安徽铜陵铜尾矿原生演替过程中的土壤固氮菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物可利用氮的缺乏是原生演替早期生物生长的主要限制因子之一。固氮微生物通过生物固氮作用为这种氮素匾乏的生态系统提供稳定的N来源,提高土壤基质的营养水平,从而促进后期演替物种成功定居,固氮菌在尾矿原生演替进程中扮演重要角色。
     本文以安徽铜陵已弃置20年铜尾矿的原生演替过程为模式,选择裸地(BT)、藻类结皮(AC)、苔藻混合结皮(AMC)、苔藓结皮(MC)和高等植物覆盖区域(VEG)作为尾矿原生演替的系列样地;选择邻近山上土壤结构好且物种丰富的草本植被区作为演替后期的对照点(CK)。通过末端限制性片段长度多态性(TRFLP)、克隆文库和荧光定量PCR(qPCR)等方法,结合土壤理化特征相关分析,阐明铜尾矿原生演替过程中固氮微生物的群落结构及其丰度变化规律。主要研究结果如下:
     (1)固氮菌多样性在尾矿演替过程中总体上呈现先升后降的趋势,其中以裸地最低,生物结皮系列最高。这些固氮微生物主要分布在蓝藻门和变形细菌门(主要是α-Proteobacteria),前者主要存在于结皮系列中,而后者在演替各个阶段都有分布。生物结皮是尾矿原生演替过程中的一个重要阶段,而固氮蓝藻是生物结皮系列主要的N素来源。
     (2)铜尾矿中固氮菌数量丰富。在所研究的样地中,每克土含有的nifH基因拷贝数在5.06×10~5(BT)和3.47×10~8(CK)之间,总体来说,随着铜尾矿原生演替的发展,固氮微生物数量呈现逐渐增加的趋势。nifH基因拷贝数和土壤重金属含量负相关(p < 0.05),而与碳氮水平呈显著正相关(p < 0.01),这可能与演替后期生物结皮和高等植物在改善土壤基质和减少环境干扰方面的贡献有关。
     (3)铜尾矿原生演替过程(BT-BSCs-VEG)是一个土壤基质发展的过程,固氮微生物在演替早期发挥重要作用,主要表现为缓解土壤氮素缺乏的环境胁迫,为后期生物结皮和高等植物的定居提供必需的氮素来源。
     本研究通过比较铜尾矿原生演替过程中固氮微生物的种类组成及其丰度变化,揭示固氮菌在促进原生演替进程中的作用,对完善尾矿废弃地生态恢复理论和指导尾矿生态修复实践具有重要意义。
Bio-available nitrogen in primary successional series is one of the key limitations for ecosystem development. N-fixing microorganisms often serve as early and abundant colonizers in these N-deficient terrestrial ecosystems and are tightly linked to the accumulation of soil N. Consequently, diazotrophic communities are a primary driving force for the improvement of substrate nutritional status and other physiochemical characteristics which facilitate recolonization of plants and other macroorganisms during later successional stages.
     Based on detailed ecological surveys and the landscape pattern, we selected the bare tailings (BT), algae crust (AC), moss/algae crust (AMC), moss crust (MC) and vegetated area (VEG) as succession series of copper mine tailings at Tongling, Anhui Province, P.R. China. An undisturbed off-site control area (CK) with good soil structure and high herbaceous diversity was chosen for comparison purpose.
     The abundance and diversity of N-fixing community along the succession series of mine tailings were determined using multiple molecular approaches including terminal restriction fragment length polymorphism (TRFLP), clone library analysis and real time quantitative PCR (qPCR) of the nifH gene. The main results were summarized as follows:
     1) In general, the diazotrophic diversity was lowest in BT, and there was an increase in the BSCs followed by a decrease in site VEG. Nitrogen-fixing microorganisms detected are mainly affiliated with the Proteobacteria and Cyanobacteria, with the former present in all series while the latter exclusively associated with the BSCs. It is likely that nitrogen-fixng Cyanobacteria are the dominant N suppliers in the BSCs, a crucial stage during the primary succession.
     2) Real-time PCR revealed that diazotrophs were abundant in the copper mine tailings. The nifH gene number ranged from 5.06×10~5(BT)to 3.47×10~8(CK)copies per gram of soil (dried weight).Variations in the nifH gene abundance showed a significant positive correlation with changes in soil C and N concentrations (p < 0.01) and a negative correlation with heavy metal (Cu and Zn) concentrations (p < 0.05). Overall, the number of nitrogen fixing bacteria increased with the progressing succession. This could be attributed to the new environmental niches and especially nutrient resources opened by the BSCs and plants in the later successional stages.
