Pb、As胁迫对鱼腥草生长及Pb、As富集特征影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属复合污染是土壤污染的主要存在形式,植物修复现已被普遍认为是治理重金属复合污染土壤的有效技术之一。本文以鱼腥草为试验材料,采用盆栽实验技术,探讨了不同浓度Pb、As及其复合处理对鱼腥草生长发育的影响,及鱼腥草对Pb、As的富集特征,结果表明:
     1.单一Pb (0~2 000mg/kg)处理下,鱼腥草株高及产量均随Pb处理浓度的增加而降低,根长呈先上升,后下降的趋势,受害症状明显;单一As(0~120 mg/kg)处理下,鱼腥草生长状况良好,无明显毒害症状,株高、根长、产量随As处理浓度的增加呈先升后降趋势,且均不低于对照,在供试As浓度范围对鱼腥草生长的毒性效应表现为毒物的低剂量兴奋效应。Pb、As复合处理下,就株高而言,As和Pb对彼此的毒性效应没有显著影响;就根长和产量而言,As对Pb的毒性效应影响不显著,高浓度Pb(=1000mg/kg)促进了As对根长的毒物兴奋效应,而低浓度Pb(=500mg/kg)促进了As对产量的毒物兴奋效应。
     2.在不同浓度的Pb、As处理土壤中,Pb、As的加入均可影响鱼腥草根、茎、叶对Pb、As的吸收能力。就As对Pb的影响而言:Pb处理浓度=1000mg/kg时,As可抑制鱼腥草根和茎对Pb的吸收,而Pb浓度为2000mg/kg时,As可促进鱼腥草根和茎对Pb的吸收,当Pb处理浓度=500mg/kg时,As可抑制鱼腥草叶部对Pb的吸收;就Pb对As的影响而言,Pb可抑制鱼腥草根和茎对As的吸收,而Pb对鱼腥草叶部吸收累积As的影响表现为先促进后抑制的趋势,随As处理浓度的增加,对鱼腥草叶部吸收累积As产生抑制作用时的Pb浓度逐渐降低。
     3.鱼腥草对Pb的富集系数为0.21~0.46,对As的富集系数为0.01-0.3;鱼腥草对Pb的转移系数为0.24~2.51,对As的转移系数为0.09~2.09,随Pb、As处理浓度的增加,鱼腥草对Pb、As的富集系数逐渐增加,转移系数则逐渐下降。鉴于鱼腥草对Pb、As较高的富集系数,可以考虑作为修复Pb、As污染土壤的植物修复物种。
     4.单—Pb处理浓度为2000mg/kg及Pb、As复合处理浓度分别为1000、60mg/kg时,鱼腥草从土壤中提取最多的铅,分别为1244.4ug/盆和3132.4ug/盆。单—As处理浓度为120mg/kg及Pb、As处理浓度分别为500、120mg/kg对,鱼腥草从土壤中提取最多的砷,分别为27.3ug/盆和254.1ug/盆。Pb、As复合处理下,鱼腥草从土壤中提取Pb、As的量较各自对照均有显著的增加。
     5.Pb、As在鱼腥草器官水平的分布规律是:根>茎>叶,且随着Pb、As处理浓度的增加,根部重金属含量所占比例也逐渐增加,表明在Pb、As胁迫下,鱼腥草将大部分的重金属固定在根部,限制其向地上部转移,降低重金属对鱼腥草的毒害作用。Pb在鱼腥草细胞水平分布规律为:细胞壁>可溶性成分>细胞器,细胞壁具有重金属的束缚作用和解毒能力,将大部分的Pb固定在细胞壁中,可降低Pb对鱼腥草的毒害。As在鱼腥草体内细胞内分布规律是:可溶性成分>细胞壁>细胞器。细胞器作为细胞进行各种生理活动的部位,其中的Pb和As含量均保持在相对较低的水平,对于保证鱼腥草正常的生理活动具有重要意义。
     6.单一Pb处理下,土壤中各形态Pb含量的大小顺序是:交换态>有机结合态>残渣态>碳酸盐结合态>铁锰氧化物结合态,交换态含量随Pb处理浓度的增加而增加;As加入后,残渣态Pb含量降至最低,表明As对Pb有一定活化作用。交换态和有机结合态Pb含量与植物中Pb含量相关性均是最大,为鱼腥草吸收Pb的主要形态。As在土壤中各形态含量的顺序为:有机结合态>铁锰氧化物态>硫化物态>碳酸盐结合态>交换态。交换态作为植物最易吸收的形态,其所占比例仅在1%左右,但其与鱼腥草体内的As含量的相关性却是最高的,为鱼腥草累积As的主要形态。交换态As含量极低,表明As在土壤中的生物有效性较低,对鱼腥草的毒害作用较小
Combination contamination of heavy metals is a common but important form of soil contamination. Phytoremediation has become an effective approach for remediation of heavy metal contaminated soils. Taking Houttuynia cordata Thunb. as test material, this paper studied the effects of different concentrations of Pb, As and their combination treatment on the growth and development of H. cordata. and its accumulation of Pb and As by adopting pot culture experiments. The results showed that:
     1. Plant height and yield of H. cordata. were increased as the concentration of Pb decreased, the root length was first increased and then decreased to suffer symptoms under the single treatment of Pb; Because of the low-dose stimulating effect of As on H. cordata., the plant height, root length, yield increased with the concentration of As and no less than the control. H. cordata. growth was