无线网络中基于网络编码的可靠通信问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,无线网络由于其价格低廉、布网容易等特点,受到越来越多的关注。然而,由于无线信道衰落、节点之间的干扰或者节点本身的硬件毁坏等原因,无线网络中无线链路相比于有线链路来说是非常脆弱容易失效的。此外,无线网络中的网络能量和其他资源与有线网络相比要少得多。故而,如何在无线网络中防止链路失败,保证网络的可靠传输并且合理利用网络资源,成为目前研究的一个热点问题。因此,本文主要研究无线网络中的可靠传输问题。
     近年来,为了确保无线网络中的可靠传输并且合理利用网络资源,研究人员提出了各种网络保护机制来保护无线网络传输防止链路失败,例如:能量控制机制、自动重传请求(ARQ)机制、前向纠错(FEC)机制和基于网络编码的网络保护机制等等。本文中主要关注如何合理地使用网络编码来保护网络传输和减少网络资源的消耗。
     网络编码是近年来新兴的一种网络技术。在无线网络中,合理的利用网络编码能够提高无线网络资源利用率、减少转发次数、节省网络能量和提高无线网络可靠性和吞吐量。因此,网络编码可以给无线网络带来深刻的影响。在本文中,我们主要使用网络编码技术来实现无线网络中的可靠通信和充分利用网络资源。本文主要的研究内容和创新点总结如下:
     1.本文研究了无线网格网络(WMN)中的多点到一点的通信模式的1+N保护机制。这种基于网络编码的1+N保护是用来解决网络中N个源节点同时发送数据到同一网关节点(多点到一点通信),并且网络中仅有一条路径发送失败时,如何使用网络编码进行网络保护的问题。但是,已有这种1+N保护方案仅能应用于特定网络拓扑,即网络中的任意k个源节点至少要连接到k+1个一跳邻居路由节点并且严重浪费每个路由节点上剩下的路径上的网络资源。实际上,只要网络中有足够的路径资源,我们就可以对所有用户提供1+N保护。所以,本文给出了一种扩展的验证普通拓扑的WMN网络是否可以提供1+N保护的充分必要条件:网络中的任意k个源节点至少要连接到k+1条可达网关节点的互不相交的路径,并改进了以前的1+N保护机制使其能够在更为一般的网络拓扑上应用,以使网络中的路径资源能够得到充分利用。本文给出一个辅助图来将原始的具有普通拓扑的网络图转换成一种严格的网络拓扑,在这种严格的网络拓扑条件下以前提出的1+N保护机制就能够成功的应用。通过这种图的转换可以将原来的只能在具有严格拓扑的WMN网络中应用1+N保护机制,拓展应用到普通的网络拓扑中去,从而,极大的提高了网络资源的利用率和网络吞吐量。
     2.本文针对无线网格网络中只有一对具有多条数据路径的源和目的通信节点对之间有多条路径失败的网络保护问题,提出了一种新的多路径失败保护的N+k编码保护机制。当这个通信节点对之间有多条路径传输失败时,如何有效的恢复失败的数据提高网络资源的利用率是本文研究的另一个主要问题。首先,本文设计一种以平均失败路径保护而非简单的以最坏失败路径来进行保护的编码方案。本文给出的这种基于平均路径失败的编码保护方案,不仅可以满足网络保护的需求还能够充分的利用网络资源提高网络吞吐量。其次,本文证明了本文中对于某通信节点对之间多路径失败的N+k编码保护机制中的编码方案的可解码性。最后,本文给出相关实验说明本文提出的基于保护平均路径失败的N+k编码保护机制相比于以前给出的基于保护最坏路径失败的编码保护机制来说,能够充分的利用网络资源提高网络吞吐量。
     3.洪泛传输是无线传感器网络中最基本的服务之一,主要用来将某个消息发送给整个传感器网络中的每个传感器节点。在洪泛传输中应用网络编码可以减少冗余传输、节省节点能量的消耗和延长网络寿命。本文研究了在异步传感器网络中如何使用网络编码来减少洪泛次数进行有效的可靠的洪泛问题。本文提出了异步睡眠调度的传感器网络中基于网络编码的有效洪泛机制。本文给出一个转换算法将原始的网络拓扑图转换成时空辅助图,然后,通过这个时空辅助图将原来的基于网络编码的有效洪泛转换成一个等价的问题来进行研究。对于这个给定的等价问题本文只需要在辅助图中找到最小生成树,就可以获得最优的网络洪泛。本文同时给出了一个启发式算法来计算最小生成树。并且本文说明了本文的图转换算法和寻找最小生成树的算法都是可以在多项式时间内完成的。
Recently, wireless networks have gained more and more attentions due to the price reduction of wireless devices and the easy deployment. However, wireless links are vulnerable to severe channel fading, interference and physical damage in wireless networks. Furthermore, compared with wired networks, the network energy and resources are more limited. Therefore, how to protect network from failures, ensure the reliable communication and utilize network resources and energy efficiently becomes a hot problem recently. Thus, the thesis mainly focuses on the reliable communication in wireless networks.