     3) Primary succession was a process with soil development. In newly unvegetated and nitrogen-deficient tailings, diazotrophs played an important role in accumulating soil N, which was indispensible for further recolonization of biological soil crusts (BSCs) and plants.
     This represents the first report using cultivation-independent molecular approaches to elucidate the diazotrophic diversity and community structure evolution associated with a successional series of mine tailings. Our findings could be of importance in developing ecological theory and restoration practice in mine tailings.
引文
Balandreau J., Dommergues Y. (1973) Assaying nitrogenase (C2H2) in the field. Bulletin of Ecological Research Communications 17: 247-254.
    Begon M., Harper J., Townsend C. (1990) Ecology: individuals, populations and communities. Oxford, UK: Blackwell Scientific Publications.
    Begon M., Harper J., Townsend C. (1996) Ecology: individuals, populations, and communities. 3th Edition. Oxford, UK: Blackwell Scientific Publications.
    Belnap J., Lange O. (2001) Biological soil crusts: structure, function, and management. Ecological Studies 150, Springer Verlag, Berlin Heidelberg.
    Bowers T., Reid N., Lloyd-Jones G. (2008) Composition of nifH in a wastewater treatment system reliant on N2 fixation. Applied Microbiology and Biotechnology 79: 811-818.
    Bray R., Kurtz L. (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil science 59: 39-45.
    Bremner, J., Mulvaney C., 1982. Nitrogen total. In: Page, A.L., Miller, R.H. and Keeney, D.R. Editors, 1982. Methods of soil analysis, Part 2, Chemical and microbiological properties American Society of Agronomy, Madison, pp. 595–624.
    Bremner J., Keeney D. (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Science Society of America Journal 30: 577-582.
    Bürgmann H., Meier S., Bunge M., Widmer F., Zeyer J. (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environmental Microbiology 7: 1711-1724.
    Chelius M., Triplett E. (2001) The Diversity of Archaea and Bacteria in Associationwith the Roots of Zea mays L. Microbial Ecology 41: 252-263.
    Coelho M., Marriel I., Jenkins S., Lanyon C., Seldin L., O'Donnell A. (2009) Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Applied Soil Ecology 42: 48-53.
    Cooper W. (1923) The recent ecological history of Glacier Bay, Alaska: the present vegetation cycle. Ecology 4: 223-246.
    De Deyn G., Raaijmakers C., Zoomer H., Berg M., de Ruiter P., Verhoef H., Bezemer T., van der Putten W. (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422: 711-713.
    Deiglmayr K., Philippot L., Tscherko D., Kandeler E. (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environmental Microbiology 8: 1600-1622.
    del Moral R., Wood D. (1993) Early primary succession on the volcano Mount St. Helens. Journal of Vegetation Science 4: 223-234.
    Duc L., Noll M., Meier B., Bürgmann H., Zeyer J. (2009) High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier. Microbial Ecology 57: 179-190.
    Edwards I., Bürgmann H., Miniaci C., Zeyer J. (2006) Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) Heywood and adjacent bare soil along an alpine chronosequence. Microbial Ecology 52: 679-692.
    Evans R., Belnap J. (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80: 150-160.
    Flores-Mireles A., Winans S., Holguin G. (2007) Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots. Applied and Environmental Microbiology 73: 7308-7321.
    Frenot Y., Gloaguen J., Cannavacciuolo M., Bellido A. (1998) Primary succession on glacier forelands in the subantarctic Kerguelen Islands. Journal of Vegetation Science 9: 75-84.
    Frenot Y., Van Vliet-Lano B., Gloaguen J. (1995) Particle translocation and initial soil development on a glacier foreland, Kerguelen Islands, Subantarctic. Arctic and Alpine Research 27: 107-115.
    Gee G., Bauder J. (1986) Particle-size analysis, American Society of Agronomy. pp. 383-411.
    Gleason H. (1927) Further views on the succession-concept. Ecology 8: 299-326.
    Gleason H. (1939) The individualistic concept of the plant association. American Midland Naturalist 21: 92-110.
    Gobbi M., Fontaneto D., De Bernardi F. (2006) Influence of climate changes on animal communities in space and time: the case of spider assemblages along an alpine glacier foreland. Global change biology 12: 1985-1992.
