微量Bi、Sb对Sn-3.5Ag-0.5Cu无铅钎料组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,无铅钎料的研究一直是热点课题,但是完全实现无铅钎料的商业化生产与应用,仍有许多问题需要深入研究。本文以无铅钎料Sn-3.5Ag-0.5Cu为主要研究对象,在其中添加Bi、Sb元素,借助SEM、EDS、XRD、DTA和可焊性测试仪等手段,系统地研究了微量Bi,Sb对Sn-3.5Ag-0.5Cu无铅钎料的显微组织、熔化特性、可焊性及电导率和显微硬度等性能的影响。
     对钎料熔点的研究结果表明:添加微量的Bi元素可以大幅降低Sn-Ag-Cu钎料的熔点,使熔化温度区间增宽,而Sb元素的添加对熔点的影响不大,同样增大了合金的熔化温度区间, Sn-3.5Ag-0.5Cu熔点为216.4℃,熔程为6.3℃,而Sn-3.5Ag-0.5Cu-1.2Bi-0.8Sb无铅钎料的熔点可下降到209.8℃,熔程增宽至13.4℃,完全满足NCMS对于无铅钎料的评估标准。对钎料润湿性的研究结果表明:与Sn-3.5Ag-0.5Cu无铅钎料相比,添加适量的Bi、Sb都有助于钎料合金在母材上铺展,Sn-3.5Ag-0.5Cu-0.8Bi-1.2Sb钎料在240℃下的润湿时间由前者的1.95s降为0.78s,减少了60%,并且此成分的钎料合金的最大润湿力也达到0.58mN,具有最佳的润湿性能。对钎料热稳定性的研究结果表明:添加适量的Bi、Sb有助于在钎料合金表面形成致密的氧化膜阻挡钎料的二次氧化及烧损,但合金元素Bi的添加量应小于0.8wt%。对钎料的电导率的研究结果表明:Bi添加量小于1.0wt%时,因其净化作用减少了合金缺陷使导电率升高,而Sb元素的添加引起的点阵畸变增加了电子的散射几率,并且各组元间化学相互作用的加强也使有效电子数减少,因此Sb元素的添加明显降低了钎料的导电率。对钎料的显微硬度的研究结果则表明:在基体合金中单独添加Bi及复合添加Bi、Sb,由于Bi、Sb的固溶强化效应及弥散分布的Cu6(Sn, Sb)5三元金属间化合物的作用,使显微硬度值得以提高,尤其Sb的增强效果明显。
     对钎料的显微组织进行观察得知:Sn-3.5Ag-0.5Cu-yBi-zSb(0.4≤y,z≤1.2)的组织也是由大量β-Sn初生相与少量Cu6Sn5、Ag3Sn共晶产物组成,Bi、Sb添加量各小于0.8wt%时,均以固溶形式存在于β-Sn初生相中,随着Bi含量的提高,钎料组织中的Ag3Sn相得到了一定程度的细化,长条状的化合物变成针状;而随着Sb含量的增加,初晶晶粒变得粗大,金属间化合物呈发散漩涡状分布,出现很多弥散分布的颗粒相,经EDS及XRD分析可知,新产生的金属间化合物应为Cu6(Sn, Sb)5。
     综合来看,Sn-3.5Ag-0.5Cu-0.8Bi-1.2Sb综合性能优良,具有深入开发的价值。
The research in lead-free solder alloy has been a popular topic in recent years. However, a lot of problems in full commercial production and application of lead-free solders must be studied in detail. Based on Sn-3.5Ag-0.5Cu lead-free solder and by means of SEM、EDS、XRD、DTA and weldability test, effects of Bi, Sb elements on microstructure, wettability, melting characteristic and such physical properties were studied and the solder alloy component of favorable combination property was gotten.
