水稻骨干亲本SSSL群体的构建与QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是一种重要的粮食作物,多数性状为多基因控制的数量性状,对数量性状基因座进行鉴定和定位,对水稻遗传育种具有重要意义。单片段代换系(single segmentsubstitution line,SSSL)只含有一个来自供体亲本的染色体片段,消除了遗传背景的干扰,是用于QTL鉴定和精细定位的重要试验材料。本研究选用三系杂交稻恢复系蜀恢527为供体亲本,两系杂交稻恢复系93-11为轮回亲本,利用回交和分子标记辅助选择相结合的方法,建立了113个单片段代换系,利用其中42个单片段代换系对抽穗期、着粒密度和有效穗数等3个重要农艺性状进行了QTL鉴定和分析,主要结果如下:
     1、用359对微卫星标记对供体亲本蜀恢527和受体亲本93-11之间的多态性进行了检测,共筛选出81对在亲本间具有明显多态性且带型较好的分子标记,标记间的平均间隔距离为18.81cM,亲本间的多态率为22.56%。
     2、在BC_3F_3和BC_2F_4世代共筛选到113个SSSL,其中包括17组重复片段代换系和13个非重复片段代换系,共30个不同的SSSL。这些单片段代换系上的代换片段分布于水稻的9条染色体上,但在各条染色体上的分布很不均匀,其中5号染色体的候选SSSL最多,有35个。所有单片段代换系代换片段的总长度为3910.88cM,平均每个代换片段的长度为34.61cM。113个单片段代换系的代换片段覆盖基因组的总长度为368.7cM,占水稻基因组全长的24.13%。
     3、用SSR和ISSR分子标记对候选单片段代换系进行了遗传背景分析。平均背景相似率为97.27%,遗传背景上供体亲本残留片段的平均覆盖率为0.46%。
     4、通过t测验比较单片段代换系与受体亲本之间的差异,以P≤0.001为QTL存在的标准,利用42个单片段替换系共鉴定出水稻3个重要农艺性状的17个QTL,分别为9个抽穗期QTL,7个着粒密度QTL和1个有效穗数QTL。本研究检出的QTL中有Hd-3、Hd-6-1、Hd-8-2和Hd-11等4个与前人的研究结果相似,另外13个为新检出的QTL。
     5、用于QTL鉴定的42个单片段代换系中共有7个片段重叠群,利用代换作图法将其上的数个QTL定位在了更短的区段上,其中抽穗期QTL Hd-9被定位于RM23785和RM23918之间,区段长度为1.62cM。通过代换作图法还鉴定出一个抽穗期QTL Hd-8-3,定位在17.75cM的区段上。
     本研究建立了一批水稻的单片段代换系,并分析了代换片段上三个重要农艺性状的QTL,为分子标记辅助育种和水稻品种的遗传改良奠定了一定基础。
Rice (Oryza sativa L .) is the world's most important food crop,and its most traits are quantitative traits,which are controlled by polygene. It is very important for rice genetics and breeding to identify and map quantitative trait loci(QTL). Single segment substitution line contains only one chromosome segment from donor,and eliminates the interference of the genetic background.SSSL is a important test material to identify and finely map.The present research has developed 113 SSSLs which substituted segments from three-line hybrid rice restorer line Shuhui527(donor parent) were introgressed into an elite genetic background of two-line hybrid rice restorer line 93-11 (recipient parent),using backcross and marker-assisted selection(MAS).This study identified and analyzed the QTL for heading date (Hd)、effective panicle number (Epn) and spikelet setting density (Ssd) using 42 Single segment substitution lines selected from SSSL population. The main results are as follows:
     1. The polymorphism between donor parent Shuhui527 and recipient parent 93-11 was detected by using 359 microsatellite markers.81 molecular markers which presented clear banding pattern showed definite polymorphism between parents. The average interval distance between adjacent markers is 14.44 cM. The percent of polymorphism is 22.56% between parents.
     2. 113 single segment substitution lines with the 93-11 genetic background have been developed in BC_3F_3 and BC_2F_4 generations. 113 SSSLs contain 17 repetitive segment substitution lines and 13 nonrepetitive segment substitution lines,30 different SSSLs in all. Substituted segments of these SSSLs distribute on 9 chromosomes of rice, but the distribution is uneven on 9 chromosomes, and most candidate SSSLs which number are 35 are on NO.5 chromosome.The total length of all substituted segments is 3910.88cM, and the average length of each substituted segment is 34.61cM. The total coverage length of substituted segments of 113 SSSLs is 368.70cM in the rice genome,to account 24.13% of rice genome's total length.