in good condition and there were no obvious toxicity symptoms under the single treatment of As; Under the combined treatments of Pb and As, in terms of plant height, there were no significant interactive influence on the toxic effects. In terms of the root length, the toxic effects of high concentration of Pb (=1000mg/kg) on As showed inhibition while the toxic effects of As on Pb was not significant; In terms of the yield, the toxic effect of low concentrations of Pb (= 500mg/kg) on As showed inhibition while the toxic effect of As on Pb was not significant.
     2. In the soil of different concentrations of combined treatments of Pb and As, the accession of Pb and As affected the roots, stems, and leaves of H. cordata.on the absorptive capacity of Pb and As, respectively. In terms of the impact of As on Pb:When the concentration of Pb= 1000mg/kg, As inhibited Pb absorption of root and stem, respectively. When the concentration of Pb reached 2000mg/kg, As promoted Pb absorption of root and stem, respectively. What's more, when the concentration of Pb=500mg/kg, As inhibited Pb absorption of leaves; In terms of the impact of Pb on As, Pb inhibited As absorption of root and stem, respectively, while the impact of Pb on As absorption and accumulation of leaves showed the trend of first promotion and then inhibition. The restraining concentration of Pb on As absorption and accumulation of leaves decreased with the increase of the concentration of As.
     3. The Enrichment Coefficient of Pb and As were 0.21~0.46 and 0.01~0.3, respectively, while the translocation factor of Pb and As were 0.24~2.51 and 0.09~2.09, respectively, in terms of H. cordata. With the concentrations of Pb and As increased, the Enrichment Coefficient of Pb and As increased while the translocation factor of Pb and As decreased gradually, respectively. In view of its high Enrichment Coefficient, H. cordata. can be considered as phytoremediation species to repair Pb and As contaminated soil.
     4. When the concentration was 2000mg/kg under the single treatment of Pb and the concentration of Pb and As were 1000 mg/kg and 60 mg/kg under the combined treatments, H. cordata. extracted the most lead from the soil, which was 1 244.4 ug/pot and 3 132.4 ug/pot, respectively. When the concentration was 120mg/kg under the single treatment of As and concentration were 500 mg/kg and 120mg/kg under the combined treatments of Pb and As, H. cordata. extracted the most arsenic from the soil, which was 27.3ug/pot and 254. 1ug/pot respectively. The amounts of Pb and As that H. cordata.extracted from soil were higher than the control significantly, respectively.
