施普善注射液对谷氨酸引起的SH-SY5Y细胞损伤作用的保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的应用谷氨酸(glutamate, Glu)细胞损伤模型来研究施普善(Cerebrolysin)是否可以有效地保护细胞,并探讨其保护机制。
     方法应用SH-SY5Y神经细胞系来建立可靠的Glu损伤模型。采用噻唑兰(methyl-thiazole-tetrazolium, MTT)细胞活性的测定、乳酸脱氢酶(lactatedehydrogenase, LDH)检测的方法研究Cerebrolysin是否具有细胞保护作用。应用细胞内钙离子测定、细胞内活性氧(reactive oxygen species, ROS)测定、细胞培养基超氧化物岐化酶(superoxide dismutase, SOD)、丙二醛(malonaldehyde, MDA)含量测定和细胞线粒体膜电位(mitochondrion membrane potential, MMP)测定等方法进一步探讨Cerebrolysin细胞保护作用的机制。
     结果
     1.80mM Glu处理细胞24h后MTT测定数据表明细胞存活率为51.233±3.019%;单独给予细胞4、8、10和20m1/L的Cerebrolysin对细胞存活没有显著影响。
     2.4、8、10和20ml/L Cerebrolysin和80mM Glu共同处理细胞24h后细胞的存活率分别为48.739±5.786%、71.863±16.821%、75.767±12.454%和71.814±11.788%,其中l0ml/L浓度Cerebrolysin细胞保护作用最好。
     3.与正常对照组比较(544.670±5.126 U/L),80mM Glu组细胞培养基LDH含量显著增加(835.552±51.530U/L);与80mM Glu组比较,10ml/L Cerebrolysin加80mM Glu组细胞培养基LDH含量显著降低(680.222±66.688 U/L,P<0.05)。
     4.与正常对照组比较(28.328±5.286),10ml/L Cerebrolysin对细胞内钙离子荧光没有显著影响(32.523±7.514);80mM Glu引起细胞内钙离子荧光显著增加(72.434±12.735,P<0.001);10ml/L Cerebrolysin可以抑制Glu引起的细胞内钙离子荧光增加(53.309±12.626,P<0.001)。
     5.与正常对照组(94.356±13.417)比较,单独给予细胞10ml/L Cerebrolysin24h可以显著提高线粒体荧光(115.856±9.425,P<0.001),同时可见细胞线粒体明显增多,分支增加;而80mM Glu处理细胞24h线粒体荧光显著降低(90.281±9.438,P<0.05);10ml/L Cerebrolysin和80mM Glu共同处理细胞24h后线粒体荧光显著增加(102.847±13.338,P<0.001),同时可见细胞线粒体明显增多,分支增加。
     6.与正常对照组(20.436±1.762 U/m1)比较,80mM Glu处理细胞24h后培养基中SOD酶的含量显著降低(5.816±1.154 U/ml,P<0.001);10ml/L的Cerebrolysin对细胞培养基SOD酶的含量没有显著影响(21.588±1.051 U/m1);10ml/L的Cerebrolysin可以显著抑制80mM Glu引起的细胞培养基SOD酶含量的降低(14.810±1.955 U/ml,P<0.001)。
     7.与正常对照组(0.989±0.224μmol/L)比较,80mM Glu处理细胞24h后培养基中MDA的含量显著增加(11.138±0.942μmol/L,P<0.001);10ml/L的Cerebrolysin对细胞培养基MDA的含量没有显著影响(1.071±0.337μmol/L);l0ml/L的Cerebrolysin可以显著抑制80mM Glu引起的细胞培养基MDA含量的增加(4.424±0.772μmol/L,P<0.001)。
     8.与正常对照组细胞ROS荧光(39.112±15.283)比较,80mM Glu处理组显著增高(123.058±33.007,P<0.001);与80mM Glu处理组比较,l0ml/LCerebrolysin和Glu共同处理组细胞ROS荧光显著降低(95.707±28.703,P<0.001)。
     结论
     1.单独应用4、8、10、20m1/L浓度的Cerebrolysin对SH-SY5Y细胞存活率没有显著影响。
     2.10ml/L的Cerebrolysin可以通过抑制80mM Glu引起的SH-SY5Y细胞内钙离子、ROS和MDA含量的增加,提高SH-SY5Y细胞SOD酶的含量,降低SH-SY5Y细胞过氧化反应来抑制Glu引起的细胞损伤。
     3. Cerebrolysin可以显著提高SH-SY5Y细胞MMP,同时线粒体形态发生改变,这一变化是否参与了Cerebrolysin抑制Glu引起的细胞损伤及其机制依然不祥。
Objective To observe the protective effects of Cerebrolysin on SH-SY5Y cells damage induced by gluatmate, and to explore its possible molecular mechanisms.