     The results of melting characteristic experiments show that trace addition of Bi element has positive effects on depressing the melting temperature and broadening the melting range. However, the addition of Sb has little effect on melting temperature but broadens the melting range. The melting point of lead-free solder Sn-3.5Ag-0.5Cu is 216.4℃and the melting range is 6.3℃. The melting point of Sn-3.5Ag-0.5Cu-1.2Bi-0.8Sb lead-free solder reduces to 209.8℃, and the melting range increases to 13.4℃. The melting characteristics may meet the evaluation standard required by NCMS. The results of wettability experiments show that Sn-3.5Ag-0.5Cu lead-free solder has poor wettability. Adding suitable amount of Bi,Sb elements into the solder alloy may help the liquid solder spread on the surface of base metal. Compared to the specimen Sn-3.5Ag-0.5Cu, the wetting time of Sn-3.5Ag-0.5Cu-0.8Bi-1.2Sb under the condition of 240℃reduces from 1.95s to 0.78s, representing a decline of 60%. In addition, the maximum wetting force of this componential solder also reaches 0.58mN, which leads to the best wetting performance. The results of heat stability experiments show that with proper addition of Bi and Sb elements, the compact oxide film may form on the surface of the solder alloy to prevent reoxidation and melting loss. However, the adding amount of Bi should be no more than 0.8%. In addition, the results of electrical conductivity test show that trace addition of Bi(≤1.0wt%) enhances the electrical conductivity because of its purifying effect. But the addition of Sb leads to the lattice distortion so as to increase the scattering probability of electrons, and the enhancement of the chemical interaction among each component reduces effective mass of electrons. As a result, the electrical conductivity may decline obviously when adding Sb element. The results of microhardness test show that accompanied the solution strengthening and the effects of new formed dispersed Cu6(Sn, Sb)5 ternary inter-metallic compound, the addition of both Bi, Sb elements may enhance the microhardness of the solder alloy, especially obvious for the strengthening effect of Sb.
     By observing the microstructure of solder alloys, it can be concluded that the structure of Sn-3.5Ag-0.5Cu-yBi-zSb(0.4≤y,z≤1.2)consists of a mass ofβ-Sn primary phases and little amount of eutectic phases composed by Cu6Sn5 and Ag3Sn. It is approved that elements Bi and Sb are solid-soluted in the matrix ofβ-Sn primary phases when the addition level is less than 0.8wt% respectively. The inter-metallic Ag3Sn phases in the alloy system have been refined in a certain degree, and the strip-like IMCs turn to be acicular ones while raising Bi content. Furthermore, to increase the content of Sb, the primary phases may become coarse, and the IMCs turn to be dispersively distributed in a whorl-like formation. A lot of new particle phases are present dispersively in the matrix, and by means of EDS and XRD analysis, it can be approved that new IMCs are Cu6(Sn, Sb)5 ternary compounds.
     By analyzing the data gathered from the experiments, a new solder alloy was optimized for the further study. The compositions are Sn-3.5Ag-0.5Cu-0.8Bi-1.2Sb.
引文
[1] Abtew M, Selvaduray. Lead-free solder in microelectronics[J]. Materials Science and Engineering, 2000, 27(1): 95-101
    [2]马鑫,董本霞.无铅钎料发展现状电子工艺技术,2002, 23(2): 47-52
    [3] Lee N C. Lead-free solder-where the world is going[J]. Advancing Microelectronics, 1999, 2(6):29-34.
    [4]戴家辉,刘秀忠,陈立博.无铅钎料的立法与发展[J].山东机械, 2005, 1(5): 7-10.
    [5]徐东霞,雷永平,夏志东.电子组装无铅钎料用助焊剂的研究现状[J].上海交通大学学报, 2007, 41(4): 53-61.
    [6]李元山,陈旭.无铅焊接中Lift-off现象产生的原因及抑制对策[J].计算机工程与科学, 2006, 28(7): 105-108.
    [7]史耀武,夏志东,陈志刚,等.电子组装钎料研究的新进展[J].电子工艺技术, 2001, 22(4): 139-143.
    [8] FREAR D R. The Mechanical Behavior of Interconnect Materials for Electronic Packaging [J]. Jom, 1996, 48 (5): 49-53.
    [9]郭康富,康辉,曲平.无铅钎料开发研究现状[J].电子元件与材料, 2006, 25(2): 1-3.
    [10] WINTERBOTTOM W. Converting to Lead-Free solder[J]. An Automotive Industry Perspective, 1993, 45(7): 20-27
    [11] VILLARS P, ONODERA N, IWATA S. The Linus Pauling (LPF) and Its Application to Material Design[J]. Journal of Alloys and Compound, 1998, 279(3): 1-7.
    [12]林金绪.电子产品实施无铅化是一个系统工程[J].印制电路信息, 2006, (1):12-16.
    [13] GREG J. Are You Ready for Lead-free Assembly[J]. Surface Mount Technology, 2000, 6: 60-61.
