双向转录/表达载体的构建及重配H9N1亚型流感病毒的拯救
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感(Avian Influenza, AI)即禽流行性感冒,是一种烈性传染病,被OIE归为A类传染病。近年来,AI已成为为人类面临的最严重的健康威胁之一。
     本研究以pcDNA3质粒为骨架自行构建双向转录/表达载体pHW2008,然后将人工合成的鸡胚高度复制流感病毒株A/Puerto Rico/8/34(H1N1)的8个内部基因cDNA克隆到其上得到8个pol I-pol II系统的转录/表达质粒,分别命名为pHW2008-PB2、pHW2008-PB1、pHW2008-PA、pHW2008-HA、pHW2008-NP、pHW2008-NA、pHW2008-M、pHW2008-NS。接着将这8个重组质粒,转染293T与MDCK混养细胞,利用细饱中的polI和pol II RNA聚合酶,转录出vRNA和mRNA,完成病毒粒子的组装,接着由产生的病毒粒子进入自然感染条件下的增殖过程,从而拯救出病毒,然后经接SPF鸡胚得到大量病毒,并通过电镜确定病毒拯救出来,由此证明此系统的成功建立。
     在建立鸡胚高度复制流感病毒株A/Puerto Rico/8/34 (H1N1) 8质粒系统后,提取本室分离的AIV Isolate3(H9N2)基因组,经RT-PCR的方法得到HA基因,将其克隆双向转录/表达载体pHW2008载体上,得到HA转录/表达质粒。接着与构建好的包含A/ Puerto Rico/8/34(H1N1)七个内部基因双向转录/表达质粒pHW2008-PB2、pHW2008-PB1、pHW2008-PA、pHW2008-NP、pHW2008-NA、pHW2008-M、pHW2008-NS,共转染293T与MDCK混养细胞,拯救出重配H9N1亚型流感病毒减毒株,还对其进行了部分生物学特性分析。我们建立的重配H9N1亚型流感病毒株反向遗传系统将为下续工作禽流感病毒变异机理研究及流感减毒活疫苗的研制奠定了坚实的基础。
Avian Influenza (AI) or Avian Influenza, commonly called as Fowl Plague or European roup, is a highly contagious disease of poultry caused by Avian influenza virus which belongs to A-type influenza virus in orthomyxoviridae family.This disease has been classified as A class infectious diseases by OIE and can be divided into highly pathogenic avian influenza, low-pathogenic and non-pathogenic avian influenza according to the nature of pathogen. Infected with the non-pathogenic bird flu, birds have no obvious symptoms ,but can produce antibodies;Infected with the non-pathogenic bird flu, Birds have no obvious symptoms ,but can produce antibodies; Infected with low-pathogenic avian influenza, Birds have mild respiratory symptoms, reduced food intake , drop in egg production and sometimes happen sporadic death ; Infected with the highly pathogenic avian influenza (HPAI),there are a high clinical morbidity and mortality, and often annihilated in infected fl℃ks .Historically, three times of an influenza pandemic brought huge losses to human life and property, of which the most serious is the 1918 -1919 influenza pandemic, resulting in approximately 4000 million to 5000 million people's death in world-wide. Over the past 10 years, the highly pathogenic avian influenza virus have large-scale epidemic in the world, causing the poultry, wild birds, mammals and human infections and deaths, which result in huge losses, and is of great the international community and the World Health Organization ( WHO) concern. But , people mostly concerned about the problem of human infection with highly pathogenic avian influenza viruses at the moment and there are a high mortality rate in people infected by the highly pathogenic avian influenza virus according to the data provided by WHO .Therefore, the control of the bird flu has become more pressing than ever.
     The successful establishment of Influenza virus reverse genetics technology provides a powerful tool for the study on the avian flu .The establish of plasmid-based reverse genetics operating system for influenza virus ,especially eight plasmids rescue system constructed by Erich Hoffmann bring a simple, convenient operating platforms for the research of avian flu virus. In this dissertation, we used the eight-plasmid rescue system and selected 7 internal gene of influenza strain A/ Puerto Rico/8/34 (H1N1) as the genetic backbone for generation of recombinant H9N1 subtype influenza virus and 7+1 reassorttants expressing the HA from AIV Isolate3(H9N2) separated by our lab and identified by the Harbin Veterinary Institute, which are well-targeted and very safe for public health , and lay the foundation for the study on the epidemy of influenza viruses, trans-species dissemination and so on .The study include:
     1. The construction of bi-directional transcription / expression vector pHW2008
     In order to rescue the virus Successful , an appropriate expression vector is necessary, which plays a vital role, and the rescue of influenza virus reassortment strains is not an exception. Because there is no bi-directional transcription / expression vector commercial product , according to reference, we construct the bi-directional transcription / expression vector. Firstly ,we derive the backbone of pHW2008 from the cloning vector pcDNA3. containing the immediate early promoter of the human cytomegalovirus (CMV) and the poly A site of the gene encoding bovine growth hormone (BGH), then insert synthetic human pol I-promoter and terminator sequences between the polIipromoter and the polyA-site.finally identified it by Restriction Endonuclease Reaction and sequence and verified its functions ,which provide condition for the establish of eight Plasmids system.