     Methods Cell damage model was established by treating SH-SY5Y Cells with 80mM glutamate. Cell viability and lactatedehydrogenase(LDH) concentration were used to estimate the cell protective effects of Cerebrolysin. Its mechanisms were researched by examine cell calcium fluorescent, mitochondria membrane potential(MMP), reactive oxygen species(ROS), malonaldehyde(MDA) and superoxide dismutase(SOD) contents.
     Result The cell viability of SH-SY5Y cells decreased to 51.233±3.019% after being treated with 80mM gluatmate for 24h and the normal cell morphous were also disappeared, which suggesting that cell damage model was successfully established. 4、8、10 and 20ml/L Cerebrolysin had not effect on cell viability. Co-treated cell with 4、8、10、20ml/L Cerebrolysin and 80mM glutamate for 24h cell viability were 48.739±5.786%、71.863±16.821、75.767±12.454% and 71.814±11.788%. Group of 80mM glutamate cell medium LDH content was 835.552±51.530U/L; Co-treated group of 10ml/L Cerebrolysin and 80mM glutamate cell medium LDH content was 680.222±66.688 U/L. Contrast with control(28.328±5.286),80mM Glutamate could increase cell calcium fluorescent(72.434±12.735); 10ml/L Cerebrolysin had not effect on cell calcium fluorescent(32.523±7.514); Co-treated group of 10ml/L Cerebrolysin and 80mM glutamate cell calcium fluorescent increased to 53.309±12.626. Contrast with control(94.356±13.417), 10ml/L Cerebrolysin could significant increase cell MMP (115.856±9.425) and the mitochondria morphous was changed; 80mM glutamate cell had decreased MMP(90.281±9.438); Co-treated group of 10ml/L Cerebrolysin and 80mM glutamate cell MMP were significant increased (102.847±13.338) and the mitochondria morphous was changed too. Contrast with control(20.436±1.762 U/ml),80mM glutamate could significant decrease cell medium SOD contents(5.816±1.154 U/ml); 10ml/L Cerebrolysin had not effect on cell medium SOD contents(32.523±7.514); Co-treated group of 10ml/L Cerebrolysin and 80mM glutamate cell medium SOD contents decreased to 14.810±1.955 U/ml.80mM Glutamate could significant increase cell medium MDA contents to 11.138±0.942μmol/L, and 10ml/L Cerebrolysin could inhibit it to 4.424±0.772μmol/L. Control cells had a low ROS fluorescent(39.112±15.283), while 80mM glutamate could significant increase ROS fluorescent to 123.058±33.007; 10ml/L Cerebrolysin could inhibit glutamate induced ROS fluorescent to 95.707±28.703.
     Conclusion Cerebrolysin(10ml/L) can reduce glutamate(80mM) induced SH-SY5Y cells damage by decrease intra-cellular calcium, MDA and ROS increasing, increase cell SOD contents, inhibit cell peroxidatic reaction. Cerebrolysin can significantly increase cell MMP and change the mitochondria morphous. While it's mechanisms is still unclear. We have no data to support that the increase of cell MMP is in favor of the cell viability.
引文
[1]Ladurner G, Kalvach P, Moessler H, The Cerebrolysin Study Group. Neuroprotective treatment with Cerebrolysin in patients with acute stroke:a randomized controlled trial[J]. J Neural Transm,2005, 112(3):415-428.
    [2]Riley C, Hutter Paier B, Windisch M, Doppler E, Moessler H, Wrowski R. A peptide preparation protects cells in organotypic brain slices against cell death after glutamate intoxication [J]. J Neural Transm, 2006,113(3):103-110.