    Gomez-Alvarez V., King G., Nusslein K. (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. Fems Microbiology Ecology 60: 60-73.
    González R., Gonzalez-Chavez M. (2006) Metal accumulation in wild plants surrounding mining wastes. Environmental Pollution 144: 84-92.
    Gorham E., Vitousek P., Reiners W. (1979) The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annual Review of Ecology and Systematics 10: 53-84.
    Heinrichs H., Brumsack H., Loftfield N., Konig N. (1986) Verbessertes Druckaufschlusssystems für biologische und anorganische Materialien. Zeitschrift für Pflanzenern hrung und Bodenkunde 149: 350-353.
    Hernandez L., Probst A., Probst J., Ulrich E. (2003) Heavy metal distribution in someFrench forest soils: evidence for atmospheric contamination. The Science of the total environment 312: 195-219.
    Héry M., Philippot L., Meriaux E., Poly F., Le Roux X., Navarro E. (2005) Nickel mine spoils revegetation attempts: effect of pioneer plants on two functional bacterial communities involved in the N-cycle. Environmental Microbiology 7: 486-498.
    Hodkinson I., Webb N., Coulson S. (2002) Primary community assembly on land-the missing stages: why are the heterotrophic organisms always there first? Journal of Ecology 90: 569-577.
    Insam H., Hutchinson T., Reber H. (1996) Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biology and Biochemistry 28: 691-694.
    Jenkins B., Steward G., Short S., Ward B., Zehr J. (2004) Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Applied and Environmental Microbiology 70: 1767-1776.
    Jenny H. (1941) Factors of soil formation. McGraw-Hill, New York.
    Johnson D. (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. International Biodeterioration & Biodegradation 35: 41-58.
    Jordan W., Gilpin M., Aber J. (1988) Restoration ecology: a synthetic approach to ecological research. Rehabilitating damaged ecosystems 1: 13-21.
    Jumpponen A. (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytologist 158: 569-578.
    Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L. (2006) Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Applied and Environmental Microbiology 72:5957-5962.
    Kemp P., Aller J. (2004) Estimating prokaryotic diversity: When are 16 S rDNA libraries large enough? Limnology and Oceanography: Methods 2: 114-125.
    Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
    Kneip C., Lockhart P., Vo C., Maier U. (2007) Nitrogen fixation in eukaryotes- New models for symbiosis. BMC Evolutionary Biology 7: 55.
    Kube?kováK., Johansen J., Warren S. (2002) Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts. Archiv für Hydrobiologie. Supplementband, Algological studies 109: 341-362.
    Langlois R., Hummer D., LaRoche J. (2008) Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Applied and Environmental Microbiology 74: 1922-1931.
    Lazzaro A., Abegg C., Zeyer J. (2009) Bacterial community structure of glacier forefields on siliceous and calcareous bedrock. European Journal of Soil Science 60: 860-870.
    Lichter J. (1998) Primary succession and forest development on coastal Lake Michigan sand dunes. Ecological Monographs 68: 487-510.
    Lindsay W., Norvell W. (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42: 421-428.
    López-Hernández D., Santaella S., Chacón P. (2006) Contribution of nitrogen fixing organisms to the N budget in Trachypogon savannas. European Journal of Soil Biology 42: 43-50.
    Marilley L., Aragno M. (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots.Applied Soil Ecology 13: 127-136.
    Marrs R., Bradshaw A. (1993) Primary succession on man-made wastes: the importance of resource acquisition. Special publication-British ecological society 12: 221-221.
    Matthews J. (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession Cambridge Univ Pr. McCook L. (1994) Understanding ecological community succession: causal models and theories, a review. Plant Ecology 110: 115-147.
    McLean E. (1982) Soil pH and lime requirement. Methods of soil analysis, Part 2: 199-224.
    Mendez M., Neilson J., Maier R. (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Applied and Environmental Microbiology 74: 3899-3907.
    Miniaci C., Bunge M., Duc L., Edwards I., Bürgmann H., Zeyer J. (2007) Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biology and Fertility of Soils 44: 289-297.
    Morris B., Lawrence A., Chilton P., Adams B., Calow R., Klinck B. (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. Early warning and assessment report series, RS: 03-3.
    Moynahan O, Zabinski C., Gannon J. (2002) Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restoration Ecology 10: 77-87.
    Munshower F. (1994) Practical handbook of disturbed land revegetation Lewis Publishers, Boca Raton, FL, USA.