     2.The construction of eight plasmids system for influenza virus
     Firstly, We digest 8 internal gene cDNA of influenza strain A/ Puerto Rico/8/34 (H1N1) which are chicken embryo-adapted from these recombinant plasmids: pMD18-T-PB2, pMD18-T-PB1, pMD18-T-PA , pMD18-T-HA, pMD18-T-NP, pMD18-T-NA, pMD18-TM, pMD18-T-NS, then cloned them into the transcription/expression vector pHW2008 vector to produce 8 polI-polII system, the transcription/expression plasmids: pHW2008-PB2,pHW2008-PB1,pHW2008-PA,pHW2008-HA,pHW2008-NP,pHW2008-NA, pHW2008-M, pHW2008-NS,finally, verified them by sequence. After constructed, these eight recombinant plasmids are transfected into 293T /MDCK cells, in which vRNA and mRNA can be transcripted under the use of polI and pol II RNA polymerase, and are assembled into virus particles which can go into the proliferation pr℃ess just like natural infection .After saving the virus, we get a large number of the virus by culture in SPF and verified virus by transmission electron microscopy which proved that this rescue system is established successfully.
     3 Rescue of reassortant attenuated H9N1 subtype influenza virus
     After the establishment of 8 plasmids rescue system for A / Puerto Rico/8/34 (H1N1), we decided to rescue Reassortant attenuated H9N1 Subtype Influenza Virus. First, we get HA gene by extracted AIV Isolate3 (H9N2) genome and cloned it into pMD18-T vector identified by sequence,then get HA transcription / expression plasmid pHW2008-H9HAby clone the correct HA gene from AIV Isolate3 (H9N2) into bi-directional transcription / expression vector pHW2008 vector.After these,we rescue Reassortant attenuated H9N1 Subtype Influenza Virus by transfection pHW2008-PB2, pHW2008-PB1, pHW2008-PA, pHW2008-NP, pHW2008-NA, pHW2008-M , pHW2008-NS and pHW2008-H9HA into 293T and MDCK cells, and verified it by hemagglutination test, RT-PCR method, Gene chip technology and transmission electron microscope, then, study its biological characterization.The establishment of reverse genetic system for Reassortant attenuated H9N1 Subtype Influenza Virus laid a solid foundation for next works:study on mutation mechanism of bird flu virus and manufacture of live attenuated influenza vaccine .
引文
[1] Lamb, R. A. and Krug, R. M. (2001) Orthomyxoviridae: The viruses and their replication, inFields Virology, 4th ed. (D. M. Knipe and P. M. Howley, eds.). Philadelphia: Lippincott,Williams and Wilkins, pp. 1487–1532.
    [2] Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G., and Kida, H. (1995)Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch. Virol. 140,1163–1172.
    [3] Stallknecht, D. E., Shane, S. M., Zwank, P. J., Senne, D. A., and Kearney, M. T. (1990) Avianinfluenza viruses from migratory and resident ducks of coastal Louisiana. Avian Dis. 34,398–405.
    [4]赵继勋,秦卓明,欧阳文军,何叶峰;禽流感的综合防治[J];山东家禽;2002 ,05
    [5] Nan Nan Zhou, Kennedy F, Shortridge, et al. Rapid Evolution of H5N1 Influenza Viruse in Chicken in Hong Kong[J]. Journal of Virology, 1999, 73:3366-3374.
    [6] Briden A,Elliott RM.Rescue of a segement negative strand RNA virus entirely from cloned complimentary DNAs.Pr℃Natle Acad Sci USA,1996,92(1):15400-4.
    [7]郑腾,陈枝华;禽流感的历史和公共卫生意义[J];生物学通报;2002,04
    [8] Wan XF,Ozden M,Lin G.Ubiquitous reassortments in influenza a viruses[J].Bioinform Comput Biol, 2008,6(5):981-99.