    [14] XIA Z D, SHI Y W, CHEN Z G. Evaluation on Tin-silver-bismuth Solder[J]. Journal of Materials Engineering and Performance, 2002, 11(1): 107-111.
    [15]神谷佳久,本間仁,北嶋雅之.富士通におけち鉛フリーはんた導入への取り组ゎと使用实例[J].電子技術, 2000, (12): 55-60.
    [16]张耀红.无铅焊料的发展概况[J].云南冶金, 2002, 31(5): 50-53.
    [17]雷晓娟. Sn-Bi系低熔点非共晶无铅焊料的研究[D].湖南:湖南大学硕士学位论文, 2007: 1-2.
    [18]马鑫,董本霞.无铅钎料发展现状[J].电子工艺技术, 2002, 23(2): 47-52.
    [19]贾红星,刘素芹,黄金亮.电子组装用无铅钎料的研究进展[J].材料开发与应用, 2003, 18(5): 42-46.
    [20]胡志田,徐道荣.无铅软钎料的研究现状与展望[J].电子工艺技术, 2004, 25(1): 5-8.
    [21]郭福.无铅钎焊技术与应用[M].北京:科学出版社, 2006: 38-62.
    [22]朱虹姣,欧昌银,胡琼等.无铅焊料实用化技术研究[J].微电子学, 2007,37(2): 204-206.
    [23] ABTEWA M., SELVADURAY G. Lead-Free Solders in Microelectronics [J]. Materials Science and Engineering, 2000, 27(5): 95-141.
    [24]曹昱,易丹青,王颖,等. Sn-Ag基无铅焊料的研究与发展[J].四川有色金属, 2001, 8(3): 6-7.
    [25] ZHANG F, BALAKRISNAN K. Failure Mechanism of Lead-free Solder Joints in Flip Chip Packages[J]. Journal of Electronic Materials, 2002, 31(11): 1256-1263.
    [26]刘艳斌,吴本生,杨晓华. Sn-Ag-Cu系无铅焊料的显微组织与性能[J],理化检验-物理分册, 2007, 43 (6): 279-281.
    [27] HUH S H, SUGANUMA K. Effects of Inter-metallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints [J]. Journal of Alloys and Compounds, 2003, 15(9): 226-236.
    [28] HARRISON M R, VINCENT J H, STEEN H A. Lead-Free Reflow Soldering for Electronics Assembly[J]. Soldering Surface Mount Technology, 2001, 13(3): 21-38.
    [29] HUANG B L, DASGUPTA K, Lee N C. Effect of SAC Composition on Soldering Performance[J]. Soldering and Surface Mount Technology, 2005, 17(3): 9-19.
    [30] Katsuaki Suganuma. The Current Status of Lead-free Soldering. NPL&ITRL Technology Report, 2001, 23(5): 67-69.
    [31]迟成宇. Bi对Sn-3Ag-0.5Cu/Cu界面组织及接头剪切强度的影响[D].大连:大连理工大学硕士学位论文,2008:46-47.
    [32]胡文刚. Sn-0.3Ag-0.7Cu-XBi低银无铅钎料的开发与研究[D].哈尔滨:哈尔滨理工大学硕士学位论文, 2008: 60-61.
    [33] X. P. Zhang, L. M. Yin, C B Yu. Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels[J]. Mater Sci: Mater Electron (2008) 19:393-398.
    [34] ZHAO Jie, QI Lin, WANG Lai, LIU Qiang, GUAN Jian-hua. Microstructures evolution and its influence on mechanical properties in Sn-Ag-Cu-Bi lead-free after aging treatment[J]. ACTA Scientiarum naturalium universitatis sunyatseni (2003) 42:28-31.
    [35]陈雷达.新型无铅钎料钎焊工艺性及机械性能的研究[D].哈尔滨:哈尔滨理工大学工学硕士学位论文,2008: 55.
    [36] MULUGETA A, GUNA S. Lead-free Solders in Microelectronics[J]. Materials Science and Engineering, 2000, 27(5-6): 55-105.
    [37] T. OGAWA, R. KAGA, T. OHSAWA. Microstructure and mechanical properties predicted by indentation testing of lead-free solders[J]. Journal of electronic materials, 2005, 34(3): 311-314.
    [38]韩宪鹏.镓对无镉银钎料性能影响的研究[D].南京:南京航空航天大学工学硕士论文,2008:12.