    [3]Valouskovd V, Gschane A. Effects of NGF, b-FGF, and Cerebrolysin on water maze performance and on motor activity of rats:short-and long-term study[J]. Neurobiol Learn Mem,1999,71(2):132-149.
    [4]Ren J, Sietsma D, Qiu S, Moessler H, Finklestein SP. Cerebrolysin enhances functional recovery following focal cerebral infarction in rats[J]. Restor Neurol Neurosci,2007,25(1):25-31.
    [5]Windisch M, Piswanger A. The effect and changes in oxygen consumption of rat brain homogenates:in vitro effect of a peptide derivation[J]. Arzneimittel forschung,1985,35(8):1225-1227.
    [6]Boado-RJ. Brain-derived peptides regulate the steady state levels and increase stability of the blood-brain barrier GLUT1 glucose transporter mRNA[J]. Neurosci Lett,1995,197(3):179-182.
    [7]Boado RJ, Wu D, Windisch-M. In vivo upgration of the blood-brain barrier GLUT1 glucose transporter by brain-derived peptides[J]. Neuroscienc Res,1999,34(4):217-224.
    [8]Hutter-Paier B, Grygar E, Windisch M. Death of cultured telencephalon neurons induced by glutamate is reduced by the peptide derivative Cerebrolysin[J]. J Neural Transm Suppl,1996,47:267-273.
    [9]Hutter-Paier B, Steiner E, Windisch M. Cerebrolysin protects isolated cortical neurons from neurodegeneration after brief histotoxic hypoxia[J]. J Neural Transm Suppl,1998,53:351-361.
    [10]Satou T, Imano M, Akai F, Hashimoto S, Itoh T, Fujimoto M. Morphological observation of effects of Cerebrolysin on cultured neural cells[J]. Advances in the Biosciences,1993,87:195-196.
    [11]Akai F, Hiruma S, Sato T, Iwamoto N, Fujimoto M, Ioku M, Hashimoto S. Neurotrophic factor-like effect of FPF1070 (Cerebrolysin) on septal cholinergic neurons after transsections of fimbriafornix in the rat brain[J]. Histol Histopath,1992,7(2):213-221.
    [12]欧阳颖,林穗珍,李晓瑜,颜光美,杜敏联.脑活素激发细胞内钙升高介导大脑皮质神经元死亡[J].中山大学学报(医学科学版),2003,24(6):528-531.
    [13]王春艳,王广秀.脑活素对体外培养脑胶质瘤细胞的作用[J].天津医科大学学报,1997,3(2):22-23.
    [14]李晓瑜,欧阳颖,林穗珍,万翔,颜光美,邱鹏新.脑活素对原代培养大鼠小脑颗粒神经元影响的研究[J]. 中国实用儿科杂志,2000,15(8):464-466.
    [15]Verleye M, Steinschneider R, Bernard FX, Gillardin JM. Moclobemide attenuates anoxia and glutamate induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes[J]. Brain Res,2007,1138:30-38.
    [16]冯波,王蓉,盛树力.神经退行性疾病研究中拟神经细胞模型:人神经母细胞瘤株SH-SY5Y的来源特性及应用[J].中国临床康复,2006,10(6):121-123.
    [17]Li D, Shao Z, Terry L, Vanden Hoek, Brorson JR. Reperfusion accelerates acute neuronal death induced by simulated ischemia[J]. Exp Neurol,2007,206(2):280-287.
    [18]Matyja E. Aluminum enhances glutamate-mediated neurotoxicity in organotypic cultures of rat hippocampus [J]. Folia Neuropathol,2000, 38(2):47-53.
    [19]Gardner A, Westfall TC, Macarthur H. Endothelin(ET)-1-induced inhibition of ATP release from PC-12 cells is mediated by the ETB receptor:differential response to ET-1 on ATP, neuropeptide Y, and dopamine levels[J]. J Pharmacol Exp Ther,2005,313(3):1109-1117.
    [20]唐小卿,赵静,杨春涛,申新田,范黎黎,郭瑞鲜,杨战利,陈培熹,冯鉴强.非对称性二甲基精氨酸保护PC12细胞拮抗谷氨酸兴奋性毒性的损伤作用[J].中国病理生理杂志,2009,25(2):248-253.