    [9] Biswas SK,Boutz PL, Nayak DP.Influenza virus nucleoprotein interacts with influenza virus polymerase proteins[J].J Virol, 1998, 72(7): 5493-5501.
    [10] Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J]. Science, 1998, 279: 393-396.
    [11] Capua I, Alexander DJ.Avian influenza and human health[J].Acta Trop, 2002, 83(1): 1-6.
    [12] Lewis DB.Avian flu to human influenza[J].Annu Rev Med, 2006, 57: 139-154.
    [13] Vaque-Rafart J.The threat of avian influenza human pandemic[J].Med Clin (Barc), 2006, 126(5): 183-188.
    [14] Fouchier RA, Munster V, Wallensten A,et al.Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls[J].J Virol, 2005, 79(5): 2814-2822.
    [15] Napoli C,Lemieux C,Jorgensen R.Introduction of a Chimeric Chalcome Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in teans.Plant Cell.1990 Apr;2(4):279-289.
    [16] Steiner DE,Smeekens SP,Ohagi S,et al.The new enzymology of precursor pr℃essing endoproteases[J].J Biol Chem,1992,267(33):23435-23438.
    [17] Shantba Kodihalli,Hideo Goto,Darwyn L kobas,etal.DNA vaceine encoding hemagglutinin proteetive immunity against H5N1 influenza virus infection in mice[J].Journal of virology,1999,73(3):20942-20198.
    [18] Kawaoka Y.,C.W.Neave,R.G.Webster.Is virulence of H5N2 influenza viruses in chickens ass℃iated with loss of carbohydrate from the hemagglutinin [J].Virology,1984,139:303-316.
    [19]Senne D.A,B.Pamigraphy,H.Kida, etal.Survey of the hemagglutinin(HA)cleavage site sequence H5 and H7 avian influenza viruses.amino acid sequence at the HA cleavage site as a marker of pathogenicity potentia[J].Avian Dis,1996,40:425-437.
    [20] Mat rosovich M N1 H9N2 influenza A viruses f rom poult ry in Asia have human virus2like receptor specificity[J ]Virology , 2001 , 281 :56-62
    [21]郭元吉1禽H9N2亚型流感病毒能感染人的发现[J ]中华实验和临床病毒学杂志,1999 , 13 :105-108
    [22] Walker J A , Kawaoka Y1 Importance of conserved amino acids at the cleavage site of a virulent avian influenzaA virus[J ]1 J Gen Virol , 1993 ,74 :311-314
    [23] Shinya K, Ebina M , Yamada S , et al1 Influenza virus receptors in the humanairway[J ] Nature ,2006 ,440-435
    [24] Van Riel D , Munster V J , De Wit E , et al1 H5N1 virus attachment to lower respiratory t ract [J ] Science Express , 2006 , 312 :399
    [25] Choppin P W1 The role of viral glycoprotein in adsorption , penet ration , and pathogenicity of viruses[J ] RevInfect Dis , 1980 , 2 :40
    [26] Mat rosovich M1 The surface glycoproteins of H5 influenza viruses isolated f rom humans , chickens and wildaquatic birds have distinguishable properties[J ] J Virol , 1999 ,73 :146-155
    [27] Suzuki T, Takahashi T, Saito T, et al. Evolutional analysis of human influenza Avirus N2 neuraminidase genes based on the transition of the low-pH stability of sialidase activity[J]. FEBS Letter, 2004,557,228-232.
    [28] Taisuke H ,Yoshihiro K P. Threat posed by Avian influenza A viruses[J]. Clinical Microbiology Reviews , 2001 , 14 ( 1) : 129~149.
    [29] Lazarowitz SG, Choppin PW.Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide[J].Virology, 1975, 68(2): 440-454.
    [30] Blok J,Air G M.Bl℃k deletions in the neuraminidase genes from some influenza A viruses of the N1 subtype[J].Virology, 1982,118(1):229-234.
    [31] Els M C,Air G M,Murti K G,et al.An 18-amino acid deletion in an influenza neuraminidase[J].Virology,1985,142(2):241-247.
    [32] Castrucci M R,Kawaoka Y.Biologic importance of neuraminidase stalk length in influenza A virus[J].J Virol,1993,67(2): 759-764.
    [33] Spiess M,Handschin C.Deletion analysis of the internal signal-anchor domain of the human asialoglycoprotein receptor H1[J].EMBO J,1987,6(9):2683-2691.
    [34] Sivasubramanian N,Nayak D P.Mutational analysis of the signal-anchor domain of influenza virus neuraminidase[J].Pr℃Natl Acad Sci U S A,1987,84(1):1-5.
