真空紫外—生物协同净化二氯甲烷废气的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气污染已成为越来越突出的环境问题。除NOx、SO2污染治理继续得到重视外,对石化、制药等工业生产过程中排放的挥发性有机污染物(VOCs)进行有效控制是改善大气环境质量的重要途径之一。与传统的物理、化学等处理技术相比,生物净化技术具有建造和运行成本低、无二次污染等优点,特别适合于治理大气量、中低浓度、生物降解性好的VOCs废气;但对于所含目标污染物水溶性和生物降解性差的VOCs,运用单一生物净化技术净化效果并不理想。本论文将真空紫外(VUV)光解作为生物降解的协同强化技术净化废气中的二氯甲烷(DCM),重点研究VUV光解含DCM废气的影响因素、光解产物形态、光解动力学,明晰光解反应最适条件及作用机理;研究生物净化DCM技术,优化生物降解工艺参数,阐明生物降解途径与机理;研究VUV-生物耦合技术协同净化DCM废气的具体效果与参数优化,掌握两者的协同强化机理。
     本论文系统研究了停留时间EBRT、进气浓度、反应介质等对DCM光解效率的影响,并在分析主要光解产物基础上推断出光降解机理;建立光解数学模型,定量描述进口浓度、出口浓度与停留时间之间的关系。VUV光解DCM主要通过直接光解、羟基自由基(OH·)和臭氧氧化,主要产物是甲醛、甲酸、乙酸、乙醛酸等小分子醛酮类、羧酸类物质,水溶性大幅提高;BOD/COD测试结果表明光解产物可生化性有明显改善,为提高生物净化效率提供了可能。
     从杭州四堡污水处理厂的厌养池中筛选到1株DCM降解菌:Pandoraea sp. LX-1(Genebank NO:JN021530,保藏号为CCTCC M2011242),通过响应面法获得其最佳培养条件为:培养温度32℃,培养基的pH和盐度分别为7.28和0.66%。建立了生物滴滤塔(BTF,聚氨酯小球填料)和生物过滤塔(BF,营养缓释型填料),分别对DCM进行净化处理。采用气液逆流操作进行挂膜,BTF和BF分别在25d和22d后挂膜完成。稳定运行的实验表明:BTF和BF对DCM的最大去除负荷分别为23.2g·m-3·h-1和33.46g·m-3·h-1。
     分别建立BTF和VUV-BTF装置,利用构建的复合菌群进行挂膜,两系统完成挂膜时间分别为21d和18d。稳定运行阶段实验结果表明,当DCM进气浓度为400-600mg·m-3,相对湿度为75-80%,相同停留时间下,VUV-BTF协同工艺对DCM废气去除率RE较BTF系统高出14~22%,协同工艺和单一系统的最大矿化率分别为81.56%、73.16%;在协同工艺中,VUV段主要承担DCM污染负荷的转化,BTF段则主要承担污染物的矿化,紫外光解强化了中间产物在BTF内的传质过程和可生化性,其去除能力高于VUV与BTF单元去除能力之和;通过EPS等分析表明,协同工艺中BTF单元生物膜比单一BTF系统生物膜的活性更好、厚度更适宜、微生物菌群结构更多样、常量元素需要量更多。工程试验分析表明,UV-BTF联合技术更能适应非稳态的实际工况,具有良好的环境和经济效益。
Air pollution has become an increasingly prominent environmental problem. While treatments of NOx and SO2pollution continue to receive adequate attention, effective control of volatile organic compounds (VOCs) emitted from petrochemical, pharmaceutical and other industrial processes is one of the important ways to improve atmospheric environment, As a competitive alternative to traditional technologies such as physical and chemical processes, biopurification technology has many advantages such as lower costs and less secondary pollution. Thus, it has been widely used in treatment of large flow, low and medium concentration, and easy biodegradable VOCs.However, the single biopurification process is not efficient for treatment of insoluble and less biodegradable compounds.In this paper, the vacuum ultraviolet (VUV) technology was used as a synergistic and reinforced pretreatment for biodegradation of dichloromethane (DCM), research on the influence factors, intermediates and kinetic analysis was conducted with the optimal conditions and degradation mechanism determined, DCM biopurification was studied with process parameters optimized and its pathway and mechanism expounded, effect of the integrated VUV and biopurification technology on efficient synergistic DCM purification as well as optimization of parameters was investigated with the synergistic and reinforcement mechanism discovered.
     In this research, effects of factors including EBRT, inlet concentration, reaction media etc. on DCM photodegradation were studied systematically, a photodegradation pathway was proposed by analysis of the identified intermediates, kinetic models were established to quantitatively describe the mutual relationship between inlet concentration, outlet concentration and EBRT. DCM photodegradation was achieved by the combined roles of photolysis, OH·and O3photooxidation, and the main intermediates were micromolecular aldehydes and ketones, and carboxylic acids such as formaldehyde,formic acid,acetic acid, and glyoxylic acid etc.,with greatly enhanced solubility. BOD/COD test results showed that the biodegradability of photodegradation intermediates was significantly improved, providing a basis and possibility for enhanced biodegradation efficiency.
     One DCM bacteria capable of degrading DCM, Pandoraea sp. LX-1(Genebank NO:JN021530, Collection No:CCTCC M2011242) was selected from the aeration tank of Hangzhou Sibao Wasterwater Treatment Plant, with the optimal culture conditions of temperature32℃, Culture medium concentration and salinity7.28and0.66%respectively. BTF and BF packed respectively with either-based polyurethane foam and nutrition slow release fillings were built for purification of DCM。The start-up of BF and BTF was finished by gas-liquid phase joint reverse inoculation within25d and22d, respectively. Stable operational experiments showed that the maximum removal load of DCM by BF and BTF were respectively23.2g·m-3·h-1and33.46g·m-3·h-1.
     BTF and VUV-BTF were built, and their startup was finished with21d and18d, respectively Stable operational experiments showed that with DCM inlet concentration of400-600mg·m-3, relative humidity of75~80%and the same EBRT DCM, removal efficiency by the integrated VUV-BTF system was14~22%higher than that by the single BTF system, with their maximum mineralization rate of81.56%、73.16%, respectively. In the integrated system, the transformation of DCM pollution load was mainly conducted by the VUV section while the mineralization was mainly undertaken by the BTF section. The mass and biodegradability in BTF were intensified by photodegradation, thus a synergistic purification of higher concentration DCM was made possible in the integrated system, with its removal capability higher than the combined removal capability of the single VUV and BTF processes. EPS analysis showed that the integrated UV-BTF system had a better biofilm activity than BTF, more use of trace elements, more optimal biofilm thickness and more diversified biomass population. Engineering application analysis indicated that the integrated UV-BTF technology had greater adaptability to unstable application conditions and thus better environmental and economic prospects.
引文
[1]Spigo G., Pagella C., Fumi M. D., et al. VOCs removal from waste gases:gas-phase bioreater for the abatement of hexane by Aspergillus niger [J]. Chem. Eng. Sci.,2003,58(3-6):739-746.
    [2]田森林,宁平.有机废气治理新技术及其进展[J].环境科学动态,2000,1:23-28.
    [3]Environmental Protection Agency. Highlights of the 1990 clean air act amendments. http://www.epa.gov/air/airpollutants.html.
    [4]Li, W. B., Wang, J. X., Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts [J]. Catal. Today,2009,148(1-2):81-87.