    [21]韩凤昭,彭涛,王林,邹莉波,温晓雪,吕秋军.红景天苷衍生物SO1对谷氨酸及缺氧缺糖所致SH-SY5Y细胞损伤的保护作用[J].中国药理学与毒 理学杂志,2008,22(3):180-185.
    [22]曹定国,周汝滨,廖霞,陈小萍,李校堃.rhaFGF改构体对SH-SY5Y细胞兴奋性氨基酸毒性损伤的作用[J].江西医学院学报,2007,47(1):18-21.
    [23]Iacopino A, Christakos S, German D, Sonsalla PK, Altar CA. Calbindin-D28K-containing neurons in animal models of neurodegeneration:possible protection from excitotoxicity[J]. Brain Res Mol Brain Res,1992,13(3):251-261.
    [24]罗璨,郭莲军.牛磺酸对大鼠急性脑缺血神经元凋亡的影响[J].中国药理学通报,2005,21(9):1057-1061.
    [25]黄慧玲,武俏丽,王辰,王琼,张文治,苏心.脑活素对液压冲击伤后原代神经细胞内游离钙的影响[J].中国药理学通报,2009,25(2):205-209.
    [26]何海丹,赵湛新.脑活素治疗新生儿缺血缺氧性脑病对血钙、镁的影响[J].医学理论与实践,2006,19(5):503-504.
    [27]徐如祥,易声禹.外伤性脑水肿神经元胞浆游离钙浓度及Ca2+-ATP酶活性变化[J].中国神经精神疾病杂志,1993,19(3):129-132.
    [28]Jantas D, Lason W. Different mechanisms of NMDA-mediated protection against neuronal apoptosis:a stimuli-dependent effect[J]. Neurochem Res,2009,34(11):2040-2054.
    [29]Singh J, Kaur G. Transcriptional regulation of polysialylated neural cell adhesion molecule expression by NMDA receptor activation in retinoic acid-differentiated SH-SY5Y neuroblastoma cultures[J]. Brain Res,2007,1154:8-21.
    [30]Corasaniti MT, Maiuolo J, Maida S, Fratto V, Navarra M, Russo R, Amantea D, Morrone LA, Bagetta G. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro[J]. Br J Pharmacol,2007, 151(4):518-529.
    [31]Slemmer JE, Shacka JJ, Sweeney MI, Weber JT. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging[J]. Curr Med Chem,2008,15(4):404-414.
    [32]You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures[J]. Can J Physiol Pharmacol,2009,87(6):440-447.
    [33]Shan X, Chi L, Ke Y, Luo C, Qian S, Gozal D, Liu R. Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage[J]. Neurobiol Dis,2007,28(2): 206-215.
    [34]Paravicini TM, Drummond GR, Sobey CG. Reactive oxygen species in the cerebral circulation:physiological roles and therapeutic implications for hypertension and stroke[J]. Drugs,2004,64(19): 2143-2157.
    [35]Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury[J]. Cell Mol Neurobiol,1998,18(6):667-682.
    [36]Marlatt M, Lee HG, Perry G, Smith MA, Zhu X. Sources and mechanisms of cytoplasmic oxidative damage in Alzheimer's disease[J]. Acta Neurobiol Exp(Wars),2004,64(1):81-87.
    [37]Mazur-Kolecka B, Golabek A, Nowicki K, Flory M, Frackowiak J. Amyloid-beta impairs development of neuronal progenitor cells by oxidative mechanisms[J]. Neurobiol Aging,2006,27(9):1181-1192.
    [38]Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F, Muller WE, Eckert A. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice[J]. Neurobiol Dis, 2005,18(1):89-99.
    [39]张瑞莉,高雪丽,郑世民.脑活素治疗新生大鼠缺血缺氧性脑病机理的研究[J].黑龙江畜牧兽医,2002,(6):1-3.
    [40]费舟,易声禹.重型颅脑伤血浆自由基水平变化及脑活素的治疗作用[J].中国神经精神疾病杂志,1992,18(6):334-336.
    [41]Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science,2004,305(5684):626-629.
    [42]Storozhevykh TP, Senilova YE, Brustovetsky T, Pinelis VG, Brustovetsky N. Neuroprotective effect of KB-R7943 against glutamate excitotoxicity is related to mild mitochondrial depolarization[J]. Neurochem Res,2009 Sep 22 [Epub ahead of print].