    Nelson D., Sommers L. (1982) Total carbon, organic carbon, and organic matter.Methods of soil analysis. 2: 539-579.
    Nemergut D., Anderson S., Cleveland C., Martin A., Miller A., Seimon A., Schmidt S. (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microbial Ecology 53: 110-122.
    Nicol G.., Tscherko D., Embley T., Prosser J. (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environmental Microbiology 7: 337-347.
    Noll M., Wellinger M. (2008) Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure. Soil Biology & Biochemistry 40: 2611-2619.
    Ohkuma M., Noda S., Usami R., Horikoshi K., Kudo T. (1996) Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62: 2747-2752.
    Ohtonen R., Fritze H., Pennanen T., Jumpponen A., Trappe J. (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119: 239-246.
    Patriquin D., Denike D. (1978) In situ acetylene-reduction assay of nitrogenase activity associated with the emergent halophyte Spartina alterniflora Loisel: methodological problems. Aquatic Botany 4: 211-226.
    Picaud F., Petit D. (2008) Body size, sexual dimorphism and ecological succession in grasshoppers. Journal of Orthoptera Research 17: 177-181.
    Piceno Y., Noble P., Lovell C. (1999) Spatial and temporal assessment of diazotroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel electrophoresis analysis. Microbial Ecology 38: 157-167.
    Poly F., Monrozier L., Bally R. (2001a) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology 152: 95-103.
    Poly F., Ranjard L., Nazaret S., Gourbiere F., Monrozier L. (2001b) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Applied and Environmental Microbiology 67: 2255-2262.
    Postgate J., Eady R. (1988) The evolution of biological nitrogen fixation. in: Bothe H., DeBruijn F., Newton W. (Eds.), Nitrogen Fixation: One Hundred Years After, Fischer, Stuttgart, 1988, pp. 31–40.
    Rhoades J. (1996) Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis 3: 417-435.
    Rosado A., Duarte G., Seldin L., Van Elsas J. (1998) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Applied and Environmental Microbiology 64: 2770-2779.
    Rosario K., Iverson S., Henderson D., Chartrand S., McKeon C., Glenn E., Maier R. (2007) Bacterial community changes during plant establishment at the San Pedro River mine tailings site. Journal of Environmental Quality 36: 1249-1259.
    Saitou N., Nei M. (1987) The neighbor-joining method: a method for constructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
    Sambrook J., Fritsch E., Maniatis T. (1989) Molecular Cloning: A Laboratory Manual (2nd). Cold Spring Harbor Laboratory, Press, New York.
    Schipper L., Degens B., Sparling G., Duncan L. (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology and Biochemistry 33: 2093-2103.
    Schmalenberger A., Noll M. (2010) Shifts in desulfonating bacterial communities along a soil chronosequence in the forefield of a receding glacier. Fems Microbiology Ecology 71: 208-217.
    Schutte U., Abdo Z., Bent S., Williams C., Schneider G., Solheim B., Forney L. (2009) Bacterial succession in a glacier foreland of the High Arctic. Isme Journal 3:1258-1268.
    Shannon C., Weaver W. (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
    Shu W., Xia H., Zhang Z., Lan C., Wong M. (2002) Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: Field experiment. International Journal of Phytoremediation 4: 47-57.
    Shu W., Ye Z., Zhang Z., Lan C., Wong M. (2005) Natural colonization of plants on five lead/zinc mine tailings in southern China. Restoration Ecology 13: 49-60.
    Sigler W., Crivii S., Zeyer J. (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microbial Ecology 44: 306-316.
    Simpson E. (1949) Measurement of diversity. Nature 163: 688-688.
    Steward G., Jenkins B., Ward B., Zehr J. (2004) Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Applied and Environmental Microbiology 70: 1455-1465.
    Sun Q., An S., Yang L., Wang Z. (2004) Chemical properties of the upper tailings beneath biotic crusts. Ecological Engineering 23: 47-53.
    Tamura K., Dudley J., Nei M., Kumar S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution 24: 1596-1599.
    Tan Z., Hurek T., Reinhold-Hurek B. (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environmental Microbiology 5: 1009-1015.
    Tarlera S., Jangid K., Ivester A., Whitman W., Williams M. (2008) Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. Fems Microbiology Ecology 64: 129-140.
    Taroncher-Oldenburg G., Griner E., Francis C., Ward B. (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Applied and Environmental Microbiology 69: 1159-1171.