     3. This study have analyzed genetic background of candidate SSSLs using SSR and ISSR molecular marker. The average background similar percent is 97.27%,and the average covered percentage of donor parent's residual segments is 0.46% on the genetic background.
     4. 17 QTLs for 3 important agronomic traits of rice have been detected in 42 SSSLs through t-test(P≤0.001) between the SSSL and recipient. These 17 QTLs contain 9 QTLs for heading date (Hd)、7 QTLs for spikelet setting density (Ssd) and 1 QTL for effective panicle number (Epn). Hd-3、Hd-6-1、Hd-8-2 and Hd-11 identified in the present research are similar with the previous studies,the other 13 QTLs are the new study.
     5. There are 7 segment-overlapping groups in 42 SSSLs used to identify QTL.Several QTLs were mapped in a shorter segment through substitution mapping. Hd-9 for heading date was mapped between RM23785 and RM23918 that the length of the segment is 1.62cM. Hd-8-3 for heading date have been identified in a segment which length is 17.75cM through substitution mapping.
     SSSLs of rice have been developed in the present research,and QTLs of 3 important agronomic traits on substituted segments have been analyzed. This study lays a certain foundation for molecular marker-assisted breeding and rice varieties' genetic improvement.
引文
[1]Izawa T,Shimamoto K.Becoming a model plant:the importance of rice to plant science.Trends in Plant Science,1996,1(3):95-99.
    [2]Lander E S,Botste in D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185-199.
    [3]ESHED Y,ZAMIR D.An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associatedQTL[J].Genetics,1995,141:1147-1162.
    [4]ZAMIR D.Lmproving plant breeding with exotic genetic libraries[J].Nature Review Genetics,2001,2:983-989.
    [5]LIZ K,SHEN L S,COURTOIS B.Development of near isogenic introgression line sets for QTLs associated with drought tolerance in rice[C]// Workshop on Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Ware-Limited Environments.CIMMYT headquarters:Mexico,1999:21-25.
    [6]Kurakazu T,SOBRIZAL K,IKEDA P L,et al.Oryza meridionalis chromosomal segment introgression lines in cultivated rice,0.sativa L[J].Rice Genet Newsl,2001,18:81-82.
    [7]曾瑞珍,施军琼,黄朝锋,等.籼稻背景的单片段代换系群体构建[J].作物学报,2006,32(1):88-95.
    [8]赵明辉,陈温福,徐正进等.水稻单片段代换系群体的构建及研究进展.云南农业大学学报,2007,22(1):8-12.
    [9]朱军.2002.遗传学(第三版).北京:中国农业出版社.
    [10]徐云碧,朱立煌.1994.分子数量遗传学[M].北京:中国农业出版社.
    [11]Gelderman M.E.1978.Loci afecting quantitative traits.Theor.Appl.Genet.46:31-33
    [12]徐云碧.1992.分子标记在数量基因定位中的应用.遗传14(2):45-48
    [13]MO H D(莫惠栋).Look back and reflect on genetic researches of variation for quan-titative traits a challenge for quantitative genetics in Post-genome era[J].Journal of Yang zhou University(A gronomy and Life Science Edition)扬州大学学报(农业与生命科学版),2003,24(2):24-31.
    [14]Sax K.1923.The association of size differences with seed-coat pattern and piigmentation in phase-eolus Vulgaris.Genetics.8:552-560
    [15]Khush G.S,Singh R.J,Sur S.C.et al.1984 Primary trisomics of rice origin,morphology,cytology and use in linkage mapping.Geneitcs.107:141-163
    [16]Market C.L,Moiler F.1959.Multiple forms of enzymes:tissue,ontogenetic,and species-specific patenrs.Porc.Natl.Acad.Sci.USA.45:753-763
    [17]Stuber C.W,Moll R.H,Goodman M.M.1980.Allozyme frequency changes Associaed with selection for increased grain yield in maize(Zeam ays L.).Genetics.95:225-236
    [18]Tanksley S.D,Medina-Filho H,Rick C.M.1982.Use of naturally-occurring Enzyme vatiation to detect and map genes controlling quantitaitve traits in an interspecific backcorss of tomato.Heerdity.49:11-25
    [19]Dai J T(戴君惕).Researches present and application prospect in crop molecular quantitative genetics[J].Crop Research(作物研究),1996,10(1):39-42(in Chinese)
    [20]Paterson A H,Lander S E,Hewitt J D,et al.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms [J].Nature,1988,335:721-726.