     5. The distribution of Pb and As in vivo organ-level of H. cordata. was:root> stem> leaf. The proportion of heavy metals in roots increased gradually with the concentration of Pb and As, respectively, indicating that under the stress of Pb and As, most of the heavy metals are fixed in root of H. cordata., limiting them to transfer to the shoot to reduce the toxicity of heavy metals on H. cordata.. The distribution of Pb in the body cells- level of H. cordata. was:cell wall> soluble components> organelles, cell wall plays an important role in binding with heavy metals and detoxification, which can reduce Pb poisoning on H. cordata. The distribution of As in the body cells- level of H. cordata. was:soluble components> cell wall> Cell device. Cell organelle is the location for various physiological activities, the contents of Pb and As are maintained at a relatively low level, which is significant to guarantee the normal physiological activities of H. cordata..
     6. The order of content in various forms of Pb in soil under the single treatment of Pb was: exchangeable> organic bound> residual> carbonate bound> Fe-Mn oxides. The content of exchangeable Pb increased with the concentration of Pb in the treatment, the content of residual Pb reduced to minimum when As was added, indicating that As shows a certain activation on Pb. The correlations of Pb content in exchangeable and organically bound with Pb content in plants were the highest, which were the main form of absorption Pb in H. cordata.. The order of content in. various forms of As in soil was:organic bound> Fe-Mn oxide phase> sulfide> carbonate> exchangeable. The proportion of exchangeable, which is the most easily absorbed form of plants, is only about 1%, but it's the main form of H. cordata. that accumulated As as its highest relevance to the content of As in H. cordata. The content of exchangeable As was extremely low, indicating that As bioavailability in soil is very low and it's less harmful to H. cordata..
引文
[1]孙晋伟,黄益宗,石孟春,等.土壤重金属生物毒性研究进展[J].生态学报,2008,28(6):2861-2869
    [2]黄铭洪.环境污染与生态环境[M].北京:科学出版社,2003:118
    [3]王向健,郑玉峰.重金属污染土壤修复技术现状与展望[J].环境保护科学,2004(4):48-49
    [4]蒋先军,骆永明,赵其国,等.重金属污染土壤的修复研究[J].土壤,2000,32(2):71-74
    [5]陈怀满,郑春荣.复合污染与交互作用研究——农业环境保护中研究的热点与难点[J].农业环境保护,2002,21:192
    [6]叶海波,林琴,陈建弟,等.重金属复合污染的研究进展[J].台州学院学报,2005,27(6):64-69
    [7]陈怀满.土壤中化学物质的行为与环境质量[M].北京,科学出版社,2002,123-124
    [8]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89
    [9]A. Kasassi, P. Rakimbei, A. Karagiannidis, et al. Soil contamination by heavy metals:Measurements from a closed unlined landfill[J]. Bioresource Technology,2008,99:8578-8584
    [10]G.P. Kumar, S.K. Yadav, P.R. Thawale, et al. Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter-A greenhouse study[J]. Bioresource Technology, 2007,99:2078-2082
    [11]朱云集,王晨阳,‘马元喜,等.砷胁迫对小麦根系生长及活性氧代谢的影响[J].生态学报,2000,20(4):797-800
    [12]陈同斌,刘更另.砷对水稻生长发育的影响及其原因[J].中国农业科学,1993,26(6):50-58
    [13]Paul B.Tchounwou, Antta K.Patlolla, Jose A.Centeno. Carcinogenic and systemic health effects associated with arsenic exposure-a critical review[J]. Taxicologic pathology,2003,31:575-588.