     In the past decades, many network protection schemes are proposed to protect from failures to ensure reliable communication, such as the power control schemes, Automatic Repeat reQuest(ARQ), Forward Error Correction(FEC) and network coding based protection schemes. Network coding technique is applied efficiently to protect network transmission and reduce transmission times.
     Network coding is a novel network technique. In wireless networks, we can apply network coding to improve network resource utilization, redundant transmissions, save network energy consumption and network resources. Network coding is, as it were, bringing a deep change for wireless networks. In this thesis, we mainly apply network coding to protect from failures for reliable communication and conserve network resources. The main research issues and contributions are summarized as follows:
     1. we study network coding based1+N protection in many-to-one transmission mode in wireless mesh networks in previous works, which the receiver can recover the packets from N sources (many to one transmission mode) on the fly when there is a single link failure on the paths form N sources to the sink. But previous network coding based1+N protection scheme can just be used in a restrict topology, in which any k sources will be connected to k+1routers, and each router just use one edge-disjoint path to transmit, which will waste network resources. In fact, if there are enough edge-disjoint paths,1+N protection can be applied to protect all sources. In our work, we extend the sufficient and necessary condition to verify whether the network can provide1+N protection and study how to extend network coding based1+N protection scheme proposed previously used in wireless mesh networks with a general topologies to exploit network resources efficiently. An auxiliary graph is proposed to extend the1+N scheme used in restrict topologies to a general topology and increase the network throughput greatly.
     2. we study an N+k protection scheme to protect against multiple failures in wireless mesh networks with multiple flows between a source and destination pair. When there are multiple failing paths from the source to the destination, how to recover resource-efficiently is the main work. Previous works can handle multiple link failures with retransmission or protect against the worst failures which will waste network resources a lot. Firstly, we study a network coding based protection against multiple failures to keep reliable communication and conserve network resources. N+k protection scheme is provided, which can both satisfy network protection requirement and improve the network throughput greatly. Secondly, the decidability of our proposed deterministic network coding scheme of N+k protection scheme has been proved in this thesis. Finally, the simulation results verify that our scheme can improve the throughput greatly compared with other transmission schemes.
     3. Flooding is one of the most fundamental services in wireless sensor networks. It facilitates sensor nodes to propagate messages across the whole network. Thus, we study network coding based flooding in asynchronous wireless sensor networks. Each sensor can receive different units. If we code probably the number of transmission will reduce greatly. Network coding based flooding is proposed to reduce the number of transmissions in duty-cycle wireless sensor networks. An auxiliary graph is proposed to transform the minimum flooding cost problem to an equivalent problem, which is to find minimum flooding tree in the auxiliary graph. The efficiency of the proposed system is validated by the simulations.
引文
[I]N. Nandiraju. D. Nandiraju and L. Santhanam, Wireless Mesh Networks:Current Challenges and Future Directions of Web-in-the-sky, IEEE Wireless Communications Maganize,2006.
    [2]L.F. Akyildiz, X. Wang and W. Wang, A Survey on Wireless Mesh Networks, Computer Networks, Vol.47, No.4, pp.445-487,2007.
    [3]孙利民,李建中,陈渝,等,无线传感器网络,清华大学出版社,2005.
    [4]马祖长,孙怡宁,无线传感器网络综述,通信学报,2004.
    [5]C.P. Chan, S.C. Liew and A. Chan, Many-to-one throughput capacity of IEEE 802.11 multi-hop wireless networks, IEEE transactions on mobile computing, Vol.8, Issue:4, pp. 514-527,2008.