    [43]Mehta SL, Li PA. Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke[J]. J Cereb Blood Flow Metab,2009, 29(6):1069-1078.
    [44]Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Glutamate-induced neuronal death:a succession of necrosis or apoptosis depending on mitochondrial function. Neuron,1995,15(4):961-973.
    [45]Duchen MR. Roles of mitochondria in health and disease[J]. Diabetes, 2004,53(Suppl 1):96-102.
    [46]Orrenius S. Mitochondrial regulation of apoptotic cell death[J]. Toxicol Lett,2004,149(1-3):19-23.
    [47]Huttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease [J]. J Bioenerg Biomembr, 2008,40(5):445-456.
    [48]马国诏,陈生弟,巴茂文,刘卫国,刘佳福,梁樑,徐洁懿.Aβ1-42引起神经胶质瘤细胞U251中蛋白聚集体形成活性氧含量和线粒体膜电位增高[J].中华神经科杂志,2005,38(4):265-266.
    [49]Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at Mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia:a mechanism of 02 sensing[J]. J Biol Chem,2000, 275(33):25130-25138.
    [50]王增禄,杨泽田,徐平西.脑活素对冷暴露大鼠能量转换的影响[J].中国医院药学杂志,1994,14(8):350-351.
    [1]Attwell D. Brain uptake of glutamate:food for thought[J]. J Nutr, 2000,130(4S Suppl):1023S-1025S.
    [2]Meldrum BS. Glutamate as a neurotransmitter in the brain:review of physiology and pathology[J]. J Nutr,2000,130(4S Suppl):1007S-1015S.
    [3]Tapiero H, Mathe G, Couvreur P, Tew KD. II. Glutamine and glutamate [J]. Biomed Pharmacother,2002,56(9):446-457.
    [4]Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier[J]. J Nutr,2000,130(4S Suppl):1016S-1022S.
    [5]Petroff OA. GABA and glutamate in the human brain [J]. Neuroscientist, 2002,8(6):562-573.
    [6]Anderson CM, Swanson RA. Astrocyte glutamate transport:review of properties, regulation, and physiological functions[J]. Glia,2000, 32(1):1-14.
    [7]Daikhin Y, Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia[J]. J Nutr,2000,130(4S Suppl):1026S-1031S.
    [8]Masson J, Sagne C, Hamon M, El Mestikawy S. Neurotransmitter transporters in the central nervous system [J]. Pharmacol Rev,1999, 51 (3):439-464.
    [9]Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy [J]. Epilepsy Res,1999,36(2):189-204.
    [10]Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels[J]. Pharmacol Rev,1999,51(1):7-61.
    [11]Brauner-Osborne H, Egebjerg J, Nielsen E0, Madsen U, Krogsgaard-Larsen P. Ligands for glutamate receptors:design and therapeutic prospects[J]. J Med Chem,2000,43(14):2609-2645.
    [12]O'Hara PJ, Sheppard P0, Thu(?)gersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins[J]. Neuron,1993,11(1): 41-52.
    [13]Bhave G, Nadin BM, Brasier DJ, Glauner KS, Shah RD, Heinemann SF, Karim F, Gereau IV RW. Membrane topology of a metabotropic glutamate receptor[J]. J Biol Chem,2003,278(32):30294-30301.
    [14]Danysz W, Parsons CG. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease:preclinical evidence[J]. Int J Geriatr Psychiatry,2003, 18 (Suppl 1):S23-32.
    [15]Rothstein JD. Excitotoxicity hypothesis[J]. Neurology,1996,47(4 Suppl 2):S19-25.
    [16]Ndountse LT, Chan HM. Role of N-methyl-D-aspartate receptors in polychlorinated biphenyl mediated neurotoxicity[J]. Toxicol Lett, 2009,184(1):50-55.
    [17]Jung KH, Chu K, Lee ST, Park HK, Kim JH, Kang KM, Kim M, Lee SK, Roh JK. Augmentation of nitrite therapy in cerebral ischemia by NMDA receptor inhibition[J]. Biochem Biophys Res Commun,2009,378(3): 507-512.
    [18]Fan MM, Raymond LA. N-Methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease[J]. Neurobiology,2007, 81 (5-6):272-293.