    Thirukkumaran C., Morrison I. (1996) Impact of simulated acid rain on microbial respiration, biomass, and metabolic quotient in a mature sugar maple (Acer saccharum) forest floor. Canadian Journal of Forest Research 26: 1446-1453.
    Tordoff G., Baker A., Willis A. (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41: 219-228.
    Tscherko D., Hammesfahr U., Marx M., Kandeler E. (2004) Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology and Biochemistry 36: 1685-1698.
    Tscherko D., Rustemeier J., Richter A., Wanek W., Kandeler E. (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. European Journal of Soil Science 54: 685-696.
    Tsuyuzaki S., del Moral R. (1995) Species attributes in early primary succession on volcanoes. Journal of Vegetation Science 6: 517-522.
    Ueda T., Suga Y., Yahiro N., Matsuguchi T. (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. Journal of bacteriology 177: 1414-1417.
    van der Heijden M., Klironomos J., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I. (1988) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Geol. Soc. Am. Bull 100: 912-927.
    Van der Putten W., Van Dijk C., Peters B. (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362: 53-56.
    van Hulst R. (1992) 5 From population dynamics to community dynamics: modeling succession as a species replacement process. Plant succession: theory andprediction: 188-214.
    Vitousek P., Reiners W. (1975) Ecosystem succession and nutrient retention: a hypothesis. BioScience 25: 376-381.
    Vitousek P., Walker L., Whiteaker L., Mueller-Dombois D., Matson P., Stanford Univ. C. (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science(Washington) 238: 802-804.
    Walker L., del Moral R. (2003) Primary succession and ecosystem rehabilitation Cambridge Univ Pr.
    Wallenstein M., Vilgalys R. (2005) Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia 49: 665-672.
    Warhurst A. (2000) Mining, mineral processing, and extractive metallurgy: an overview of the technologies and their impact on the physical environment. Environmental Policy in Mining: Corporate Strategy and Planning for Closure (Warhurst A, Noronha L, eds). Boca Raton, FL: CRC Press LLC.
    Warren-Rhodes K., Rhodes K., Boyle L., Pointing S., Chen Y., Liu S., Zhuo P., McKay C. (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts. Fems Microbiology Ecology 61: 470-482.
    Widmer F., Shaffer B., Porteous L., Seidler R. (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Applied and Environmental Microbiology 65: 374-380.
    Worley I. (1973) The ''black crust'' phenomenon in upper Glacier Bay, Alaska. Northwest Science 47: 20-29.
    Ye Z., Wong J., Wong M., Baker A., Shu W., Lan C. (2001) Revegetation of Pb/Zn mine tailings, Guangdong Province, China. Restoration Ecology 8: 87-92.
    Yeager C., Kornosky J., Housman D., Grote E., Belnap J., Kuske C. (2004)
    Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Applied and environmental microbiology 70: 973-983.
    Yeager C., Kornosky J., Morgan R., Cain E., Garcia-Pichel F., Housman D., Belnap J., Kuske C. (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS microbiology ecology 60: 85-97.
    Yeager C., Northup D., Grow C., Barns S., Kuske C. (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Applied and Environmental Microbiology 71: 2713-2722.
    Yoshitake S., Uchida M., Koizumi H., Nakatsubo T. (2007) Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny- lesund, Svalbard. Polar research 26: 22-30.
    Young J. (1992) Phylogenetic classification of nitrogen-fixing organisms. Biological nitrogen fixation: 43-86.
    Young T. (2000) Restoration ecology and conservation biology. Biological Conservation 92: 73-83.
    Zehr J., Jenkins B., Short S., Steward G. (2003) minireview Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5: 539-554.
    Zehr J., McReynolds L. (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology 55: 2522-2526.
    Zehr J., Mellon M., Braun S., Litaker W., Steppe T., Paerl H. (1995) Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Applied and Environmental Microbiology 61: 2527-2532.
    黄铭洪(2003)环境污染与生态恢复。北京:科学出版社。
    束文圣,杨开颜,张志权,杨兵.蓝崇钰(2001)湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究。应用与环境生物学报7:7-12。
    束文圣,叶志鸿,张志权,黄铭洪,蓝崇钰(2003)华南铅锌尾矿生态恢复的理论与实践。生态学报23:1629-1639。
    许宝健(2009)危险的隐患沉寂的金山。中国环境报第6版(2009年3月6日)。
    祝玉学(1998)关于尾矿库工程中几个问题的讨论。金属矿山10:7-10。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700