    [6]A. Viejo, F. Sebe and J. Domingo-Ferrer, Secure and scalable many-to-one symbol transmission for sensor networks, Computer communications, Vol.31, Issue:10, pp. 2408-2413,2008.
    [7]T. Wolf, S.Y. Choi, Aggregated hierarchical multicast-a many-to-many communication paradigm using programmable networks, IEEE T. Syst. Man Cybe.-Part C, No.33, pp. 358-369,2003.
    [8]E.J. Duarte-Melo and M. Liu, Energy efficiency of many-to-one communications in wireless networks, Midwest Symposium on Circuits and Systems (MWSCAS), Vol.1, 2003.
    [9]R. Ahlswede, N. Cai, S. Li, and R. Yeung, Network information flow, IEEE Transactions on Information Theory, Vol.46, No.4, pp.1204-1216,2000.
    [10]Y. Takemoto et al., SCTP performance improvement for reliable end-to-end communication in ad hoc networks, International Symposium on Autonomous Decentralized Systems (ISADS), Vol.1, pp.1-6,2009.
    [11]S. Ni, Y. Tseng, Y.Chen, and J. Sheu, The Broadcast Storm Problem in a Mobile Ad Hoc Network, ACM Mobicom 1999.
    [12]S. Guo, Y. Gu. B. Jiang, and T. He, "Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links," in Proc. ACM MobiCom,2009, pp.133-144.
    [13]S. Chachulski, M. Jennings, S. Katti, and D. Katabi, Trading structure for randomness in wireless opportunistic routing, ACM SIGCOMM, pp.169-180,2007.
    [14]M. Castillo-Effen, D.H. Quintela, R. Jordan, W. Westhoff and W. Moreno, Wireless sensor networks for flash flooding alerting, proceeding of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems,2004.
    [15]T. Gao, D. Greenspan, M. Welsh, R.R. Juang and A. Alm, Wital signs monitoring and patient tracking over a wireless network, Proceeding of the IEEE EMBS Annual International Conference,2005.
    [16]K. Lorincz, D. Malan, T.R.F. Fulford-Jones et al., Sensor networks for emergency response:challenges and opportunities, IEEE Pervasive Computing, October,2004.
    [17]G. Wener-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees and M. Walsh, Deploying a wireless sensor network on an active volcano, IEEE Internet Computing, March,2006.
    [18]L.B. Del Mundo, A comparison of wireless fidelity (WiFi) fingerprinting techniques, ICTConvergence (ICTC), pp.20-25,2011.
    [19]S. Kawade, J.W. VanBloem, V.S. Abhayawardhan and D. Wiresely, Sharing your Urban residential WiFi(URWiFi), Vehicular Technology Conference, pp.162-166,2006.
    [20]M. Cypriani, F. Lassabe, P. Canalda and F. Spies, Wi-Fi-based indoor positioning:Basic techniques, hybrid algorithms and open software platform, Indoor Positioning and Indoor Navigation (IPIN), International Conference on, vol., no., pp.1-10,15-17 Sept.2010.
    [21]F. Lassabe, P. Canalda, P. Chatonnay and F. Spies, Indoor Wi-Fi positioning:techniques and systems. Annals of Telecommunications. Springer Paris. vol 64, Issue 9, pp.651-664, 2009.
    [22]S.A. Golden and S.S. Bateman, Sensor Measurements for Wi-Fi Location with Emphasis on Time-of-Arrival Ranging, Mobile Computing, IEEE Transactions on, vol.6, no.10, pp.1185-1198,2007.
    [23]D. Pareit, B. Lannoo,1. Moerman and P. Demeester, The history of WiMAX:a complete survey of the evolution in certification and standardization for IEEE 802.11 and WiMAX, IEEE Communication Surveys & Tutorials, pp.1-29,2011.
    [24]R.K. Jha, Location based radio resource allocation (LBRRA) in WiMAX and WiMAX-WLAN interface networks, Communication Systems and Networks (COMSNETS),2012.
    [25]A. Bacioccola, C. Cicconetti, C. Eklund, L. Lenzini, Z. Li, and E. Mingozzi, IEEE 802.16: History, status and future trends, Computer Communications, vol.33, no.2, pp.113-123, 2010.
    [26]S. Ahmadi, An overview of next-generation mobile WiMAX technology, IEEE Commun. Mag., vol.47, no.6, pp.84-98,2009.