    [19]Freitas d RA, Pereira A Jr, Bezerra Coutinho FA. N-methyl-D-aspartate channel and consciousness:from signal coincidence detection to quantum computing[J]. Prog Neurobiol,2001,64(6): 555-573.
    [20]McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function[J]. Physiol Rev,1994,74(3):723-760.
    [21]Xiao MY, Wasling P, Hanse E, Gustafsson B. Creation of AMPA-silent synapses in the neonatal hippocampus [J]. Nat Neurosci,2004,7(3): 236-243.
    [22]Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, Bockx I, Braeken D, Verpoorten N, Verhoeven K, Timmerman V, Herijgers P, Callewaert G, Carmeliet P, Van Den Bosch L, Robberecht W. Astrocytes regulate GluR2 expression in motor neurones and their vulnerability to excitotoxicity [J]. Proc Natl Acad Sci U S A,2007, 104(1):14825-14830.
    [23]Hestrin S. Activation and desensitization of glutamate- activated channels mediating fast excitatory synaptic currents in the visual cortex [J]. Neuron,1992,9(5):991-999.
    [24]Livsey CT, Costa E, Vicini S. Glutamate-activated currents in outside-out patches from spiny versus aspiny hilar neurons of rat hippocampal slices[J]. J Neurosci,1993,13(12):5324-5333.
    [25]Jonas P, Sakmann B. Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices [J]. J Physiol,1992,455(1):143-171.
    [26]Colquhoun D, Jonas P, Sakmann B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices[J]. J Physiol,1992,458(1):261-287.
    [27]Tempia F, Kano M, Schneggenburger R, Schirra C, Garaschuk 0, Plant T, Konnerth A. Fractional calcium current through neuronal AMPA-receptor channels with a low calcium permeability[J]. J Neurosci, 1996,16(2):456-466.
    [28]Malenka R C, Nicoll RA. Silent synapses speak up[J]. Neuron,1997, 19(3):473-476.
    [29]Isaac J, Ashby M, McBain C. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity[J]. Neuron,2007,54(6): 859-871.
    [30]Osswald IK, Galan A, Bowie D. Light triggers expression of philanthotoxin-insensitive Ca2+-permeable AMPA receptors in the developing rat retina [J]. J Physiol,2007,582(1):95-111.
    [31]Antonio Rodrl' guez-Moreno, Talvinder S. Sihra. Kainate receptors with a metabotropic modus operandi[J]. Trends Neurosci,2007,30 (12):630-637.
    [32]Lerma, J. Role and rules of kainate receptors in synaptic transmission[J]. Nat Rev Neurosci,2003,4(6):481-495.
    [33]Huettner JE. Kainate receptors and synaptic transmission[J]. Prog Neurobiol,2003,70(5):387-407.
    [34]Wang Y, Durkin JP. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, but not N-methyl-D-aspartate, activates mitogen-activated protein kinase through G-protein β γ subunits in rat cortical neurones[J]. J Biol Chem,1995,270(12): 22783-22787.
    [35]Wang Y, Small DL, Stanimirovic DB, Morley P, Durkin JP. AMPA receptor-mediated regulation of a Giprotein in cortical neurons [J]. Nature,1997,389(6650):502-504.
    [36]Takago H, Nakamura Y, Takahashi T. G protein-dependent presynaptic inhibition mediated by AMPA receptors at the calyx of Held[J]. Proc Natl Acad Sci U S A,2005,102(20):7368-7373.
    [37]Pinheiro P, Mulle C. Kainate receptors[J]. Cell Tissue Res,2006, 326(2):457-482.
    [38]Bowie D, Lange GD. Functional stoichiometry of glutamate receptor desensitization[J]. J Neurosci,2002,22(9):3392-3403.
    [39]Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurones[J]. Nature,1997, 388(6638):182-186.
    [40]Vignes M, Collingridge GL. The synaptic activation of kainate receptors[J]. Nature,1997,388(6638):179-182.
    [41]Kidd FL, Isaac JTR. Developmental and activity-dependent regulation of kainate receptors at thalamocortical synapses [J]. Nature,1999, 400(6744):569-573.
    [42]Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropic glutamate receptors[J]. Neuron,1992,8(1):169-179.