    [5]Detchanamurthy S., Gostomski P. A. Biofiltration for treating VOCs:an overview. Rev. Environ. Sci. Biotechnol., [J].2012,11(3):231-241.
    [6]Amdur M. O., Doull J., Klaassen C. D., Doull's toxicology:the basic science of poison,4th ed., Pergamon Press, New York,1992.
    [7]Salonen H., Pasanen A. L., Lappalainen S., et al. Volatile organic compounds and formaldehyde as explaining factors for sensory irritation in office environments [J]. J. Occup. Environ. Hyg., 2009,6(4):239-247.
    [8]十二五期间中国环保累计投入将超5万亿,资源节约与环保[J].2012,3:21.
    [9]成卓韦,姜理英,蒋轶锋,等.紫外光解强化生物滤塔去除疏水性α-蒎烯的传质及降解动力学分析[J].中国科学:化学,2012,42(2):182-190.
    [10]Rene E. R., Spackova R., Veiga M. C., et al. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothris variecibatus. J. Hazard. Mater.,2010,184 (1-3):204-214
    [11]国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知(国办发(2010)33号)
    [12]《坚定不移沿着中国特色社会主义道路前进为全面建成小康社会而奋斗》,党的十八大报 告.
    [13]Mccallion J. Membrane process captures vinyl-chloride, other VOC [J]. Chem. Process.,1994, 57(9):33-36.
    [14]Pires J., Carvalho A., de Carvalho M. B. Adsorption of volatile organic compounds in Y zeolites and pillared clays [J]. Mircropor. Mesopor. Mat.,2001,43(3):277-287.
    [15]Engleman V. S. Updates on choices of appropriate technology for control of VOC emissions [J]. Metal Finishing,2002,100 (6):492-504.
    [16]Papaefthimiou P., Ioannides T., Verykios X. E. Catalytic incineration of volatile organic compounds present in industrial waste streams [J]. Appl. Therm. Eng.,1998,18(11):1005-1012.
    [17]Vercammen K. L. L., Berezin A. A., Lox F., et al. Non-thermal plasma techniques for the reduction of volatile organic compounds in air Stream:a critical review [J]. J. Adv. Oxid Technol.,1997,2(2):312-329.
    [18]Khan F. I., Ghoshal A. K. Removal of volatile organic compounds from polluted air [J]. J. Loss Prevent. Proc.,2000,13(6):527-545.
    [19]Burgess J. E., Parsons S. A., Stuetz R. M. Developments in odor control and waste gas treatment biotechnology:a review [J]. Biotechnol. Adv.,2001,19(1):35-63.
    [20]张云,李彦锋.环境中VOCs的污染现状及处理技术研究进展[J].化工环保.2009,9(3):11-18.
    [21]Dubray A., Vanderschuren J. Mass transfer phenomena during sorption of hydrophilic volatile organic compounds into aqueous suspensions of activated carbon [J]. Sep. Purif. Technol,2004, 38(3):215-223.
    [22]Bellschemter K. A. VOCs in air pollution control [J]. Chem. Eng. Prog.,1992,35(5):487-492.
    [23]Morreti E. C., Reduce VOC and HAP emissions [J]. Chem. Eng.,2006,102(2):30-40.
    [24]程从兰,黄小林,郎爽,等.苯系物新型吸收剂的研究[J].北京工业大学学报,2000,26(1):107-111.
    [25]余倩,邓欣,李俊,等.活性炭吸附技术对VOCs净化处理的研究进展[J].材料研究与应用.2010,4(4):368-371.
    [26]Bhaumik D., Majumdar S. Pilot-plant and laboratory studies on vapor permeation removal of VOCs from waste gas using silicone-coated hollow fibers [J]. J. Membr. Sei.,2000,167(1): 107-122.
    [27]Baker R. W., Simmons V. L., Kaschemekat J. Membrane systems for VOC recovery from air streams [J]. Filtr. Sep.,1994, (5):231-235.
    [28]谢兰英,罗灵爱,李忠.热电冷凝VOCs [J].广东化工2005,32(6):11-15.
    [29]Kittrell J. R., Quinlan C. W., Eldridge J. W., et al. Direct catalytic oxidation of halogenated hydrocarbons [J]. J. Air Waste Manage,1991,41(8):1129-1133.
    [30]Barbero B. P., Costa-almeida L., Sanz O., et al. Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds [J].Chem. Eng. J.,2008, 139(2):430-435.
    [31]Morales M. A. R., Barbero B. P., Lopez T., et al. Evaluation and characterization of Mn-Cu mixed oxide catalysts supported on TiO2 and ZrO2 for ethanol total oxidation [J]. Fuel,2009, 88(11):2122-2129.
    [32]林云琴,林和健,王德汉.低温等离子体技术及其在VOCs处理中的应用[J].城市环境与城市生态,2005,18(5):26-29.
    [33]Daniels S. L. On the ionization of air for removal of noxious effluvia (air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge) [J]. IEEE T. Plasma Sci.,2002,30(4):1471-1481.
    [34]Weber J. M., Kelly J. A., Nielsen S. B., et al. Isolating the spectroscopic signature of a hydration shell with the use of clusters:superoxide tetrahydrate [J]. Science,2000,287(5462): 2461-2463.
    [35]Koutsospyros A. D., Yin S. M., Christodoulatos C., et al. Plasmochemicai degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor [J]. IEEE T. Plasma Sci.,2005,33(1):42-49.
    [36]郑光云,侯健,蒋洁敏,等.非平衡等离子体降解流动态低浓度甲苯气体的研究[J].复旦大学学报,2001,40(4):365-366.
    [37]竹涛,李坚,梁文俊,等.等离子体联合技术处理挥发性有机化合物废气的研究进展[J].化工环保,2008,28(2):118-121.
    [38]王玉佳,许德玄,王海军,等.雾化电晕等离子体饮食油烟净化技术与装置[J].环境工程,2004,22(1):40-42.
    [39]Wang J. H., Ray M. B. Application of ultraviolet photooxidation to remove organicpollutants in the gas phase [J]. Sep. Purif. Technol.,2000,19(1-2):11-20.
    [40]Dibble L. A. Fluidizde-bed photocatalytic oxidation of trichloroethylene in contaminated air-streams [J]. Environ. Sci. Technol,1992,26(3):492-495.
    [41]Yamazaki-Nishida S., Nagano K. J., Phillips L. A., et al. Photocatalytic degradation of trichloroethylene in the gas-phase using titanium dixoide pellets [J]. J. Photoch. Photobio. A, 1993,70(1):95-99.
    [42]Deshusses M. A., Johnson C. T., Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment [J]. Environ. Sci. Technol,2000, 34(3):461-467.
    [43]Girard M., Nikiema J., Brzezinski R., et al. A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies:towards the simultaneous biofiltration of swine slurry and methane [J]. Can. J. Civil Eng.,2009,36(12):1946-1957.
    [44]Devinny J. S., Deshusses M. A., Webster T. S. Biofiltration for air pollution control [A]. CRC Press LLC, New York,1999.
    [45]Mpanias C. J., Baltzis B. C. An experimental and modeling study on the removal of mono-chlorobenzene vapor in biotrickling filters [J]. Biotechnol. Bioeng.,1998,59(3):328-343.
    [46]Baquerizo G., Maestre J. P., Sakuma T., et al. A detailed model of a biofilter for ammonia removal:model parameters analysis and model validation [J]. Chem. Eng. J.,2005,113(2-3): 205-214.