    [21]Tanksley S D.Mapping polyygenes.Annu Rev Genet,1993,27:205-233
    [22]Kearsey M J.The principles of QTL analysis(aminimal mathematics approach),J Exp Bot,1998,8,49(327):1619-1623
    [23]张帆,万雪琴,袁亮等.作物数量性状(QTL)基因研究进展.生物技术,2004,14(6):67-70
    [24]邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502
    [25]朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(工学版),1999,33(3):327-335
    [26]MORENO-GON ZAL EA J.Genetic models to estimate additive and non-additive effects of marker-assocoated QTL using mutiple regression techniques[J].T heor.Appl.Genet.1992,85:435-444
    [27]KE IGHTL EY P D,BL FIELD G.Detection of quantitative trait loci from frequency changes of marker alleles under selection[J].Genet.R es.1993,62:195-203.
    [28]MICHELMORE R M,PARAN I,KESSEL IR V.Identification of markers linked to diseaseresistance genes by bulked segregant regions by using segregating populations[J].Proceedings of the National A cademy of Sciences,USA,1991,88:9828-9832.
    [29]ZHANG X M(张小明)L ICH SH(李春寿)YIE SH H(叶胜海).Advance in bulk segregant analysis applied to crop gene localization[J].A cta Agriculture Shang hai(上海农业学报),2002,18(3):24-27(in Chinese)
    [30]Soller M,Brody T,Genizi A.On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines[J].Theor Appl Genet,1976,47:35-39
    [31]Soller M,Beckman J S.Marker-based mapping of quantitative trait loci using replicated progenies.Theor Appl Genet.1990,80(2):205-208
    [32]Zeng Z B.Theoretical basis of separation of multiple linked gene effects,On mapping quantitative trait loci.Proc Natl Acad Sci USA,1993,90:10972-10976
    [33]朱军.复杂数量性状基因定位的混合线性模型方法,王连铮,戴景瑞,主编:全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998:11-20
    [34]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [35]Lin HX,Ashikari M,Yamanouch U,et al.Identification and Characterization of a Quantitative Trait Locus,Hd9,Controlling Heading Date in Rie[J].Breeding Science,2002,52:35-41
    [36]Yamamoto T,Kuboki Y,Lin S Y,et al 1998.Fine mapping of quantitative trait loci Hd1,Hd2,and Hd3,controlling heading date of rice,as single Mendelia factors.Theor Appl Genet.97:37-44
    [37]毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4)386-394.
    [38]Ramsay L.D,Jennings D.E,Bohuon E.J.R.et al.1996.The construction of a substitution library of recombinant backcross lines in Brassica leracea for the precision mapping of quantitative trait loci.Genome.39:558-567
    [39]Howell P.M,Marshall D.F,Lydiate D.J.1996.Towards developing Intervairetal substitution lines in Brassica napus using marker-assisted selection.Genome.39:248- 358
    [40]刘冠明,李文涛,曾瑞珍等.2003.水稻亚种间单片段替换系的建立.中国水稻科学.接受待发.
    [41]Hospital F,Chevalet C,Mulsant P.1992.Using markers in gene introgression breeding programs.Genetics.132:1199-1210
    [42]Visscher P.M,Haley C.S,Thompson R.1996.Marker-assisted introgression in back- corss breeding porgrams.Genetics.144:1923-1932
    [43]Jena K.K.Khush G S,Kochert G.1992.RFLP analysis of rice(Oryza sativa L.)introgression lines.Theor.Appl.Genet.84:608-616
    [44]Sobrizal K,Ikeda K,Sanchez P.L.et al.1999.Development of Oryza glumaepatula introgression lines in rice,O.sativa L.Rice Genet.Newsl.16:107-108
    [45]Doi K,Iwata N,Yoshimura A.1997.The construction of chromosome substitution lines of African rice(Oryza glaberrima Steud.)in the backgorund of Japonica rice(O.satva L.).Rice Genet.Newsl.14:39-41
    [46]Aida Y,Tsunematsu H,Doi K.et al.1997.Development of a series of Introgression lines of japonica in the background of indica rice.R ice Genet.Newsl.14:41-43
    [47]Kubo T,Nakamura K,Yoshimura A.1999.Development of a series of indica Chromosome segment substitution lines in japonica background of rice.Rice Genet.News].16:104-105
    [48]万建民,ed aI,利用粳稻染色体片段置换系群体检侧水稻杭亚铁毒胁迫有关性状QTL,2003,万方数据资潇系统
    [49]何风华,ed al,利用单片段代换系定位水稻抽翻期QTL,2005.p.1505-1513
    [50]余四斌,et al,以珍汕97B和9311为背景的导入系构建及其塞选鉴定.2005,维普资讯.629-636
    [51]Yamamoto T,Lin H X,Sasaki T,et al.2000.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny.Genetics.15 4:885-891