    [43]Anwyl R. Metabotropic glutamate receptors:electrophysiological properties and role in plasticity[J]. Brain Res Rev,1999,29 (1)83-120.
    [44]Fagni L, Chavis P, Ango F, Bockaert J. Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurones [J]. Trends Neurosci,2000,23(2):80-88.
    [45]Heuss C, Gerber U. G-protein-independent signalling by G-protein coupled receptors[J]. Trends Neurosci,2000,23(10):469-475.
    [46]Shigemoto R, Mizuno N. Metabotropic glutamate receptors-immunocytochemical and in situ hybridisation analyses[J]. Handbook Chem Neuroanat,2000,18:63-98.
    [47]Moroni F, Nicoletti F, Pellegrini-Gampietro DE. Metabotropic Glutamate Receptors in Brain Function[M]. Portland Press, London, 1998,147-169.
    [48]Baude A, Nusser Z, Roberts JD, Mulvihill E, Mcllhinney RA, Somogyi P. The metabotropic glutamate receptor (mGluRl alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction[J]. Neuron,1993,11(4):771-787.
    [49]Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogvi P. Perisynaptic location of metabotropic glutamate receptors mGluRl and mGluR5 on dendrites and dendritic spines in the rat hippocampus[J]. Eur J Neurosci,1996,8(7):1488-1500.
    [50]Herrero I, Miras-Portugal MT, Sanchez-Prieto J. Positive feedback of glutamate exocytosis by metabotropic glutamate receptor stimulation[J]. Nature,1992,360(6400):163-166.
    [51]Davies CH, Clarke VR, Jane DE, Collingridge GL. Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CAl pyramidal neurones[J]. Br J Pharmacol,1995,116(2):1859-1869.
    [52]Chen Q, Olney JW, Lukasiewicz PD, Almli T, Romano C. Ca2+- independent excitotoxic neurodegeneration in isolated retina, an intact neural net:a role for Cl- and inhibitory transmitters [J]. Mol Pharmacol, 1998,53(3):564-572.
    [53]Inglefield JR, Schwartz-Bloom RD. Optical imaging of hippocampal neurons with a chloride-sensitive dye:early effects of in vitro ischemia[J]. J Neurochem,1998,70(6):2500-2509.
    [54]Lee BK, Lee DH, Park S, Park SL, Yoon JS, Lee MG, Lee S, Yi KY, Yoo SE, Lee KH, Kim YS, Lee SH, Baik EJ, Moon CH, Junq YS. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct [J]. Brain Res,2009,1248:22-30.
    [55]Friedman LK. Calcium:a role for neuroprotection and sustained adaptation[J]. Mol Interv,2006,6(6):315-329.
    [56]Wang HG, Pathan N, Ethell IM, Kjrajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC. Ca2+ induced apoptosis through calcineurin dephosphorylation of BAD[J]. Science,1999, 284(5412):339-343.
    [57]Youn HD, Sun L, Prvwes R, Liu JO. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2[J]. Science, 1999,286(5440):790-793.
    [58]Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg 0, Bootman MD, Roderick HL. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis[J]. Proc Natl Acad Sci U S A,2008,105(7):2427-2432.
    [59]Nixon RA. A "Protease Activation Cascade" in the Pathogenesis of Alzheimer's Disease[J]. Ann N Y Acad Sci,2000,924:117-131.
    [60]Wang KK. Calpain and caspase:can you tell the difference?[J], Trends Neurosci,2000,23(2):20-26.
    [61]Ichinose T, Yu S, Wang XQ, Yu SP. Ca2+-independent, but voltage-and activity-dependent regulation of the NMDA receptor outward K+ current in mouse cortical neurones[J]. J Physiol,2003,551(Pt2): 403-417.
    [62]Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures[J]. Curr Mol Med,2004,4(2): 149-177.
    [63]Farooqui T, Farooqui AA. Aging:an important factor for the pathogenesis of neurodegenerative diseases [J]. Mech Ageing Dev,2009, 130(4):203-215.
    [64]Albers DS, Swerdlow RH, Manfredi G, Gajewski C, Yang L, Parker WD Jr, Beal MF. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy[J]. Exp Neurol,2001,168(1):196-198.
    [65]Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D. Antioxidant therapy in acute central nervous system injury:current state[J]. Pharmacol Rev,2002,54(2):271-284.