    [47]Wang S. T., Ma J., Liu B. C., et al. Degradation characteristics of secondary effluent of domestic wastewater by combined process of ozonation and biofiltration [J]. J. Hazard. Mater., 2007,150(1):109-114.
    [48]游咏妍,陈凡植,黄树杰.活性炭纤维吸附挥发性有机化合物的研究进展[J].工业催化,2006,14(4):63-66.
    [49]刘晖,孙彦福,苏建华,等.利用吸附—催化燃烧法处理喷漆产生的有机气体[J].广州化工,2009,37(1):112-117.
    [50]Wang C., Xi J. Y., Hu H. Y. A novel integrated UV-biofilter system to treat high concentration of gases chlorobenzene [J]. Chinese Sci. Bull.,2008,53(17):2712-2716.
    [51]Moussavi G., Mohseni M., Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs [J]. J. Hazard Mater.,2006,144(1-2):59-66.
    [52]Wang J. H., Ray M.B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase [J]. Sep. Purif. Technol,2000,19(1-2):11-20.
    [53]19世纪由格罗塞斯(Grotthus)(1817)和德雷珀(DraPer)(1843)总结得出.
    [54]邹宇.室内高速率LED紫外光通信系统技术研究[D].四川:重庆大学,2012.
    [55]徐金洲,梁荣庆,任兆杏.一种新型的紫外光源--准分子紫外灯[J].真空科学与技术,2001,21(4):298-302.
    [56]Loraine G.A., Glaze W. H. Destruction of vapor phase halogenated methanes by means of ultraviolet photolysis [A], in Proceedings of the 47th Purdue Industrial Waste Conference [C], West Lafayette,1992,309-316.
    [57]严增濯.臭氧杀菌灯及其应用[J].光源与照明,2004,4:9-12.
    [58]Spangenberg D, Moller U, Kleinermanns K. Photooxidation of exhaust pollutant [J]. Chemosphere,1996,33(1):43-49.
    [59]Khan, F. I., Ghoshal, A. K. Removal of volatile organic compounds from polluted air [J]. J. Loss Prevent. Proc.,2000,13(6):527-545.
    [60]Wang J. H., Ray M. B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase [J]. Sep. Purif. Technol,2000,19(1-2):11-20.
    [61]Shen Y. S., Ku Y. Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process [J]. Chemosphere,1999,38(8):1855-1866.
    [62]Zhang P., Liu J., Zhang Z. L., VUV photocatalytic degradation of toluene in the gas phase [J]. Chem. Lett.,2004,33(10):1242-1243.
    [63]Hatakeyama S., Izumi K., Fukuyama T., et al. Reaction of OH with alpha-pinene and beta-pinene in air-estimate of global CO production from the atmospheric oxidation of terpenes [J].J. Geophys. Res.,1991,96(D1):947-958.
    [64]张俊丽,高慧,胡霞,等.敏化光转化-化学发光法测定2,4-二氯苯酚的研究[J].分析试验 室,2010,29(2):77-80.
    [65]Jonsson A. M., Hallquist M., Ljungstrom E. Influence of OH scavenger on the water effect on secondary prganic aerosol formation ozonolysis of limonene, A3-carene,and alpha-pinene [J]. Environ. Sci. Technol,2008,42(16):5938-5944.
    [66]Den W., Ravindran V., Pirbazari M. Photooxidation and niotrickling filtration for controlling industrial emissions of trichloroethy lene and perchloroethylene [J]. Chem. Eng. Sci.,2006, 61(24):7909-7923.
    [67]Chen W., Hua D. Photocatalytic activity enhancing for TiO2 photocatalyst by doping with La [J]. T. Nonferr. Metal Soc.,2006,16(1):728-731.
    [68]Wang Q., Tan S. B. Quasifinite modules of a Lie algebra related to Block type [J]. J. Pure Appl. Algebra,2007,211(3):596-608.
    [69]张绍岩,丁士文,刘淑涓,等.均相沉淀法合成纳米ZnO及其光催化性能研究[J].化学学报,2002,60(7):1225-1229.
    [70]Marta G., Bauer R., Heterogeneous photocatalytic oxidation of organic for air purification by near UV irradiation titanium dioxide [J]. Chemosphere,1999,38(7):1549-1559.
    [71]Pedit J. A., Iwamasa K. J., Miller C. T., et al. Development and application of a gas liquid contactor model for simulating advanced oxidation processes [J].Environ. Sci. Teachnol,1997, 31(10):2791-2796.
    [72]Raupp G. B., Nico J. A., Annangi S., et al. Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor [J]. Aiche J.,1997,43(3):792-801.
    [73]孙华峰,杜俊琪.羟基自由基活性氧在高浓度有机废水处理中的应用[J].现代化工,2010,30(z1):102-105.
    [74]Jeong J., Sekiguchi K., Lee W., et al. Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp:decomposition characteristics, identification of by-products and water-soluble organic intermediates. J. Photoch. Photobio. A,2005,169(3):279-287.
    [75]Chen F.Y., Pehkonen S.O., Ray M.B., Kinetics and mechanisms of UV photodegradation of chlorinated organics in the gas phase [J]. Water Res.,2002,36(17):4203-4214.
    [76]Wang C., Xi J. Y., Hu H. Y. Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products [J]. Chemosphere,2008,73(8):1167-1171.
    [77]Zhang L. F., Sawell S., Moralejo C, et al. Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene [J]. Appl. Catal. B-Environ.,2007,71(3-4):135-142.
    [78]Huang M. Q., Zhang W. J. Experimental study of photooxidation products of ethylbenzene [J]. J. Environ. Sci.,2010,22(10):1570-1575.
    [79]Lucas M. S., Peres J. A., Puma G. L. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics [J]. Sep. Purif. Technol,2010,72(3):235-241.
    [80]Xu B., Gao N.Y., Sun X.F., et al. Photochemical degradation of diethyl phthalate with UV/H2O2 [J]. J. Hazard. Mater.,2007,139(1):132-139.
    [81]Nimlos M. R., Jacoby W. A., Black D. M., et al. Direct mass spectrometric studies of the destruction of hazardous wastes.2. Gas-phase photocatalytic oxidation of trichloroethylene over TiO2:products and mechanisms [J]. Environ. Sci. Technol,1993,27(4):732-740.
    [82]Buckley P. T., Birls J. W. Evaluation of visible-light photolysis of ozone-water cluster molecules as a sources of atmospheric hydroxyl radical and hydrogen peroxide [J]. Atmos. Environ.,1995,29(18):2409-2415.
    [83]Cheng Z. W., Jiang Y. F., Zhang L. L., et al. Conversion characteristics and kinetic analysis of gaseous a-pinene degraded by a VUV light in various reaction media [J]. Sep. Purif. Technol., 2011,77(1):26-32.
    [84]Yang B., Zhou M. H., Lei L. C., Synergistic effects of liquid and phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen [J]. Chemosphere,2005,60(3): 405-411.
    [85]Chen F. Y., Pehkonen S. O., Ray M. B. Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase [J]. Water Res.,2002,36(17):4203-4214.
    [86]Kuo W. S., Lin I. T., Biodegradability of chlorophenol wastewater enhanced by solar photo-fenton process [J]. Water Sci. Technol.,2009,59(5):973-978.
    [87]魏莹莹.真空紫外光解二氯甲烷的去除特性及机理研究[D].浙江:浙江工业大学,2011.
