抽油机直驱用低速大转矩永磁电机及其控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是人类赖以生存的能源之一,对于进入开发的中后期油井,大多为低液井、稠油井,需要开采设备满足长冲程、低冲次,传统的采油方式都无法满足这样的要求。大部分的抽油机因为有减速机,使系统整体存在传动效率低与电机工作效率低两方面问题,而从驱动控制等方面都无法从根本上解决这些问题。只有使用无减速机的直驱结构,并且将电机做成低速大转矩永磁同步电机,才能从根本上解决传动效率低、电机耗电量大的问题。
     本文结合低速大转矩的传动特点,对低速大转矩永磁同步电动机的设计特点和方法进行研究。分析低速传动中产生转矩脉动的原因,并探讨采用分数槽绕组、合理设计极弧系数以及斜槽等削弱转矩脉动方法的有效性。用仿真软件分析电机的磁场分布、气隙磁密波形以及纹波转矩等。结合样机的实验结果,说明本文提出的低速大转矩永磁同步电动机的设计方法以及转矩脉动消除方法的有效性。
     通过对油田采油的实际工况及直驱结构运行特点的分析,在结合永磁同步电动机数学模型的基础上,设计出针对直驱低速大转矩永磁电机的配套控制系,采用高性能可编程变频器,取消PLC等控制元件。通过实验调试,对控制方案进行了优化,并应用于全平衡式抽油机。
     根据直驱螺杆泵工作特点采用无传感器矢量控制原理,减少了机械减速器和皮带减速器,增加了反转制动机构,可实现带电停机、断电制动的功能,降低系统控制复杂程度。对系统停机过程进了分析,通过实践的验证,设计方法简单可行、易于操作。
     最后经过样机制作与控制系统的安装调试。实现了长冲程、低冲次的控制功能,提高机械结构的传动效率以及电机的工作效率,大大降低了电能消耗,实现了科学、有效地开采地下原油,达到节能降耗、可持续的开发自然资源的要求。
Petroleum is one of the most important energy of human. Now, our domestic oil fields have go to the meta or later period, the characteristic of the well in our country is low liquid level deep well, viscous crude wells. Most of the pumping units have the characteristic of poor performance transmission efficiency, energy-intensive, and the motor power factor is low. They can not satisfy the need of the wells. But the control system could not resolve this contradiction. Therefore, only use direct drive structure and low-speed high-torque PMSM could significantly improve the transmission efficiency of pumping system and energy saving.
     The paper discusses the characteristic and design method of low speed and high torque PMSM considering driving requirement of the oil extraction system. The cause of producing pulsatile torque is analyzed, and some measures for weakening pulsatile torque are analyzed, which includes fractional slot winding, reasonable pole arc coefficient and skew stator slot. The distribution of magnetic field, waveform of magnetic filed density and pulsatile torque are caculated and simulated. These results can validate the rationality of magnetic filed pathway. The experimental results are analyzed, and these results are used to show that the method brought forward by this paper to design low speed and high torque PMSM is effective.
     By analyzing the actual working conditions and characteristics of direct drive structure, the control system of low-speed high-torque PMSM is designed. In order to replace PLC and other control components, the control system use programmable high performance converter. Through the test, the control system has been optimized and applied to the full balanced pumping unit.
     From the analysis of the direct drive screw pump unit and the techniques of oil extraction, the theory of senseless vector control is adopted. This system abort reducing mechanical and strap decelerator and increasing the reversal braking setups,which can realize functions of electrification stopping,power-off brake.
     Finally, the prototype and control system are installed and debugged. The low energy consumption, long stroke and low the frequency of stroke are realized. The system improves the driving efficiency by introducing a low-speed and high-torque PMSM. The result has proved that the control project is feasible and effective to extract oil effectual and scientifically, decrease energy consumption, achieve energy-saving emission reduction goals.
引文
[1]张阳春.国内外石油钻采设备技术水平分析.北京:石油工业出版社,2002:125-147.
    [2]王建新.方淑芬.能源紧缺:中国石油工业的战略构架.哈尔滨工业大学学报,2006,(07):22
    [3]孔昭瑞.国内外抽油机的发展趋向.石油机械,1995,(23):49~54.
    [4]张琪.采油工程原理与设计.东营:石油大学出版社,2000,9.
    [5]安锦高.有杆抽油设备与技术—抽油机.北京:石油工业出版社,1994.
    [6]王鸿勋,张琪.采油工艺原理.北京:石油工业出版社.1989.
    [7]国外长冲程抽油机的现状与发展.国外石油机械,1997,(6):23.
    [8]张学鲁,季祥云,罗仁全.游梁式抽油机技术与应用.北京:石油工业出版社,2007.
    [9]石临嵩,高福光.浅谈我国抽油机的类型及发展趋势.钻采工艺.1995,(2):46~61.
    [10] Rausand M.,Holland A.System Reliability Theory. Models, Statistical Methods and Application(SecondEdition).New York: John Wiley & Sons,2004.
    [11]曹玉泉,姜羡英.关于抽油机电机发电运行状态的探讨.石油矿场机械.1994.
    [12]曲文涛.地面驱动螺杆泵变频调速技术研究与应用.石油机械,2003,(4):23~26.
    [13]钱志平.国内外采油装备现状综述.海洋石油,2006,(4):10~16.