    [35]赵小东,韩峰,王艳,等.表达流感病毒神经氨酸酶基因的重组腺病毒的构建[J].中国病毒学,2003,18(3):213-216.
    [36]陈则.A型流感病毒血凝素、神经氨酸酶DNA疫苗研究[J].微生物学杂志,2003,23(5):1-4.
    [37]丁文正.用无神经氨酸酶的甲型流感病毒变异株对雪貂鼻内免疫的保护效果[J].国际生物制品学杂志,2006,29(3):140.
    [38] Lazarowitz S G. Maize streak virus genes essential for systemic spread and symptom development[J]. EMBO J, 1989, 8 : 1023-1032.
    [39] Maria C. Zambon. The pathogenesis of influecza in humans[J ] . Rev. Med. Virol , 2001 ,11 :227 - 241. [40 ]杨志刚,陈阿琴,俞颂东,等.禽流感病毒血凝素基因的研究进展[J ] .中国兽医科技, 2005 ,35 (4) : 322 -326.
    [41]马学恩,杨彩然.高致病性禽流感及其病毒的分子生物学特性[J ] .畜牧与饲料科学,2006 , 27 (1) :19 - 21.
    [42]郭元吉.高致病性禽流感研究进展[J ] .中华实验和临床病毒学杂志,2006 ,20 (2) : 90 - 93.
    [43] Biswas SK,Boutz PL,Nayak DP.Influenza virus nucleoprotein interacts with influenza virus polymerase proteins[J].J Virol, 1998, 72(7): 5493-5501.
    [44]甘孟候.禽流感(第二版).北京:中国农业出版社,2002:15-79.
    [45] Elton D, Medcalf L, Bishop K,et al..Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding[J].J Virol, 1999, 73(9): 7357-7367.
    [46] Shu LL, Bean WJ, Webster RG.Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990[J].J Virol, 1993, 67(5): 2723-2729.
    [47] Kobayashi M, Toyoda T, Adyshev DM,et al..Molecular dissection of influenza virus nucleoprotein deletion mapping of the RNA binding domain[J].J Virol, 1994, 68(12): 8433-8436.
    [48] Scholtissek C.Source for influenza pandemics[J].Eur J Epidemiol, 1994, 10(4): 455-458.
    [49] Jariwalla RJ,Roomi MW,Gangaqurkar B,et al. Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids[J]. Biofactors, 2007,31(1):1-15.
    [50] Ludwig S,Wolff T,Ehrhardt C,et al..MEK inhibition impairs influenza B virus propagation without emergence of resistant variants[J].FEBS Letter, 2004, 561(1-3): 37-43.
    [51] Elster C, Fourest E, Baudin F,et al.A small percentage of influenza virus M1 protein contains zinc but zinc does not influence in vitro M1-RNA interaction[J].J Gen Virol, 1994, 75 ( Pt 1): 37-42.
    [52] Sha B,Luo M.Structure of a bifunctional membrane-RNA binding protein,influenza virus matrix protein M1[J].Nat Struct Biol,1997,4(3):239-244.
    [53] LiuW, Zou P, Ding J, et al. Sequence comparison between the extracellular domain of M2 protein human and avian influenza virus provides new information for bivalent influenza vaccine design [J]. Microbes-Infect ,2005 , 7 (2) : 171-177.
    [54] CastrucciMR, Kawaoka Y. Reverse genetics system for generation of an influenza A virusmutant containing a deletion of the carboxy terminal redidue of M2 protein[J]. Virol 1995 , 69 : 2725-2728.
    [55] Hale BG,Barclav WS,Randall RE,et al.Structure of an avian influenza A virus NS1 protein effector domain[J]. Virology, 2008 ,378(1):1-5.
    [56] Wang L,Suarez DL,Pantin-Jackwood M,et al.Characterization of influenza virus variants with different sizes of the non-structural (NS) genes and their potential as a live influenza vaccine in poultry[J]. Vaccine, 2008 ,26(29-30):3580-3586.
    [57] Obenauer JC,Denson J,Mehta PK,et al.Large scale sequence analysis of avian influenza isolates [J]. Science, 2006, 311(5767):1576-1580.
    [58] Seo SH,Hoffmann E,Webster RG.The NS1 gene of H5N1 influenza virusescircumvents the host anti-viral cytokine responses[J].Virus Res, 2004, 103(1-2): 107-113.
    [59] Webster R.G., W.G.Laver.The origin of pandemic influenza[J].Bull W.H.O,1972,47:449-452.