    [14]易秀,辛玉玲.Cr和As及其交互作用对黑麦草生长的毒性效应[J].生态环境,2008,17(1):195-200
    [15]潘莹,江海燕.鱼腥草药理作用及临床应用研究进展[J].中医药研究,2002,18(4):52-53
    [16]冯平安,叶寿山.复方鱼腥草滴丸解热抗炎作用实验研究[J].安徽教育学院学报,2002,20(6):66-68
    [17]李春喜,鲁旭阳,邵云,等.As, Zn复合污染对小麦幼苗生长及生理生化反应的影响[J].农业环境科学学报,2006,25(1):43-48
    [18]铁柏清,袁敏,唐美珍,等.Cd、Pb、Cu、Zn、As复合污染对龙须草生长的影响[J].土壤通报,2005,36(2):286-288
    [19]Begonia G B, Davis C D, Begonia M F, et al. Growth responses of Indian mustard(Brassica juncea(L.) Czern) and its phytoextraction of lead from a contaminated soil[J]. Bulletin of Environmental contamination toxicology,1998,61(1):38-43
    [20]Donghua L, Wusheng J, Wei W, et al. Effects of lead on foot growth, cell division of nucleolus of Allium Cepa[J]. Environmental pollution,1994,86:1-4
    [21]Wallance A, Frolich E, Lunt J F, Lunt 0 R. Calcium trquirements of higher plants[J]. Nature,1996,29: 634-638
    [22]唐月霞.重金属持续污染下的蚕豆种群响应及其分子生态特征[D].云南大学,2007
    [23]韩善华.蚕豆微核试验及其在重金属遗传毒害中的应用[J].中国微生态学杂志,2008,20(1):93-94
    [24]赵菲佚,翟禄新,陈荃,等.Cd、Pb复合污染对植物膜的破坏粗探[J].兰州大学学报(自然科学版),2002,38(2):118-128
    [25]毛学文,王戈博.氯化铅对豌豆根尖细胞微核和异常分裂的作用[J].植物生理学通讯,2001,37(5):406-408
    [26]李春荣.Pb、Cd及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,22(4):238-242
    [27]谷绪环,金春文,王永章,等.重金属Pb与Cd对苹果幼苗叶绿素含量和光合特性的影响[J].安徽农业科学,2008,36(24):10328-10331
    [28]Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal substituted chlorophyll using the example of water plants [J]. Exp.Bot.,1996,47:259-266
    [29]Korlcheva J, Roy S, Vralljlc J A, Haukioja E, Hughes PR, Hanninen O.Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings[J]. Environment Pollution,1997,95: 249-258
    [30]Huang Y S, Luo 0 H, Kwan K M. Peroxidation damage of oxygen free radicals induced by cadmium to plant [J]. Acta Bot. Sin.,1997,39:522-526
    [31]何冰,叶海波,杨肖娥.Pb胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较[J].农业环境科学,2003,22(3):274-278
    [32]刘素纯,萧浪涛,廖柏寒,等.铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响[J].应用生态学报,2006,17(2):300-304
    [33]李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响[J].农业环境保护,2000,19(3):148-151
    [34]陈同斌.土壤中砷的吸附特点及其与水稻生长发育的关系[学位论文].中国农业科学院,北京,1990
    [35]Carbonell-Barmchina A, c Burlo CF, Beneyto J. Arsenic uptake, distribution, and accumulation in tomato plants:Effect of arsenic on plant growth and yield[J]. Plant Nutr.,1995,18:1237-1250
    [36]王友保,刘登义,张莉.铜砷及其复合污染对黄豆影响的初步研究[J].应用生态学报,2001,12(1):117-120
    [37]Marin A R. Pezeshki, S R, Masscheleyn P H, Choi H S. Effect of dimethylarsenjc acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants [J]. Plant Nutr.,1993,16:865-880
    [38]zhao F J,Dunhamn S J, McGrath S P. Arsenic hyperaccumulation by diffbrcnt fern species[J]. New Phytol.,2002,156:27-31
    [39]谢正苗,黄昌勇.铅锌砷复合污染对水稻生长的影响[J].生态学报,1994,14(2):215-217
    [40]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-21