    [66]Porta S, Serra SA, Huch M, Valverde MA, Llorens F, Estivill X, Arbones ML, Marti E. RCANl(DSCRl) increases neuronal susceptibility to oxidative stress:a potential pathogenic process in neurodegeneration[J]. Hum Mol Genet,2007,16(9):1039-1050.
    [67]Fridovich I. Superoxide anion radical (02·-), superoxide dismutases, and related matters[J]. J Biol Chem,1997,272(30):18515-18517.
    [68]Law A, Gauthier S, Quirion R. Say NO to Alzheimer's disease:the putative links between nitric oxide and dementia of Alzheimer's type[J]. Brain Res Rev,2001,35(1):73-96.
    [69]Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate and mitochondria[J]. Mol Neurobiol,2003, 27(3):325-355.
    [70]Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice[J]. J Cell Sci,2006,119 (Pt2):339-349.
    [71]魏超,秦正红,张慧灵.基质金属蛋白酶与神经疾病[J].中国药理学通报,2007,23(1):8-12.
    [72]Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway[J]. Science,2000,288(5467):870-874.
    [73]Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS. Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NF-kappaB in rats[J]. Mol Pharmacol, 1999,56(2):254-264.
    [74]Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria:implications for Parkinson's disease[J]. J Neurochem, 1999,73(3):1127-1137.
    [75]Halestrap AP, Doran E, Gillespie JP, O' Toole A. Mitochondria and cell death[J]. Biochem Soc Trans,2000,28(2):170-177.
    [76]Morgan MJ, Kim YS, Liu Z. Lipid rafts and oxidative stress-induced cell death[J]. Antioxid Redox Signal,2007,9(9):1471-1484.
    [77]Duchen MR. Roles of mitochondria in health and disease [J]. Diabetes, 2004,53(Suppl 1):S96-102.
    [78]Orrenius S. Mitochondrial regulation of apoptotic cell death[J]. Toxicol Lett,2004,149(1-3):19-23.
    [79]Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy[J]. Arch Biochem Biophys,2007,462(2): 245-253.
    [80]Nishida K, Yamaguchi 0, Otsu K. Crosstalk between autophagy and apoptosis in heart disease[J]. Circ Res,2008,103(4):343-351.
    [81]Wang Y, Qin ZH, Nakai M, Chen RW, Chuang DM, Chase TN. Co-stimulation of cyclic-AMP-linked metabotropic glutamate receptors in rat striatum attenuates excitotoxin-induced nuclear factor-kB activation and apoptosis[J]. Neuroscience,1999,94 (4):1153-1162.
    [82]Wu H, Lozano G. NF-k B activation of p53. A potential mechanism for suppressing cell growth in response to stress [J]. J Biol Chem,1994, 269(31):20067-20074.
    [83]O'Connor JC, Wallace DM,O'Brien CJ, Cotter TG. A novel antioxidant function for the tumor-suppressor gene p53 in the retinal ganglion cell[J]. Invest Ophthalmol Vis Sci,2008,49(10): 4237-4244.
    [84]Yuan J, Yankner BA. Apoptosis in the nervous system [J]. Nature,2000, 407(6805):802-809.
    [85]Kato S, Negishi K, Mawatari K, Kuo CH. A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion[J]. Neuroscience,1992,48 (4):903-914.
    [86]Han D, Sen CK, Roy S, Kobayashi MS, Tritschler HJ, Packer L. Protection against glutamate-induced cytotoxicity in C6 glial cells by thiol antioxidants[J]. Am J Physiol,1997,273(5 Pt 2):R1771-1778.
    [87]Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases[J]. Annu Rev Pharmacol Toxicol,1996,36:83-106.
    [88]Pereira CM, Oliveira CR. Glutamate toxicity on a PC12 cell line involves glutathione(GSH) depletion and oxidative stress[J]. Free Radic Biol Med,1997,23(4):637-647.
    [89]Kanamori K, Ross BD, Chung JC, Kuo EL. Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo[J]. J Neurochem,1996,67(4):1584-1594.
    [90]Li Y, Maher P, Schubert D. Requirement for cGMP in nerve cell death caused by glutathione depletion [J]. J Cell Biol,1997,139(5):1317-1324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700