    [14]文国平,姜其慧.采油井螺杆泵的变频调速.中国设备工程,2002,(9):25.
    [15]郑学成,魏纪德.地面驱动螺杆泵用电动机功率选择方法初探.石油机械,2003,3l(6):47~48.
    [16]史朝晖,胡会国,刘玉庆.永磁同步电动机在油田抽油机中的应用与节能分析.节能.2004,2.259.
    [17]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,2000.
    [18]暨绵浩,曾岳南,曾建安.永磁同步电动机及其调速系统综述和展望.电气时代.2005,5:22.
    [19]张炳义,冯桂宏,王凤翔等.SPWM电源供电下低速大扭矩永磁同步电动机设计研究.电工技术学报.2001(12):12~15.
    [20] Lampola P,Saransaari P.Analysis of a multi-pole,low-speed permanent-magnet synchronous machine.Proceedings of ICEM’2000.Espoo Finland,1251~1255.
    [21] Bianchi N,Bolognani S.Reducing torque ripple in PM synchronous motor by pole-shifting. Proceedings of ICEM’2000.Espoo Finland,1222~1226.
    [22] Hirokazu Tajima and Yoichi Hori.Speed Sensorless Field-Orientation Control of the Induction Machine.IEEE Trans.1993,29(1):175~180.
    [23] Ju-Suk Lee,Takeshita,Nobuyuki Matsui.Stator-Flux-Oriented Sensorless Induction Motor Drive for Optimum Low-Speed Performance.IEEE Trans,1997,33(5):1170~1175.
    [24] Zhang Bingyi,Wang Fengxiang,Feng Guihong. A medium-frequency induction heater for development of viscous and high-solidifying oil deposits.Proceedings of IPEMC’2000, Beijing, 875~879.
    [25]郑海金,邓吉彬,唐东岳,等.高机械采油系统效率的理论研究及应用.石油学报,2004,25(l):93~96.
    [26]万立民,班文华,赵刚.抽油机系统效率测试在油田的应用和推广.科技创新导报,2007,(12):104~104.
    [27]刘惟信.机械可靠性设计.北京:清华大学出版社.2002.
    [28]高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社.2002.
    [29]许大人中著.交流电机调速理论.浙江大学出版社.1991.
    [30]陈伯时著.电力拖动自动控制系统.机械工业出版社.1997.
    [31]黄俊,王兆安著.电力电子交流技术.机械工业出版社.1996.
    [32]李华德等编著.交流调速控制系统.机械工业出版社,2005.
    [33]王成元,周美文,郭庆鼎编著.矢量控制交流伺服驱动电动机.北京:机械出版社,1994.
    [34]梁艳,李永东.无传感器永磁同步电机矢量控制系统概述.电气传动,2003,(4):4~9.
    [35] A.Garcia-Gerrada,J.A.Tanfiq.Convergence of Rotor Flux Estimation in Field Oriented Control. Third International Conference on Power Electronics and Variable-Speed Drives,pp.1988,291~295.
    [36] TIAN C,LI HP.HU YW.A novel scheme of direct torque control in the permanent magnet synchronous motor drive.IEEE Power Electronics in Transportation,2002,18(10):47~52.
    [37]葛长虹.工业测控系统的抗干扰技术.冶金工业出版社,2006.
    [38]任峰.电气系统的抗干扰保护.重工与起重技术,2009,(1):22~24.
    [39]梁士军.节能型抽油机控制箱的现状和发展.油田节能,2000,(2):6~9.
    [40]王成元,夏加宽,杨俊友,孙宜标.现代电机控制技术.机械工业出版社,2007.
    [41] Uadim LUtin,Sliding mode control design principles and application to electric drives,IEEE Transaction on Industrial Electronics,1993,(1):40~45.
    [42] Shinzo Tamai,Hidehiko Sugimoto,Massao Yano.Speed Sensorless Vector Control of Induction Motor with Model Reference Adaptive System.Conf. Rec.IEEE-IAS Annual Meeting,1987, 6(2):189~195.
    [43] Ahok B,Kulkarni,Mehrdad Ehsani.A Novel Position Sensor Elimination Technique for the Interior Permanent Magnet Synchronous Motor Drive.IEEE Trans,on IA,1992:144~150.
    [44] Liviu Kreindler,A.Lipo.Direct Field Orientation Controller Using the Stator Phase Voltage Third Harmonic.IEEE Trans. Ind.Appl.1994,30(2):441~447.
    [45] Fang-Zheng Peng,Tadashi Fukao.Robust Speed Identification for Speed Sensorless Vector Control Drives.IECON’94,20th International Conference,1994, 20(3):1579~1588.
    [46] Ju-Suk Lee,Takeshita,Nobuyuki Matsui.Stator-Flux-Oriented Sensorless Induction Motor Drive for Optimum Low-Speed Performance.IEEE Trans,1997,33(5):1170~1175.
    [47] Xingyi Xu,D.W.Novotny.Implementation of Direct Stator Flux Orientation Control on a Versatile DSP Based System. Conf.Rec.IEEE-IAS Annual Meeting,1999,10:520~524.
    [48] Mademlis.C Margaris,N.Loss minimization in vector-controlled interior permanent magnet synchronous motor drives.Industrial Electronics.2002.(6),1344~1347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700