    [41]杨桂娣,王海斌,陈荣山,等.不同价态无机砷胁迫下水稻秧苗的营养生理玉分子响应[J].中国生态农业学报,2009,17(6):1187-1190
    [42]李圣发,普红平,王宏镔.砷对植物光合作用影响的研究进展[J].土壤,2008,40(3):360-366
    [43]郭观林,周启星.土壤—植物系统复合污染研究进展[J].应用生态学报,2003,14(5):823-828
    [44]Zhou Q-X. Research on biogeochemical cycles and pollution ecology of cadmium[J]. PhD dissertation. Shenyang; Institute of Applied Ecology, Chinese Academy of Sciences.1992
    [45]马海燕,倪吾钟,龙新宪,等.杭州市郊菜园土壤锌、铜、铅污染状况的调查[J].环境与健康杂志,2000,17(3):165-169
    [46]张纪伍,梁伟,李德波,等.土壤铜铅锌复合污染对水稻的生态效应[J].农业生态环境,1997,13(1):16-20
    [47]宋玉芳,许华夏,任丽萍,等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应[J].环境科学,2002,23(1):107
    [48]宋玉芳,周启星,许华夏,等.重金属对土壤中小麦发芽与根伸长抑制的生态毒性[J].应用生态学报,2002,13(4):459-462
    [49]Zong L-G, Ding Y. Present investigation on synergism of heavy metals copper, zinc and cadmium in soil[J]. Agro-Envion Protec,2001,20(2):126-128
    [50]Abdel-Sablur MF, et al. Cadmium-zinc interactions in plants and extractable cadmium and zinc fraction in soil[J]. Soil Science,1998,145(6):424-431.
    [51]郭观林,周启星.土壤—植物系统复合污染研究进展[J].应用生态学报,2003,14(5):823-828
    [52]吴燕玉,王新,梁仁禄,等.重金属复合污染对土壤-植物系统的生态效应Ⅱ:对作物、苜蓿、树木吸收元素的影响[J].应用生态学报,1997,8(5):545-552
    [53]孙健铁柏清钱湛,等.Cd、Pb、Cu、Zn、As复合污染对杂交水稻苗的联合生理毒性效应及临界值[J].土壤通报,2006,37(5):116-124
    [54]Posthuma L, Baerselman R,Veen RPMV. Single and joint toxic effects sotption of meatals in soils[J]. Ecotaxical Environ Safe,1997,38(1):108-121
    [55]Stewart AR, Malley DF. Effect of metal mixture (Cu, Zn, Pb and Ni) on cadmium partitioning in littoral sediments and its accumulation by the freshwater macrophytc Eriocaulon septangulare[J]. Enviton Taxicol Chem,1999,18(3):436-447
    [56]Shatma SS, Schat H, Voous R. Combination toxicology of copper, zinc, and cadmium in binary mixtures:concentration dependent antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris[J]. Environ Toxicol Chem,1999,18(2):348-355
    [57]Weltje L. Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms(Oligochaeta) in labotatory and field soils:a critical evaluation of data[J]. Chemosphere,1998,36(12):2643-2660
    [58]张华.锌镉交互作用对芹菜吸收累积重金属的影响[学位论文].北京,中国农业大学,2006
    [59]秦天才,吴玉树,王焕校.镉、铅及其交互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325
    [60]Fargasova VA, Beiniohr E,1998. Meta-metal interactions in accumulation of V5+, Ni2+, Mo6-, Mn2+ and Cu2+ in under-and above-ground parts of Sinapis Alba [J]. Chemoshpere,2001,36(6):1305-1317
    [61]任安芝,高玉葆.铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J].生态学杂志,2000,19(1):19-22
    [62]王保军,杨惠芳.微生物与重金属的相互作用[J].重庆环境科学,1996,10(1):35-38
    [63]Meng L, Tan DY, Wang HX, et al. Study on the reaponse of wheat to lead, cadmium and zinc[J]. J Environ Sci,1998,10(2):238-244
    [64]伍钧,孟晓霞,李昆,等.鱼腥草吸收累积铅与土壤铅形态的关系[J].西南农业学报,2007,17(增刊):101-104
    [65]孟晓霞.鱼腥草对铅的吸收特性及耐性研究[学位论文].雅安,四川农业大学,2005