    [52]李文涛,曾瑞珍,张泽民,张桂权.2002.栽培稻F1花粉不育基因座S-b的PCR标记定位.植物学报.(2):463-467
    [53]Paterson A H,Deverna J.W.,Lanini B.,et al.1990.Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes,in an interspecies cross of tomato.Genetics 124:735-742
    [54]何风华,席章营,曾瑞珍等,利用单片段代换系鉴定水稻株高及其构成因素的QTL.中国水稻科学,2005,19(5)387-392
    [55]Lin HX,Yamamoto T,Sasaki T,et al.Characterization and detection of epistaic interactions of three QTLs,Hd1,Hd2,and Hd3,controlling heading date in rice using nearly isogenic lines[J].Theor Appl Cenet,2000,101:1021-1028
    [56]Monforte A.J,Tanksley S.D.2000a.Development of a set of near iso genicand backcross recombinant inbred lines containing most of the lycopersicon hirsutum genome in a L.esculentum gen-etic background:a tool for gene mapping and gene discovery.Genome.43:803-813
    [57]Bernacchi D,Beck-Bunn T,Emmatty D.,et al.1998a.Advanced backcross QTL analysis of tomato.Ⅱ Evaluation of near-isogenic lines carrying single- donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L.pimpinellifolium.Theor Appl Genet.97:170-180
    [58]Eshed Y,Zamir D.1994a.A genomic library of Lycopersicon pennellii in L.esculentum:a tool for fine mapping of genes.Euphytica.79:175-179
    [59]Eshed Y,Zamir D.1996.Less-than—additive epistatic interactions quantitative trait loci in tomato.Genetics 143:1807-1817
    [60]FRARY A,NESBITT T C,ORANDILLO S,et al.fw2.2A quantitative trait locus key to the evolution of tomato fruit size[J].Science,2000,289:85-88.
    [61]NESBITF T C,TANKSLEY S D.fw2.2 Directly affects the size of developing tomato fruit,with secondary effets on fruit number and photosynthate distribution[J].Plant Physiol,2001,127:575-583.
    [62]Yano M,Katayose Y,Ashikari M,et al.2000.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the arabidopsis flowering time gene CONSTANS.The plant cell.12:2473-2483
    [63]TakahashiY,Shomura A,Sasaki T,Yano M.2001.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encode the a subunit of protein kinase CK2 PNAS.98(14):7922-7927
    [64]McCouch,Susan R.Leonid Teytehnan,Development and Mapping of 2240 New SSR Markers for Rice.DNA Research 9,199-207(2002)
    [65]MCCOUCH S RDOERGE R W.QTL mapping in rice[J].Trends.Genet,1995,11:482 -487.
    [66]赵淑清等.生物技术通报,2000,16(6):1-3
    [67]Diffenbach C W et al.PCR技术实验指南,北京:科学出版社,1998
    [68]郑康乐,黄宁.1997.标记辅助选择在水稻改良中应用前景.遗传.19(2):40-44
    [69]朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传,2003,25(3):355-360
    [70]Yano M,Harushima Y,Kerata N,et al.Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map[J].Theor Appl Genet,1997,95:1025-1032
    [71]Li Z K,Pinson S R M,Stansel J.W.and Parrk W.D.1995 Identification of quantitative trait loci (Q-TLs) for heading date and plant height in cultivated rice(Oryza sativa L.)Theor Appl.Genet,91:374-381
    [72]邓晓建.2000.水稻完全显性早熟性的发现、遗传分析和基因定位.四川农业大学博士学位论文
    [73]Xiao Jinhua,Li Jiming,Silvana Grandillo,et al.Identification of trait-improving quantitativetrait loci alleles from a wild rice relative,Oryza rufipogon[J].Genetics,1998,150:899-909
    [74]Moncada P,Martinez C P,Borrero J,et al.Quantitative trait loci for yieht and yield components in an Oryza Satire×Oryza rufipogon BC_2F_2 population evaluated in all upland environment[J].Theor Appl Ge net,2001,102:41-52.
    [75]李德军,孙传清,付永彩,等.利用AB—QTL法定位江西东乡野生稻中的高产基因[J].科学通报,2002,47(11):854-858.
    [76]Wang Yueguang,Deng Qiyun,Liang Fengshan,et al.Molecularmarker assisted selection for yield—inhancing genes in the progeny of Minghui 63×O.rufipogon[J].Agricultural Sciences in China,2004,3(2):89-93.
    [77]Huang N,Angeles E R,Domingo J,Magpantay G,Sinsh S.Zhang G.Kumaravadivel N,Bennett J,Khush G S.Pyramiding of bacterial blight resistance gene in riee:marker-assisted selection using RFLP and PCR.Theor Appl Genet,1997,95:313-320.
    [78]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J]中国稻米,1998,(1):3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700