    [88]Karlsson P. E., Medin E. L., Sellden G., et al. Impact of ozone and reduced water supply on the biomass accumulation of Norway spruce saplings [J]. Environ Pollut.,2002,119(2):237-244.
    [89]张忠良,罗吉敏,张彭义,等.真空紫外光解-活性炭吸附去除甲苯及副产物臭氧[J].中国环境科学,2006,26(Suppl.):56-60.
    [90]成卓韦,魏莹莹,蒋轶锋,等.真空紫外光解α-蒎烯的去除特性和产物分析[J].化工学报,2010,61(10):2679-2687.
    [91]成卓韦.UV-生物联合去除α-蒎烯的工艺及机理研究[D].浙江:浙江工业大学,2010.
    [92]Wang J. H., Ray M. B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase [J]. Sep. Purif. Technol,2000,19(1-2):11-20.
    [93]罗立贤,林霎雯,蒋轶锋,等.紫外光降解气态氯苯的研究[J].浙江工业大学学报,2009,37(2):144-148.
    [94]马超,梁杰,胡洪营,等.紫外-生物过滤联合工艺处理VOCs的研究[J].环境科学与技术,2010,33(6):80-83.
    [95]左国民,徐敏,程振兴,等.挥发性有机物的气相光解及光催化降解研究[J].分子催化,2001,15(6):463-466.
    [96]Leson G., Winer A. M. Biofiltration:an innovative air pollution control technology for VOC emissions [J]. J. Air Waste Manage.,1991,41(8):1045-1053.
    [97]陆继来,尹协东,夏明芳,等.生物法净化低浓度工业废气的技术进展[J].污染防治技术,2006,19(4):37-41.
    [98]Detchanamurthy S., Gostomski P. A. Biofilter for treating VOCs:an overview [J]. Rev. Environ. Sci. Biotechnol.,2012,11(3):231-241.
    [99]Ottengraf S. P., Van Den Oever A. H. Kinetics of orgranic compound removal from waste gases with a biological filter [J]. Biotech. Bioeng.,1983,25(12):3089-3102.
    [100]Miller M. J., Allen D. G. Transport of hydrophobic pollutants through biofilms in biofilters [J]. Chem. Eng. Sci.,2004,59(17):3515-3525.
    [101]Dragt A. J. et al. Environmental Technology. Martinus Nijhoff Publishers,1987,224-230.
    [102]罔田和夫.生物学的脱臭处理法の适用性[J].产业と环境,1989,16(12):58-62.
    [103]许景文.恶臭生物处理的研究[J].上海环境科学,1993,12(11):33-37.
    [104]宣华译.利用微生物高效率脱臭处理技术[J].国外环境科学技术,1992(3)
    [105]张永奎,王安,钟本和,等.微生物处理含SO2气体的试验研究[J].环境工程,2001,19(5):30-32.
    [106]Pagans E., Font X., Sanchez A. Coupling composting and biofiltration for ammonia and volatile organic compound removal [J]. Biosyst. Eng.,2007,97(4):491-500.
    [107]Singh R. S., Agnihotri S. S., Upadhyay S. N. Removal of toluene vapour using agro-waste as biofilter media [J]. Bioresource Technol.,2006,97(18):2296-2301.
    [108]Arriaga S., Revah S. Removal of n-hexane by Fusarium solani with a gas-phase biofilter [J]. J. Ind. Microbiol. Biotechnol.,2005,32(11-12):548-553.
    [109]Chan W. C., Lin Y. S. Compounds interaction on the biodegradation of butanol mixture in a biofilter. Bioresource Technol.,2010,101(11):4234-4237.
    [110]袁青彬李景义庞金钊.生物滴滤塔净化苯乙烯废气的实验研究[J].环境工程学报,2012,6(2):589-593
    [111]Togna A. R., Singh M. Biological vapour-phase treatment using bilfilter and biotrikling filter reactors:practical regimes operating [J]. Environ. Progress,1994,13(2):94-97.
    [112]俞敏,陶佳,王家德.BTF系统处理兼氧池高浓度恶臭废气的工程应用[J].安全与环境学报,2007,7(4):42-45.
    [113]於建明,沙昊雷,陈建孟.复合生物滤塔耦合处理含H2S和VOCs废气研究[J].浙江工业大学学报,2008,36(3):254-259.
    [114]Chen J., Wang Z. Y., Jiang Y. F., et al. Assessment of the bacterial community for denitrifying removal of nitric oxide in a rotating drum biofilter by denaturing gradient gel electrophoresis [J]. Environ. Eng. Sci.,2009,26(7):1189-1196.
    [115]赵阳.膜生物反应器处理挥发性有机废气研究[D].辽宁:大连理工大学,2010.
    [116]Kumar A., Dewulf J., Vercruyssen A., et al. Performance of a composite membrane bioreactor treating toluene vapors:inocula selection, reactor performance and behavior under transient conditions [J]. Bioresource Technol,2009,100(8):2381-2387.
    [117]Kumar A., Dewulf J., Van Langenhove H. Membrane-based biological waste gas treatment [J].Chem. Eng. J.,2008,136(2-3):82-91.
    [118]Sempere F., Gabaldon C., Martinez-Soria V., et al. Performance evaluation of a biotrickling filter treating a mixture of oxygenated VOCs during intermittent loading [J]. Chemosphere,2008, 73 (9):1533-1539.
    [119]Zhang L. L., Hu J., Zhu R. Y., et al. Degradation of paracetamol by pure bacterial cultures and their microbial consortium [J]. Appl. Microbiol. Biotechnol,2012,
    [120]Jang J. H., Hirai M., Shoda M. Enhancement of styrene removal efficiency in biofilter by mixed cultures of Pseudomonas sp. SR-5 [J]. J. Biosci. Bioeng.,2006,102 (1):53-59.
    [121]Nanda S., Sarangi P. K., Abraham J. Microbial biofiltration technology for odour batement:an introductory review [J]. J. Soil Sci. Environ. Manage,2012,3(2):28-35.
    [122]Torkian A., Dehghanzadeh R., Hakimjavadi M. Biodegradation of aromatic hydrocarbons in a compost biofilter [J]. J. Chem. Technol. Biot.,2003,78(7):795-801.
    [123]Li L., Liu J. X. Removal of xylene from off-gas using a bioreactor containing bacteria and fungi [J]. Int. Biodeterior. Biodegrad.,2006,58(2):60-64.
    [124]Chung Y. C. Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases [J]. J. Hazard. Mater.,2007,144(1-2):377-385.
    [125]Xie B., Liang S., Tang Y., et al. Petrochemical wastewater odor treatment by biofiltration [J]. Bioresour. Technol,2009,100(7):2204-2209.
    [126]Garcia-Pena E. I. Hernandez S., Favela-Torres E., et al. Toluene biofiltration by the fungus Scedosporium apiospermum TB1 [J]. Biotechnol. Bioeng.,2001,76(1):61-69.
    [127]Oh Y. S., Choi S. C. Selection of suitable packing material for biofiltration of toluene, m- and p-xylene vapors [J]. J. Microbiol,2000,38(1):31-35.
    [128]Aizpuru A., Malhautier L., Roux J., et al. Biofiltration of a mixture of volatile organic compounds on granular activated carbon [J]. Biotechnol. Bioeng,2003,83(4):479-488.
    [129]王家德,金顺利,陈建孟,等·一种缓释复合生物填料性能评价[J].中国科学:化学,2010,40(12):1874-1879.