    [66]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [67]Tessier A, Campbell PGG, Bisson M. Sequential extraction procedue for the speciation for particulate trace metal[J]. Analytical Chemistry,1979,51(7):844-850
    [68]谢运球,章程,吕勇,等.马山县东部东岗岭组土壤砷的形态分析及其生态意义[J].地质评论,2006,52(6):848-856
    [69]Weigel Hj, Jager HJ. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiol,1980,65:480-482
    [70]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性[J].中国环境科学,1993,13(4):263-268
    [71]Ouariti O, Gouia H, Ghorbal M H. Response of bean and tomato plants to cadmium:Growth, minal nutrition and nitrate reduction[J]. Plant Physiology and Biochemistry,1997,35:347-354
    [72]冯淑利.Cd、As、Zn胁迫对小麦生长生理及抗性生理指标的研究[学位论文],开封,河南师范大.学,2007
    [73]杨卓亚,张福锁,土壤一植物体系中的铅[J].土壤学进展,1993,21(1):1-17
    [74]Carbonell-Barrachina A A, Burlo F, Furgos-hemandez A etc. The influence of arsenic concentration on arsenic accumulation in tomato and bean plants[J]. Science Horticulture,1997,71(3-4):167-176
    [75]李铮铮.鱼腥草对Pb、Zn复合污染的响应与金属累积特性[学位论文].雅安,四川农业大学,2007
    [76]唐文杰,李明顺.广西猛矿区废弃地优势植物重金属含量及富集特征[J].农业环境科学学报,2008,27(5):1757-1763
    [77]王军,魏昌华,薛海英,等.救荒野豌豆对污染土壤中Cd的富集特征[J].地质科技情报,2008,27(1):89-92
    [78]Eapen S.Dsouza S F. prospects of genetic engineering of plants for phytoremediation of toxic metals[J]. Biotechnol Adv,2005,23(2):97-114
    [79]崔德杰.张玉龙土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370
    [80]何冰杨肖娥倪吾钟,等.一种新的铅富集植物——富集生态型东南景天[J].植物学报,2004,44(11):1365-1370
    [81]吴燕玉,王新,梁仁禄,等.Cd,Pb,Cu,Zn,As复合污染在农田生态系统的迁移动态研究[J].环境科学学报,1998,18(4):52-67
    [82]Salt D. E., Blaylock M. B., KumarN. P., et al. Phytoremediation:A novel strategy for removal of toxic mentals from the environment using plants[J]. Biotechnology,1995,13(5):468-474
    [83]沈其荣.土壤肥料学通论[M].北京,高等教育出版社,2001
    [84]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性[J].中国环境科学,1993,13(4): 263-268
    [85]Nishizono H, Ichikawa H, Suziki S, etal. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and soil,2006,17(2):300-304
    [86]Ernst W H O, Verkleij J A C, Schat H. Metal tolerance in plant[J]. Acta Bot, Neerlandiea,1992,41(3): 229-248
    [87]廖晓勇,谢华,陈同斌,等.蜈蚣草的超微结构和砷、钙的亚细胞分布[J].植物营养与肥料学报,2007,13(2):305-312
    [88]Deng H., Ye Z. H., Wong M. H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant speeies thriving in metal. contaminated sites in China[J]. Environmental Pollution,2004,132(1):29-40
    [89]谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712
    [90]刘霞,刘树庆.土壤重金属形态分布特征与生物效应的研究进展[J].农业环境科学学报,2006,25(增刊):407-410
    [91]Junta Y, Choung K. Takashl K. Spatial variability of soil chemical properties in apaddy field Soil[J]. Soil Sci. Plant Nutr.,2000,46:473-482
    [92]李冰,王昌全,张隆伟,等.成都平原农田土壤Pb的形态特征及其生物效应研究[J].农业现代化研究,2008,29(6):751-758
    [93]李宗利,薛澄泽.用黑麦苗研究土壤中铅、镉的化学形态与其有效性的关系[J].农业环境保护,1991,10(5):203-207
    [94]和秋红,曾希柏.土壤中砷的形态转化及其分析方法[J].应用生态学报,2008,19(12):2763-2768

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700