    [27]K. Etemad, Overview of mobile WiMAX technology and evolution. IEEE Commun. Mag., vol.46, no.10, pp.31-40, October 2008.
    [28]C. Eklund, R. Marks, K. Stanwood, and S. Wang, IEEE standard 802.16:a technical overview of the Wireless MANTM air interface for broadband wireless access, IEEE Commun. Mag., vol.40, no.6, pp.98-107,2002.
    [29]I. Papapanagiotou, D. Toumpakaris, J. Lee, and M. Devetsikiotis, A survey on next generation mobile WiMAX networks:objectives, features and technical challenges, IEEE Commun. Surveys Tutorials, vol.11, no.4, pp.3-18,2009.
    [30]M. Defaria and E.S. Sousa, Effect of intercell interference on the SNIR of a multihop cellular network, Vehicular Technology Conference (VTC), vol.5, pp.3107-3111,2005.
    [31]R. D. Pietro and G. Me, Military secure communications over public cellular network infrastructure, MILCOM, vol.1, pp.400-405,2002.
    [32]U.R. Patel and B.N. Gohil, Cell identity assignment techniques in cellular network:a review, Computer Science and Information Technology (ICCSIT), vol.2, pp.594-596, 2010.
    [33]M. Barrese et al., Secure Communication Over the Cellular Network, Proc. of MILCOMM 1992.
    [34]K. Pepe and B. Vojcic, Cellular multihop networks and the impact of routing on the SNIR and total power consumption, Proceedings of Multi-access, Mobility and Teletraffic for Wireless Communications, June 2002.
    [35]A. Kusuma and L. Andrew, Minimum power routing for multihop cellular networks, IEEE Globecom,2002.
    [36]M. DeFaria and E. Sousa, A minimum hop routing algorithm for multihop cellular networks, Journal of the Brazilian Telecommunications Society, Special Issue on Sensors and Ad Hoc Networks,2005.
    [37]易平,吴越,无线自组织网络对等网络:原理与安全,清华大学出版社,2009.
    [38]于鸿毅,等,无线移动自组织网络,人民邮电出版社,2005.
    [39]J. Yick, B. Mukherjee and D. Ghosal, Analysis of a Prediction-based Mobility Adapative Tracking Algorithm, Proceeding of the IEEE Second International Conference on Broadband Networks (BROADNETS),2005.
    [40]S. Dhillon, K. Chakrabartyi and S. Iyengar,i Senson placementi for gridi coveragei under imprecise detections, Proc. International Conference oni Information Fusion,2002.
    [41]J. Wang, H.B Yu and Z.J Shang, Research on reliable link layer communication in Wireless sensor networks, Communications, Circuits and Systems, Proceedings, International Conference on, Vol.1, pp.417-421, May 2005.
    [42]J. Wang, H.B. Yu and Z.J. Shang, Research on reliable link layer communication in wireless sensor-networks, International Conference on Communications, Circuits and Systems, Vol.1, pp.417-421,2005.
    [43]M. Minea, F.D. Grafu and A.C. Cormos, Reliable Integrated Communications for Urban Intelligent Transport Systems, International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, pp.617-620,2004.
    [44]K. Mayes, Reliable Group Communication for Dynamic and Resource-Constrained Environments, International Workshop on Database and Expert Systems Application, pp. 14-18,2009.
    [45]D. Bein, T. Masuzawa and Y. Yamauchi, Reliable Communication on Emulated Channels Resilient to Transient Faults, International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp.366-371,2009.
    [46]Y. Li, Reliable communication based on P2P architecture on real-time collaborative editing system, International Conference on Computer Supported Cooperative Work in Design, pp.244-249,2009.
    [47]S. Dehnie, Reliable cooperative communications:A signal processing approach, IEEE Military Communications Conference, pp.85-90,2011.
    [48]S. Banerjee et al., Energy-efficient broadcast and multicast trees for reliable wireless communication, IEEE Wireless Communications and Networking Conference, pp. 660-667,2003.
    [49]G. Simon, M. Maroti, A. Ledeczi et al., Sensor network based counter-sniper system, Proceeding of the Second International Conference on Embedded Networked Sensor Systems (Sensys),2004.
    [50]Y. Lin and Y. Hsu, Multihop cellular:A new architecture for wireless communications, IEEE Infocom,2000.