    [130]於建明,蒋轶锋,周珍雄,等.一种具有自旋功能的废气处理生物填料[P].中国:CN202343094U,2012年7月25日.
    [131]Delhomenie M. C., Heitz M. Biofiltration of air:a review [J]. Crit. Rev. Biotechnol.,2005, 25(1-2):53-72.
    [132]Kennes C., Veiga M. Fungal biocatalysts in the biofiltration of VOC-polluted air [J]. J. Biotechnol,2004,113(1-3):305-319.
    [133]Darlington A. B., Dat J. F., Dixon M. A. The biofiltration of indoor air:air flux and temperature influences the removal of toluene,ethylbenzene and xylene [J]. Environ. Sci. Technol.,2001,35(1):240-246.
    [134]Hwang S. C. J., Wu S. J., Lee C. M. Water transformation in the media of biofilters controlled by Rhodococcus fascians in treating an ethyl acetate-contaminated air stream [J]. J. Air Waste Manage,2002,52(5):511-520.
    [135]Park D. W., Kim S.S., Haam S., et al. Biodegradation of toluene by a lab-scale biofilter inoculated with Pseudomonas putida DK-1 [J]. Environ. Technol.,2002,23(3):309-318.
    [136]Dorado A., Lafuente F., Gabriel D., et al. A comparative study based on physical characteristics of suitable packing materials in biofiltration [J]. Environ. Technol.,2010,31(2): 193-204.
    [137]Elmrini H., Bredin N., Shareefdeen Z.,et al. Biofiltration of xylene emissions:bioreactor response to variations in the pollutant inlet concentration and gas flow rate [J]. Chem. Eng. J., 2004,100(1-3):149-158.
    [138]Yoon I. K., Park C. H. Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter [J]. J. Biosci. Bioeng.,2002, 93(2):165-169.
    [139]Koh L. H., Kuhn D. C. S., Mohseni M., et al. Utilizing ultraviolet photooxidation as a pre-treatment of volatile organic compounds upstream of a biological gas cleaning operation [J]. J. Chem. Technol. Biotechnol.,2004,79(6):619-625.
    [140]Mohseni M., Zhao J.L. Coupling ultraviolet photolysis and biofiltration for enhanced degradation of aromatic air pollutants [J].J. Chem. Technol. Biotechnol.,2006,81(2):146-151.
    [141]傅凌霄,於建明,成卓伟,等.潘多拉菌LX-1菌株对二氯甲烷的降解特性研究[J].环境群学学报,2012,32(7):1563-1571.
    [142]管春梅,周雅茹.饮用水中二氯甲烷的测定[J].中国卫生检验杂志,2000,6(10):314-316.
    [143]黄开莲.二氯甲烷对人危害研究进展[J].铁道劳动安全卫生与环保,1996,23(3):210-211.
    [144]徐涛.吸收-光助氧化法处理二氯甲烷废气研究[D].浙江:浙江大学,2012.
    [145]Shen Y. S., Ku Y. Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process [J]. Chemosphere,1999,38(8):1855-1866.
    [146]Khan F. I., Ghoshal A. K. Removal of volatile organic compounds from polluted air [J]. J. Loss Prevent. Proc.,2000,13(6):527-545
    [147]Wang J. H., Ray M. B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase [J]. Sep. Purif. Technol.,2000,19(1-2):11-20.
    [148]Wu S.J., Zhang L.L., Wang J.D., et al. Bacillus circulans WZ-12-a newly discovered aerobic dichloromethane-degrading methylotrophic bacterium [J].Appl. Microbiol. Biotechnol.,2007, 76(6):1289-1296.
    [149]Wu S.J., Hu Z.H., Zhang L.L. A novel dichloromethane-degrading Lysinibacillus sphaericus strain wh22 and its degradative plasmid [J]. Appl. Microbiol. Biotechnol.,2009,82(4):731-740.
    [150]Krausova V. I., Robb F. T., Gonzalez J. M., Bacterial degradation of dichloromethane in cultures and natural environments [J]. J. Microbiol. Meth.,2003,54(3):419-422.
    [151]Hartmane D. S., Tramper J. Dichloromethane removal from waste gases with trickle-bed bioreactor [J]. Bioprocess Eng.,1991,6(3):83-92.
    [152]Laura B., Marcell N., Matthias K. Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters [J]. Water Res.,2009,43(1): 11-20.
    [153]Ashley D. L., Bonin M. A., Cardinali F. L., et al. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure [J]. Clin. Chem.,1994,40(7B):1401-1404.
    [1]Wang J. H., Ray M. B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase [J]. Sep. Purif. Technol,2000,19(1-2):11-20.
    [2]Chou M. S., Chang K. L. UV/ozone degradation of gaseous hexamethyldisilazane (HMDS) [J].Chemosphere,2007,69 (5):697-704.
    [3]Chou M. S., Huang B. J., Chang H. Y. Decomposition of gas phase 1,3-butadiene by ultraviolet/ozoneprocess [J].J. Air Waste Manage.,2005,55 (7):919-929.
    [4]Jeong J., Sekiguchu K., Lee W., et al. Photodegradation of gaseous volatile organic compounds(VOC) using TiO2 photoirradiated by ozone-producing UV lamp:decomposition characteristics, identification of by-products and water-soluble organic intermediates [J]. J. Photoch. Photobio.,2005,169(3):279-287.
    [5]Jiang Y., Wen J. P., Bai J., et al. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis [J]. J. Hazard Mater.,2007,147(1-2):672-676.
    [6]Mohseni M., Zhao J. L. Coupling ultraviolet photolysis and biofiltration for enhanced degradation of aromatic air pollutants [J]. J. Chem. Technol. Biot.,2006,81(2):146-151.
    [7]Mohseni M., Koh L. H., Kuhn D. C. S., et al. Ultraviolet photooxidation for the biodegradability enhancement of airborne o-xylene [J]. J. Environ. Eng. Sci.,2005,4 (4): 279-286.
    [8]Tamer E., Hamid Z., Aly A. M., et al. Sequential UV-biological degradation of chlorophenols. [J]. Chemosphere,2006,63(2):277-284.
    [9]Raghuyanshi S., Badu B. V. Experimental studies and kinetic modeling for the removal of methyl ethyl ketone using biofiltration [J]. Bioresource. Technol.,2009,100(17):3855-3861.
    [10]Spangenberg D., Moller U., Kleinermanns K. Photooxidation of exhaust pollutant [J]. Chemosphere,1996,33(1):43-49.
    [11]Obee T. N., Brown R. T. TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene [J]. Environ. Sci.& Technol.,1995,29(5):1223-1231.
    [12]王伟.光催化技术在室内污染控制中的应用研究[D].北京:北京工业大学,2004.
    [13]Heit G., Braun A. M. VUV-photolysis of aqueous systems:spatial differentiation between volumes of primary and secondary reactions [J]. Water Sei.Technol.,1997,35(4):25-30.
    [14]张乃东,黄君礼,郑威.动态UV-vis/H2O2/草酸铁络合物法光解苯胺[J].化工学报,2002,53(1):36-39.
    [15]Obee T. N., Brown R. T. TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene [J]. Environ. Sci. Technol.,1995,29(5):1223-1231.
    [16]吴祖成,李伟UV/H2O2系统光催化氧化降解苯酚废水[J].化工学报,2001,52(3):277-280.