    [60] Bean W.J.,N.J.Cox, A.P.Kendal.Recombinations of human influenza A virus in Nature[J].Nature,1980,284:638-640.
    [61] Hinshaw V.S.,R.G.Webster , B.Turner.The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl[J].Can.J.Microbiol.,1980,26:622-629.
    [62] Young,J.F.,P.Palese.Evolution of human influenza A viruses in Nature recombination contributes to genetic variation of H1N1 strains[J]. Pr℃.Natl.Acad.Sci.USA. 1979,76: 6547-6551.
    [63] Anjeanette Roberts, John K. Rose. Recovery of Negative-Strand RNA viruses from plasmid DNAs: A positive approach revitalizes a negative field[J]. Virology, 1998;247(1):1-6.
    [64] Goff SP, Berg P . Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells[J]. Cell,1976;9: 695-705.
    [65] Post LE, Roizman B. A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth[J].Cell, 1981; 25(1):227-232.
    [66] Mackett M, Smith Gl, Moss B. Vaccinia virus: a selectable eukaryotic cloning and expression vector[J]. Pr℃Natl Acad Sci USA. 1982, 79(23):7415-7419.
    [67] Racaniello VR,Baltinore D. Cloned poliovirus cDNA is infectious in mammalian cells[J]. Science,1981;214(4523):916-919.
    [68] Lai CJ, Zhao B, Hori H, et al. Infectious RNA transcribed from stably cloned full-length cDNA of dengue virus type 4[J]. Pr℃Natl Acad Sci USA,1991; 88(12):5139-5143.
    [69] Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectiouspoliovirus RNA[J]. Pr℃Natl Acad Sci USA, 1985; 82(24): 8424--8428.
    [70]. Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus[J]. Cell,1989;59:1107-1113.
    [71]Durbin AP, Hall SL, Siew JW, et al. Recovery of infectious human parainfluenza virus type 3 from cDNA[J]. Virology, 1997; 235(2):323-332
    [72]. Hoffman MA, Banerjee AK. An infectious clone of human parainfluenza virus type 3[J]. J Virol, 1997; 71:4272-4277.
    [73] Duke G M.Palmenberg A C Cloning and synthesis of infectious cardiovirus RNAS containing short discrete poly(C) tracts 1989(4)
    [74] Cello J.Paul AV.Wimmer E Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template 2002
    [75] Honda A,Ueda K,Nagata K et al.Identification of the RNA polymerase-binding site on genome RNA of influenza virus.J Bi℃hem(Tokyo),1987,102:1241-49.
    [76] Huang TS,Palese P,Krystal M,Determination of infllienza virus protein required for genome replication. J Virol,1990,64:5669-9.
    [77] Enami M.Improved technique to genetically manipulate influenzan virus.International Conference on Negative Strand Virues 1997,Dublin,Ireland,Abstr.93:96
    [78] Neumann G, Watanabe T,Ito H,etal. Generation of influenza A viruse entirely from cloned cDNAs. Pr℃Natl Acad Sci USA,1999,96,9345-50.
    [79] Fodor E,Devenish L,Engelhardt OG, et al. Rescue of influenza A viruse from recombinant DNA. J Virol,1999,73:9679-82.
    [80] Hoffmann E,Neumann G,Hobom G, et al‘Ambisense’approach for the generation of influenza A viruse: vRNA and mRNA synthesis from one template. Virology, 2000,267,310-317.
    [81] Hoffmann E,Webster RG.Unidirectional RNA polymerase–polymerase transcription system for the genetion of influenza A viruse from eight plasmids. Pr℃e Natl Acade Sci USA,2000,97:6108-6133.
    [82]Hatta M, Gao P, Halfmann P, et al. characterization of the influenza A virus gene pool in avain specise in sourhern China: was H6N1 a derivarive ot a precursor of H5N1? J Virol,2000, 74(14):6309-15.
    [83]石火英,刘秀梵;利用反向遗传技术研究H9N2亚型AIV传播途径的分子机制[J];微生物学报; 2006年01期
    [84]采用反向遗传学技术构建H5亚型禽流感疫苗株Generation of avian influenza vaccine strain of subtype H5 by reverse genetics作者:童俊容,刘明,刘春志,童光志,陈政良,期刊-核心期刊免疫学杂志IMMUNOLOGICAL JOURNAL 2006年第05期
    [85] Massab HF,Bryant ML. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev Med Virol,1999,9:237-44.
    [86] Hofmann E, Webster R G. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. Journal of General Virology, 2000a, 81, 2843-2847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700