    [51]A. Viterbi and E. Zehavi, Other-cell interference in cellular power controlled CDMA, IEEE Transactions on Communications, vol.42, pp.1501-1504,1994.
    [52]J.M. Gonzalez, M. Anwar and J.B.D. Joshi, Trust-based approaches to solve routing issures in ad hoc wireless networks:a survey, Trust, Security and Privacy in Computing and Communications (TrustCom), pp.16-18,2011.
    [53]D, Wei and H.A. Chan, A survey on cluster schemes in ad hoc wireless networks, Mobile Tchnology, Applications and Systems, pp.1-8,2005,
    [54]N. Vassileva, F. Barcelo-Arroyo, A survey of routing protocols for energy constrained ad hoc networks. Future Generation Communication and Networks (FGCN), vol.1, pp. 522-527,2007.
    [55]P. Gajbhiye and A. Mahajan, A survey of architecture and node deployment in wireless sensor network, Application of Digital Information and Web Technologies (ICADIWT), pp.426-430,2008.
    [56]Geoffrey(?) Werner Allen,(?) Konrad(?) Lorincz,(?) Mario(?) Ruiz,(?) Omr(?) Marcillo,(?) Jeffi Johnson,(?) Jonathan(?) Lees(?) and(?) Matt(?) Welsh,(?) Deploying(?) a(?) Wireless(?) Sensor(?) Network(?) on(?) am Active(?) Volcano,(?) Special(?) Sensor(?) Nets(?) issue(?) of(?) IEEEi Internet(?) Computing,(?) 2006.(?)
    [57]N. Xu,(?) A(?) Surveys of(?) Sensor(?) Network(?) Applications,(?) University(?) ofi Southern(?) California,(?) http://enl.use.edu/-ningxu/papers/survey.pdf,(?) 2003.(?)
    [58]V. Rodoplu and T.H. Meng, Minimum Energy Mobile Wireless Networks, IEEE Journal on Selected Areas in Communications, Vol.17, No.8, August 1999, pp.1333-1344.
    [59]J.-H. Chang and L. Tassiulas, Energy Conserving Routing in Wireless Ad Hoc Networks, Proc. of INFOCOM 2000, Tel Aviv, Israel, March 2000.
    [60]A. Michail and A. Ephremides, Energy Efficient Routing for Connection-Oriented Traffic in Ad Hoc Wireless Networks, Proc. Of the 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),2000.
    [61]D. Traskov and G. Kramer, Reliable Communication in Networks with Multi-access Interference, IEEE Information Theory Workshop, pp.343-348,2007.
    [62]O.M. Al-Kofahi and A.E. Kamal, Network coding-based protection of wireless mesh networks, High Capacity Optical Networks and Enabling Technologies HONET, pp.1-8, 2007.
    [63]A. Viejo, J. Domingo-Ferrer, F. Sebe and J. Castellar-Roca, Secure many-to-one communications in wireless sensor networks, Sensors, Vol.9, No.7, Issue:50, pp. 5324-5338,2009.
    [64]D. Zhou and S. Subramniam, Survivability in Optical Networks, IEEE Network, Vol.14, pp.1623-1631, Nov.2000.
    [65]M. Tacca, A. Fumagalli and F. Unghvary, Double-fault shared path protection scheme with constrained connection downtime, Design of Reliable Communication Networks, pp. 181-188,2003.
    [66]H. Choi, S. Subramaniam and H.A. Choi, On double-link failure recovery in WDM optical networks,21th IEEE International Conference on Computer Communications (INFOCOM), Vol.2, pp.808-816,2002.
    [67]H. Choi, s. Subramaniam and H.A. Choi, Loopback recovery from double-link failures in optical mesh networks, IEEE/ACM Transactions on Networking, Vol.12, No.6, pp. 1119-1131,2004.
    [68]S.A. Aly, A.E. Kamal and A.I. Walid, Network Protection Design Using Network Coding, Information Theory Workshop, pp.1-5,2010.
    [69]O.M. Al-Kofahi and A.E. Kamal, Network protection Codes:Providing Self-healing in Autonomic Networks Using Network Coding, IEEE journal of Selected Areas in Communications, Vol.27, No.5, pp.797-813, June 2008.