    [17]魏莹莹,孙鹏飞,孙永强,等.真空紫外光解二氯甲烷特性研究[J].浙江工业大学学报,2012,40(4):414-417.
    [18]Zhang P. Y., Liang F. Y., Yu G., et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV [J]. J. Photoch. Photobio. A,2003,156 (1-3): 189-194.
    [19]Chen F. Y., Pehkonen S. O., Ray M. B., Kinetics and mechanisms of UV photodegradation of chlorinated organics in the gas phase [J]. Water Res.,2002,36(17),4203-4214.
    [20]Tsuneda S., Ishihara Y, Hamachi M., et al. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process [J]. Water Sci. Technol.,2002,46(11-12):33-38.
    [21]Zhang H. F., Rattanavaraha W. A new gas-phase condensed mechanism of isoprene-NOx photooxidation [J]. Atmos. Environ.,2011,45(26):4507-4521.
    [22]成卓韦.UV-生物联合去除a-蒎烯的工艺及机理研究[D].浙江:浙江工业大学,2010.
    [23]Wang C., Xi J.Y., Hu H.Y., et al. Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene [J]. J. Hazard. Mater.,2009,171(1-3): 1120-1125.
    [24]Alapi T., Craeynest V. Direct VUV photolysis of chlorinated methanes and their mixtures in a nitrogen stream [J]. Chemosphere,2007,66(1):139-144.
    [25]Alapi T., Dombi A. Direct VUV photolysis of chlorinated methanes and their mixtures in an oxygen stream using an ozone producing low-pressure mercury vapour lamp [J]. Chemosphere,2007,67(4):693-701.
    [26]Cai Y. B., Ge M. F. Kinetics of the gas-phase reactions of some unsaturated alcohols with Cl atoms and O3 [J]. Atmos. Environ.,2011,45(1):53-59.
    [27]Raghuvanshi S., Baku B. V. Experimental studies and kinetic modeling for the removal of methyl ethyl ketone using biofiltration [J]. Bioresource Technol.,2009,100 (17):3855-3861.
    [28]Ramirez-Lopez E. M., Corona-Hernandez J., Avelar-Gonzalez F. J., et al. Biofiltration of methanol in an organic biofilter using peanut shells as medium [J]. Bioresource Technol., 2010,101 (1):87-91.
    [29]Cheng Z. W., Zhang L. L., Chen J. M., et al. Treatment of gaseous alpha-pinene by a combined system containing photo oxidation and aerobic biotrickling filtration [J]. J. Hazard. Mater.,2011,192(3),1650-1658.
    [30]Reyes M. H., Gonzalez V. R. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process [J]. J. Hazard. r.,2012,209,365-371.
    [31]王灿,席劲瑛,胡洪营,等.紫外光降解反应器去除氯苯气体模型的建立与应用[J].环境科学,2009,30(1):29-30.
    [32]康锡惠,刘海清.光化学原理与应用[M].天津:天津大学出版社,1995.73-81.
    [1]成卓韦.UV-生物联合去除α-蒎烯的工艺及机理研究[D].浙江:浙江工业大学,2010.
    [2]Ikatsu H., Kawata H., Nakayama C., et al. Dichloromethane degrading properties of bacteria isolated from environmental water [J]. Biocontrol Sci.,2000,5(2):117-120.
    [3]Okkerse W. J. H., Ottengraf P. P., Kuipers B. Biomass accumulation and clogging in biotfickling for waste gas treatment:evaluation ofa dynamic model using dichloromethane as a model pollutant [J]. Biotechnol. Bioeng.,1999,63(4):418-430.
    [4]Diks R. M. M., Ottengraf P. P. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter [J]. Bioprocess Eng.,1991, 6(3):93-99.
    [5]Hartmans D. S., Tramper J. Dichloromethane removal from waste gases with a tricklebed bioreactor [J]. Bioprocess Eng.,1999,6(3):83-92.
    [6]Young-Sook O., Richard B. Design and performance ofa trickling air biofilter for chlorobenzene and O2 Dichlorobenzene vapors [J]. Appl. Environ. Microb.,1994,60(8):2717-2722.
    [7]李国文,胡洪营,郝吉明,等.生物过滤塔甲苯降解性能研究[J].环境科学,2000,22(2):33-35.
    [8]孙佩石,杨显万,黄若华,等.生物法净化有机废气中低浓度挥发性有机物的过程机理研究[J].中国环境科学,1997,17(6):545-549.
    [9]傅凌霄,於建明,成卓韦,等.潘多拉菌LX-1菌株对二氯甲烷的降解特性研究[J].环境科学学报,2012,32(7):1563-1571.
    [10]Zhang L. L., Leng S. Q., Zhu R. Y., et al. Degradation of chlorobenzene by strain Ralstonia pickettii L2 isolated from a biotrickling filter treating a chlorobenzene-contaminated gas stream [J]. Appl. Environ. Microb.,2011,91(2):407-415.
    [11]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:370-399.
    [12]Available from:http://www.ncbi.nlm.nih.gov/blast/
    [13]American Public Health Association, Stadard Methods for the Examination of Water and Wastewater [M]. Washington (APHA),1998.
    [14]Pires M. N., Seldin L. Evaluation of biolog system for identification of strains of Paenibacillus azotofixans [J]. Anton. Leeuw. Int. J. G.,1997,71(3):195-200.
    [15]Yao Y. L., Lv Z. M., Min H., et al. Isolation, identification and characterization of a novelRhodococcus sp. strain in biodegradation of tetrahydrofuran and its medium optimization usingsequential statistics-based experimental design [J]. Bioresource Technol.,2009,100(11): 2762-2769.
    [16]Sharma P., Singh L., Dilbaghi N. Response surface methodological approach for the decolorizationof simulated dye effluent using Aspergillus fumigatus fresenius [J]. J. Hazard. Mater.,2009,161(2-3):1081-1086.
    [17]Fan Y. Z., Wang Y. Y., Qian P. Y., et al. Optimization of phthalic acid batch biodegradation and the use of modified Richards model for modeling degradation [J]. Int. Biodeter. Biodegr., 2004,53(1):57-63.
    [18]Diks R. M. M., Ottengraf S. P. P., Van Der Oever A. H. C. The influence of NaCl on the degradation rate of dichloromethane by Hyphomicrobium sp [J], Biodegradation,1994,5(2): 129-141.
    [19]Diaz M. P., Boyd K. G., Grigson S. J. W., et al. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers [J]. Biotechnol.Bioeng.,2002,79(2):145-153.
    [20]Nicholson C. A., Fathepure B. Z. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions [J]. Appl. Environ. Microb.,2004,70(2):1222-1225.
    [21]Wu S. J., Zhang L. L., Wang J. D., et al. Bacillus circulans WZ-12-a newly discovered aerobicdichloromethane-degrading methylotrophic bacterium [J]. Appl. Microbiol. Biot.,2007, 76(6):1289-1296.
    [22]Doronina N.V., Trotsenko Y.A., Krausova V.I., et al. Paracoccus methylutens sp. nov.-a new aerobic facul-tatively methylotrophic bacterium utilizing dichloromethane [J]. Syst. Appl. Microbiol.,1998,21(2):230-236.
    [23]Vuilleumier S., Leisinger T., Protein engineering studies ofdichloromethane dehalogenase/glutathione S-transferase fromMethylophilus sp. strain DM11. Ser12 but not Tyr6 is requiredfor enzyme activity [J]. Eur. J. Biochem.,1996,239(2):410-417.
