralising antibodies, Infect. Immun.1991,59:2978~2986.
    
    [20]Roberson B S,Stolen J S,Fletcher T C.Bacterial agglutination.Techniques in Fish immunology,Fair Haxan N J:SOS Publictions,1990,81~86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700