    [39]陈志刚. SnAgCuRE钎焊接头蠕变行为的研究[D].北京:北京工业大学博士学位论文, 2003: 1-60.
    [40] YANG W, MESSLER R W. Microstructural Evolution of Eutectic Sn-Ag solder Joints[J]. Journal of Electronic Materials, 1994, 23(8): 765-772.
    [41]赵小艳,赵麦群,王秀春等. Cu和Ce对Sn-Zn系钎料合金物理性能和化学性能的影响[J].新技术新工艺, 2007(1): 62-64.
    [42]汪厚泰.空调机中高银钎料的替代试验[J].制冷学报, 1995, (3):32.
    [43]谢海平,于大全,马海涛,等. Sn-Zn-Cu无铅钎料的组织、润湿性和力学性能[J].中国有色金属学报, 2004, 14(10):1694.
    [44]于大全,赵杰,王来.稀土元素对Sn-9Zn合金润湿性的影响[J].中国有色金属学报, 2003, 13(4): 1001-1004.
    [45]徐刚. Sn-Zn系无铅钎料抗氧化性与润湿性研究[D].吉林:吉林大学硕士学位论文, 2007: 14-16.
    [46]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社, 1998: 501-502.
    [47]史建卫,何鹏,钱乙余,等.焊膏工艺性要求及性能检测方法[J].电子工业专用设备, 2004(12):19.
    [48] Wu C M L, Yu D Q, Wang L. The properties of Sn-9Zn lead-free solder alloys doped with rare earth elements[J]. Journal of electronic materials, 2002, 31:921~927.
    [49] Suganuma K. Welding technology of lead-free solder[M]. NING Xiao shan, transl. Beijing: Science press, 2004:28-29.
    [50] Viaco P T, Rejent J A. Properties of ternary Sn-Ag-Bi solder alloys: part 1-thermal properties and microstructural analysis[J]. Journal of electronic material, 1999, 28(10): 1127-1136.
    [51]冯武锋. Sn基钎料合金元素的合金化效果及润湿能力的量子学研究[D].哈尔滨:哈尔滨工业大学,2001.
    [52]薛松柏,刘琳,代永峰,等.微量稀土元素铈对SnAgCu无铅钎料物理性能和焊点抗拉强度的影响[J].焊接学报, 2005, 26(10):23-26.
    [53]戴志锋.微电子组装Sn-Zn-Bi系无铅钎料研究[D].北京:北京科技大学, 2004:13.
    [54]王宗杰,路林,王敏.合金元素对Sn-Bi-Ag-Cu-Re系无铅钎料性能和组织的影响[J].沈阳工业大学学报,2005(4): 379-380.
    [55] Wu C M L, Yu D Q, Wang L. The wettability and microstructure of Sn-Zn-Re alloys[J]. Journal of electronic materials, 2003, 32:63-69.
    [56] KIM Y S, HUANG C W. Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi Alloys[J]. Alloy Comp, 2003, 3(5): 237-245.
    [57]金泉军,周浪,孙韦华等. Sn-9Zn无铅电子钎料助焊剂研究[J].电子元件与材料,2005, 24(5):27-29.
    [58] YU D Q, ZHAO J, WANG L. Improvement on the Microstructure Stability. Mechanical and Wetting Properties of Sn-Ag-Cu Lead-free Solder with the Addition of Rare Earth Element[J]. Journal of Alloy and Compounds, 2004, 376(1): 170-175.
    [59]杜长华,陈方,杜云飞. Sn-Cu、Sn-Ag-Cu系无铅钎料的钎焊特性研究[J].电子元件与材料, 2004, 23(11): 34-36.
    [60]陈念贻.键参数函数及其应用[M].科学出版社,1976.
    [61] SUGANUMA K. Advances in Lead-free Electronics Soldering[J]. Current Opinion Solid State Mater Sci, 2001, 5: 55-64.
    [62]李梦,吉涛,刘晓波,等. Sn-Zn-Bi-Ag系钎料物理性能研究[J].电子元件与材料, 2004,23(11): 49-51.
    [63] Chang T C, Hon M H, Wang M C. Intermetallic compounds formation and interfacial adhension strength of Sn-9Zn-0.5Ag solder alloy hot-dipped on Cu substrate[J]. Journal of alloys and compounds, 2003, 352:168-174.
    [64] Hirschhorn I S. Recent applications of the rare earth metals in nonferrous metallurgy[J]. J Metal, 1970, 22(10): 40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700