    [24]Morgan-Sagastume J. M., Noyola A. Hydrogen sulfide removal by compost biofiltration:effect of mixing the filter media on operational factors [J]. Bioresources Technol.,2006,97(13): 1546-1553.
    [25]於建明,沙昊雷,王家德,等.代谢产物积累对二氯甲烷生物降解的影响[J].环境科学与技术,2008,31(3):84-87.
    [26]Nikolausz M., Nijenhuis I., Ziller K., et al. Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria [J]. Environ. Microbiol.,2006,8(1): 156-164.
    [27]庄庆丰.二氯甲烷降解菌的选育、降解特性及条件优化[D].浙江:浙江工业大学,2010.
    [28]Raymond J. W., Rogers T. N., Shonnard D. R., et al. A review of structure-based biodegradationestimation methods [J]. J. Hazard. Mater.,2001,84(2-3):189-215.
    [29]姚德明,许华夏,张海荣,等.石油污染土壤生物修复过程中微生物生态研究[J].生态学杂志,2002,21(1):26-28.
    [30]Atkinson R.2000. Atmospheric chemistry of VOC and NOx.A tm ospheric Environm ent,34: 2063-2101.
    [31]Littlejohns J. V., Daugulis A. J. Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium [J]. Process Biochem.,2008,43(10):1068-1076.
    [32]Marie C. D., Josiane N., Louise B., et al. A new method to determine themicrobial kinetic parameters in biological air filters [J]. Chem. Eng. Sci.,2008,63(16):4126-4134.
    [33]Okpokwasili G. C., Nweke C. O. Microbial growth and substrate utilization kinetics [J]. Afr. J. Biotechnol,2006,5(4):305-17.
    [34]Kawata H., Nakayama C., Sakamoto M., et al. Isolation of dichloromethane-degrading bacteria from drainage water [J]. J. Health Sci.,2000,46(3):187-191.
    [35]Turova T. P., Kuznetsov B. B., Doronina N. V., et al. Phylogenetic analysis of aerobic methylotrophic bacteria using dichloromethane [J]. Mikrobiologiya,2001,70(1):92-97.
    [36]Brunner W. B., Staub D., Leisinger T. Bacterial degradation of dichloromethane [J]. Appl. Environ. Microb.,1980,40(5):950-958.
    [37]Villaverde S., Fernandez-Polanco F. Spatial distribution of respiratory activity in Pseudomonas putida 54G biofilms degrading volatile organic compounds (VOC) [J]. Appl. Microbiol. Biotechnol.,1999,51(3):382-387
    [38]Valentina I. Krausoval, Frank T. Robb. Biodegradation of dichloromethane in an estuarine environment[J]. Hydrobiologia,2006,559:77-83.
    [39]王丽萍,吴光前,何士龙,等.高效生物滴滤系统净化甲苯废气快速启动研究[J].哈尔滨工业才学学报,2004,36(4):446-449.
    [40]陈建孟,王家德,庄利.生物滴滤池净化二氯甲烷废气的实验研究[J],环境科学,2002,23(4):8-12.
    [41]Ergas S. J., Veir J., Kinney K. Control of dichloromethane emissions using biofiltration [J], J. Environ. Sci.,1996,31(7):1741-1754.
    [42]Sercu B., Boon N., Beken S. V., et, al. Performance and Microbial Analysis of Defined and Non-Defined Inocula for the Removal of Dimethyl Sulfide in a Biotrickling Filter [J]. Biotechnol. Bioeng.,2007,96(4):661-672.
    [43]王英刚,高丹,林静文,等.生物膜填料塔启动及烟气脱硫研[J].化工环保,2005,25(6):436-440.
    [44]张海杰,罗阳春,陈建孟,等.生物转鼓反硝化净化一氧化氮废气[J].中国环境科学,2006,26(3):262-265.
    [45]Hassan A. A., Sorial G Biological treatment of benzene in a controlled trickle bed air biofilter [J]. Chemosphere,2009,75(10):1315-1321.
    [46]Mathur A. K., Majumder C. B., Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasses, compost and GAC as biofilter media [J]. J. Hazard. Mater., 2007,148(1-2):64-74.
    [47]Jorio H., Bibeau L., Heitz M. Biofiltration of air contaminated by styrene:effect of nitrogen supply, gas flow rate, and inlet concentration [J]. Environ. Sci. Technol.,2000,34(9):1764-1771.
    [48]Garcia-Pena I., Ortiz I., Hernandez S., et al. Biofiltration of BTEX by me fungus Paecilomyces variotii [J]. Int. Biodeter. Biodegr.,2008,62(4):442-447.
    [49]Bohn H., Consider biofiltration for decontaminating gases [J]. Chem. Eng. Prog,1992,88(4): 34-40.
    [50]Johnson C. T., Deshusses M. A. Quantitative structure-activity relationships for VOC biodegradation in biofilters. in Proceedings of the 4th In-Situ and On-Site Bioremediation Symposium, Vol.5. Battelle Press, Columbus, OH, pp.1997,175-180.
    [51]Krausova V. I., Robb F. T., Gonzalez J. M., Bacterial degradation of dichloromethane in cultures and natural environments [J].J. Microbiol. Methods,2003,54(3):419-422.
    [52]Mathur A. K., Majumder C. D. Biofiltration and kinetic aspects of a biotrickling filter for the removal of paint solvent mixture laden air stream [J]. J. Hazard. Mater.,2008,152(3): 1027-1036.
    [53]Ikatsu H., Kawata H., Nakayama C., et al. Dichloromethane degrading properties of bacteria isolated from environmental water [J]. Biocontrol Sci.,2000,5(2):117-120.
    [54]吕镇梅.除草剂二氯喹啉酸对水稻田土壤微生态的影响及其降解特性研究[D].浙江:浙江大学,2004.
    [1]邱阳,邓延慧,王建秋,王志良,夏明芳.利用发光菌毒性测试评价氯苯及其降解中间产物的毒性[J].南京医科大学学报(自然科学版),2009,01:92-95.
    [2]Hung CH, Marinas BJ. Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films [J]. Environetal Science & Technology,1997,31(2): 562-568.
    [3]Can Wang, Jin-ying Xi, Hong-ying Hu, Chemical identification and acute biotoxicity assessment of gaseous chlorobenzene photodegradation products, Chemosphere, Volume 73, Issue 8, November 2008, Pages 1167-1171.
    [4]Essam Tamer, Zilouei Hamid, Amin Magdy Aly, El Tayeb Ossama, Mattiasson Bo, Guieysse Benoit, Sequential UV-biological degradation of chlorophenols, Chemosphere, Volume 63, Issue 2, April 2006, Pages 277-284.
    [5]韩玮.污废水可生化性评价方法的可行性研究[J].江苏环境科技,2004,17(3):8-10.
    [6]孙洪伟,王亚娥,李杰,等.工业废水可生化性及其测定方法的比较研究[J].甘肃环境研穷与监测,2003,16(3):213-215.
    [7]杨培霞,梁淑敏,光焕竹.工业废水可生化性测试技术[J].化学工程师,2002,88(1):32-33.
    [8]吴石金,俞翔,吴尔苗,等.二氯甲烷和二氯乙烷对蛋白核小球藻的毒性影响研究[J].环境科学,2010,31(6),1655-1661.
    [9]Gavagan J. E., Fager S. K, Seip J. E., et al. Glyoxylic acid production using microbial transformant catalysts [J]. J. Org. Chem.,1995,60(13):3957-3963.