    [70]A.E. Kamal, Network Coding-Based Protection Using p-Cycles, IEEE/ACM Transactions on Networking, Vol.18, No.1, pp.67-80, Nov.2010.
    [71]O.M. Al-Kofahi and A.E. Kamal, Network coding-Based Protection of Many-to-One Wireless Flows, IEEE Journal of Selected Areas in Communications, Vol.27, No.5, pp. 797-813, June 2009.
    [72]J. K Sundararajan et al., Network Coding in a Multicast Switch,26th IEEE International Conference on Computer Communications (INFOCOM), pp.1145-1153,2007.
    [73]L. Yu et al., Practical network coding approach for multicast packet switching, Information Infrastructure Symposium (GIIS'09, pp.1-4,2009.
    [74]Z.J. Li et al., Understanding the Flooding in Low-Duty-Cycle Wireless Sensor Networks, International Conference on Parallel Processing (ICPP), pp.673-682,2011.
    [75]C. Shanti and A. Sahoo, TREEFP:A TDMA-based Reliable and Energy Efficient Flooding Protocol for WSNs, the 2011 IEEE International Symposium on "A World of Wireless, Mobile and Multimedia Networks", pp.1-7,2011.
    [76]Z. Haas, J.Y. Halpern, and L. Li, Gossiping-based Ad Hoc Routing, Proc. INFOCOM, June 2002.
    [77]Y. Sasson, D. Cavin, and A. Schiper, Probabilistic Broadcast for Flooding in Wireless Mobile Ad hoc Networks, Proc. of WCNC 2003.
    [78]S. Jiang, L. Guo, and X. Zhang, LightFlood:an efficient flooding scheme for file search in unstructured peer-to-peer systems, International Conference on Parallel Processing, pp. 627-635,2003.
    [79]T. Korkmaz and M. Kranz, Hybrid flooding and tree-based broadcasting for reliable and efficient link-state dissemination. Global Telecommunications Conference, GLOBECOM '02, pp.2400-2404,2002.
    [80]S. Ahn. Y. Lim and H. Yu, Energy-Efficient Flooding Mechanisms for the Wireless Sensor Networks, International Conference on Information Networking, pp.1-5,2008.
    [81]Y. Lee et al., A robust flooding algorithm in multi-radio multi-channel wireless mesh networks, the 2010 IEEE International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), pp.1-6,2010.
    [82]S. Guo et al., Correlated flooding in low-duty-cycle wireless sensor networks, in 19th IEEE International Conference on Network Protocols (ICNP), pp.383-392,2011.
    [83]W. Liu et al., Scalable and robust data dissemination in wireless sensor networks, the IEEE Global Telecommunications Conference (GLOBECOM'04), pp.3177-3183,2004.
    [84]V. A. Kaseva, T. D. Hamalainen and M. Hannikainen, Robust tree construction and maintenance for global time synchronization protocols in Wireless Sensor Networks, IEEE Workshop on Signal Processing Systems (SiPS), pp.197-201,2009.
    [85]O. Liang, Y. A. Sekercioglu and Nallasamy Mani, A Low-Cost Flooding Algorithm for Wireless Sensor Networks, IEEE Wireless Communications and Networking Conference, pp.3495-3500,2007.
    [86]Y. Lee et al., A robust flooding algorithm in multi-radio multi-channel wireless mesh networks, the 2010 IEEE International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), pp.1-6,2010.
    [87]J.L. Gao, Y.J. Xu, and X.W. Li, Directed Flooding with Self-Pruning in Wireless Sensor Networks, the 2007 IEEE International Conference on Integration Technology, pp. 619-622,2007.
    [88]H. Zeghilet, N. Badache and M. Maimour, Energy efficient cluster-based routing in wireless sensor networks, the 2009 IEEE Symposium on Computers and Communications (ISCC), pp.701-704,2009.
    [89]Y.F. Wu et al., On the construction of virtual multicast backbone for wireless ad hoc networks, the 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems, pp.294-303,2004.
    [90]J. Lipman, P. Boustead and J. Chicharo, Reliable optimized flooding in ad hoc networks, the IEEE 6th Circuits and Systems Symposium on Mobile and Wireless Communication, Vol.2, pp.521-524,2004.
    [91]X.F. Cheng, T. Y. Chai, X. Shao and Y.X. Wang, Complementary protection under double-link failure for survivable optical networks, Communication society,2006.
    [92]K.M. Alzoubi, P.J. Wan, and O. Frieder, "New Distributed Algorithm for Connected Dominating Set in Wireless Ad Hoc Networks," Proc. Hawaii Int'l Conf. System Sciences'35,2002.
    [93]G. Calinescu, I. Mandoiu, P.J. Wan, and A. Zelikovsky, "Selecting Forwarding Neighbors inWireless Ad Hoc Networks," Proc. ACM Int'l Workshop Discrete Algorithms and Methods for Mobile Computing (DIALM'01), pp.34-43, Dec.2001.
    [94]S. Ni, Y. Tseng, Y. Chen, and J. Sheu, "The Broadcast Storm Problem in a Mobile Ad Hoc Network," Proc. MOBICOM'99, pp.151-162, Aug.1999.
    [95]W. Peng and X.C. Lu, "On the Reduction of Broadcast Redundancy in Mobile Ad Hoc Networks," Proc. First Ann. Workshop Mobile and Ad Hoc Networking and Computing, MOBI-HOC,pp.129-130, Aug.2000
    [96]H. Lim and C. Kim, "Flooding in Wireless Ad Hoc Networks," Computer Comm. J., vol. 24, no.3-4, pp.353-363,2001.
    [97]A. Qayyum, L. Viennot, and A. Laouiti, "Multipoint Relaying for Flooding Broadcast Message in Mobile Wireless Networks," Proc. Hawaii Int'l Conf. System Sciences'35, Jan.2002.
    [98]X.L. Jiao, W. Lou, J.C. Ma, J.N. Cao, X.D. Wang and X.M. Zhou, Duty-Cycle-Aware Minimum Latency Broadcast Scheduling in Multi-hop Wireless Networks, Distributed Computing Systems (ICDCS), pp.754-763,2010.
    [99]G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, Energy conservation in wireless sensor networks:A survey, vol.7, no.3, pp.537-568,2009.
    [100]F. Wang and J. Liu, Duty-cycle-aware broadcast in wireless sensor networks, in Proc. IEEE INFOCOM,2009, pp.468-476.
    [101]L. Su, B. Ding, Y. Yang, T. F. Abdelzaher, G. Cao, and J. C. Hou, "ocast:Optimal multicast routing protocol for wireless sensor networks," in Proc. IEEE ICNP,2009, pp. 151-160.
    [102]J. Hong, J. Cao, W. Li, S. Lu, and D. Chen, "Minimum-transmissionbroadcast in uncoordinated duty-cycle wireless ad hoc networks," IEEE Trans. Veh. Technol, vol.59, no.1, pp.307-318,2010.
    [103]Y. Gu and T. He, "Bounding Communication Delay in Energy Harvesting Sensor Networks," in IEEE ICDCS,2010.
    [104]X. Wang, X. Wang, G. Xing, and Y. Yao, "Dynamic duty cycle control for end-to-end delay guarantees in wireless sensor networks," in IEEE IWQoS,2010.
    [105]Z.J. Li, M. Li, J.L. Liu, and S.J. Tang, Understanding the Flooding in Low-Duty-Cycle Wireless Sensor Networks, Parallel Processing (ICPP), pp.673-682,2011.
    [106]N. Kadi and K. A. Agha, Optimized MPR-Based Flooding in Wireless Ad Hoc Network using Network Coding, Wireless Days,2008.
    [107]Y. Wu, P. A. Chou, and S. Y. Kung, "Information exchange in wireless networks with network coding and physical-layer broadcast," Microsoft Research (MSR), Aug.2004.
    [108]S. Katti, H. Rahul, W. Hu, D. Katabi, M. M'edard, and J. Crowcroft,XORs in the air: practical wireless network coding, ACM SIGCOMM, pp.243-254,2006.
    [109]E. L. Li, R. Ramjee, M. M. Buddhikot, and S. C. Miller, Network coding-based broadcast in mobile ad-hoc networks, IEEE INFOCOM,2007.
    [110]S.H. Yang, J. Wu and M. Cardei, Efficient Broadcast in MANETs Using Network Coding and Directional Antennas, INFOCOM. IEEE,2007.
    [111]S. Lin, J. Zhang, G. Zhou, L. Gu, T. He, and J. A. Stankovic. ATPC:Adaptive Transmission Power Control for Wireless Sensor Networks. In SenSys'06,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700