    [10]Isobe K., Nishise H., A method for glyoxylic acid production using cells of Alcaligenes sp. GOX373 [J], J. Biotechnol,1999,75(2-3),265-271.
    [11]Cruz Viggi C., Dionisi D., Miccheli A., et al. Metabolic analysis of the removal of formic acid by unacclimated activated sludge [J]. Water Res.,2010,44(11):3393-3400.
    [12]Vanderghem C., Richel A., Jacquet N., et al. Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins [J], Polym. Degrad.Stabil.,2011,96(10):1761-1770.
    [1]Moussavi G., Mohseni M. Using UV pretreatment to enhance biofiltration of mixtures of aromatic VOCs [J]. J. Hazard. Mater.,2007,144(1-2):59-66.
    [2]Koh L. H., Kuhn D. C. S., Mohseni M., et al. Utilizing ultraviolet photooxidation as a pretreatment of volatile organic compounds up stream of abiological gas cleaning operation [J]. J. Chem. Technol. Biotechnol,2004.79(6):619-625.
    [3]Wang C., Xi J. Y., Hu H. Y.2008. A novel integrated UV-biofilter system to treat high concentration of gaseous chlorobenzene [J]. Chinese Sci. Bul.,153(17):2712-2716.
    [4]Wang C., Xi J. Y., Hu H. Y., et al. Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene [J]. J. Hazard. Mater.,2009,171(1-3): 1120-1125.
    [5]王灿,席劲瑛,胡洪营.紫外-生物过滤联合工艺和单一生物过滤工艺中微生物代谢特性的比较[J].环境科学笋报,2010,30(8):1587-1592.
    [6]王丽萍,吴光前,何士龙,等.高效生物滴滤系统净化甲苯废气快速启动研究[J].哈尔滨工业大学学报,2004,36(4):445-449.
    [7]王凡.生物膜填料塔净化中低浓度硫化氢臭气的研究[D].黑龙江:东北农业大学,2004.
    [8]American Public Health Association. Standard Methods for the Examination of Water and Wastewater [M]. Washington,1998.
    [9]Comtem S., Guibaud G., Baudu M. Relation between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part 1. Comparison of efficiency of eight EPS extraction methods [J]. Enzyme Microb., Tech.,2006,38(1-2): 237-345.
    [10]Gerland J. L. Analysis and interpretation of community-level physiological profiles in microbal ecology [J]. FEMS Microbiol. Ecol.,1997,24(4):289-300.
    [11]Deng H. H., Ge L. Y., Xu T., et al. Analysis of the Metabolic Utilization of Carbon Sources and Potential Functional Diversity of the Bacterial Community in Lab-Scale Horizontal Subsurface-Flow Constructed Wetlands [J]. J. Environ. Qual.,2011,40(6),1730-1736.
    [12]Konopka A., Oliver L., Turco R. F. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microb. Ecol.,1998,35(2):103-115.
    [13]席劲瑛,胡洪营,钱易Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
    [14]Preston-Mafham J., Boddy L., Randerson P. F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles-a critique [J]. FEMS Microbiol. Ecol., 2002,42(1):1-14.
    [15]Olsen G.J., Lane D. J., Giovannoni S. J., et al. Microbial ecology and evolution:a ribosomal RNA approach [J].Ann. Rev. Microbiol.,1986,40(1):337-365.
    [16]Kim D., Sorial G. A. Nitrogen utilization and biomass yield in trickle bed air biofilters [J]. J. Hazard. Mater.,2010,182(1-3):358-362.
    [17]Marie-Caroline D., Louise B., Julie G., et al. A study of clogging in a biofilter treating toluene vapors [J]. Chem. Eng. J.,2003,94(3):211-222.
    [18]Michaud S., Bernet N., Buere P., et al. Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors [J]. Water Res.,2002,36(5):1385-1391.
    [19]田鑫,廖强,朱恂,等.陶瓷球填料生物膜滴滤塔挂膜启动工艺及对甲苯废气的净化性能实验研究[J].环境科学学报,2004,24(5):834-840.
    [20]Cai Z, Kim D, Sorial G A. Performance of trickle-bed air biofilter:a comparative study of a hydrophilic and a hydrophobic VOC[J]. Water, Air,& Soil Pollution:Focus,2006,6(1):57-69.
    [21]Hwang J W, Choi C Y, Park S, et al. Biodegradation of gaseous styrene by Brevibacillus sp. using a novel agitating biotrickling filter[J]. Biotechnology letters,2008,30(7):1207-1212.
    [22]Dena W., Ravindran V., Pirbazari M. Photooxidation and biotrickling filtration for controlling industrial emissions oftrichloroethylene and perchloroethylene [J]. Chem. Eng. Sci.,2006,61(24): 7909-7923.
    [23]Mohseni M., Zhao J. L. Coupling ultraviolet photolysis and biofiltration for enhanced degradation of aromatic air pollutants [J]. J. Chem. Technol. Biot.,2006,81(2):145-151.
    [24]Saravanan V, Rajamohan N. Treatment of xylene polluted air using press mud-based biofilter [J]. J. Hazard. Mater.,2009,162(2-3):981-988.
    [25]Jin Y. M., Veiga M. C., Kennes C. Performance optimization of the fungal biodegradation of a-pinene in gas-phase biofilter [J]. Process Biochem.,2006,41(8):1722-1728.
    [26]Saravanan V., Rajamohan N. Treatment of xylene polluted air using press mud-based biofilter [J]. J. Hazard. Mater.,2009,162(2-3):981-988.
    [27]Mathur A. K., Majumder C. B. Biofiltration and kinetic aspects of a biotricking filter for the removal of paint solvent mixture laden air steam [J]. J. Hazard. Mater.,2008,152(3): 1027-1035.
    [28]Villaverde S., Fernandez-Polanco F. Spatial distribution of respiratory activity in Pseudomonas putida 54G biofilms degrading volatile organic compounds [J]. Appl. Microbiol. Biotechnol, 1999,51(3):382-387.
    [29]Ikatsu H., Kawata H., Nakayama C., et al. Dichloromethane degrading properties of bacteria isolated from environmental water [J]. Biocontrol Sci.,2000,5(2):117-120.
    [30]Joannae B., Simona P., Richard M. Development in outdoor control and waste gas treatment biotechnology:a review [J]. Biotechnol. Adv.,2001,19(1):35-63.
    [31]田鑫.净化低浓度有机废气生物膜滴滤塔传输及降解特性[D].重庆:重庆大学,2005.
    [32]Liu X. M., Sheng G.P., Luo H. W., et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation [J]. Environ. Sci. Technol.,2010,44(11):4355-4360.
    [33]Yuan S. J., Sun M., Sheng G.P., et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by bacillus megaterium TF10 for their flocculation capacity [J]. Environ. Sci. Technol.,2011,45(3):1152-1157.
    [34]Wang C., Xi J. Y, Hu H. Y., et al. Stimulative effects of ozone on a biofilter treating gaseous chlorobenzene [J]. Environ. Sci. Technol.,2009,43(24):9407-9412.
    [35]Preston-Mafham J., Boddy L., Randerson P. F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles:A critique [J]. FEMS Microbiol. Ecol., 2002,42(1):1-14.
    [36]姚远,席劲瑛,王灿,等.氯苯紫外光降解产物对生物过滤塔运行性能的影响[J].环境科学学报,2010,30(1):60-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700