复杂体系中合成沥青树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在以萘、蒽、芘三种多环芳烃为原料所构成的单一体系中,通过改变反应温度、交联剂用量、催化剂用量等工艺条件考察了沥青树脂的合成规律及工艺条件对其性能的影响;在此基础上,由不同参比量的萘、蒽、芘混合构成复杂体系,通过IR和热失重等测试分析,初步探讨了复杂体系中各种多环芳烃对沥青树脂合成及产品性能的影响;为了对萘系沥青树脂基体进行改性,本研究还以聚苯乙烯为改性剂,制备了新型沥青树脂/聚苯乙烯改性树脂材料。通过软化点、残炭值、耐腐蚀性、硬度、溶解性、热失重等测试分析,确定了聚苯乙烯参比量及固化工艺对改性沥青树脂材料性能的影响。
     研究结果表明:以萘、蒽、芘为原料的单一体系沥青树脂合成中,三种体系的最佳工艺条件分别为反应温度:140℃、180℃、160℃;交联剂/单体:1.0/1.0;催化剂加入量:5%,而且各种工艺条件对三种单一体系的树脂合成具有相似的影响趋势。在以多种芳烃混合物为原料的复杂体系中,加入反应活性较高的蒽分子,可使B阶树脂的交联程度提高,软化点升高,有机溶剂溶解度降低。加入分子结构较大的芘分子,可使C阶沥青树脂的耐热性能提高,有机溶剂溶解度降低。在合成B阶沥青树脂阶段,多环芳烃的反应活性对合成树脂的性能起主要作用;而在C阶沥青树脂固化阶段,多环芳烃分子的空间尺度对合成树脂的性能起主要作用。聚苯乙烯的加入可使沥青树脂的性能得到改善,在聚苯乙烯参比量为10%时,树脂性能表现最佳。通过测试分析发现,此时基体树脂和改性剂之间发生了化学反应,使得分子间结合紧密。通过其在有机溶剂中的溶解性实验得出,聚苯乙烯参比量达10%时,树脂在甲苯中的溶解度可从88.66%降低至78.15%。通过对固化工艺的研究发现,固化温度的升高可使改性树脂材料的硬度提高,但降低材料的耐酸碱腐蚀性;随着固化时间的延长,改性树脂材料的耐酸碱腐蚀性和硬度均有不同程度的提高。低温长时间固化不仅有利于树脂分子间结合,还有利于缩聚反应的散热,使改性树脂的结构更加紧密,产品质量提高。改性树脂最佳的固化工艺为120℃下固化20h,此时改性树脂的硬度可达到77.6HSD。
In this study, three kinds of polycyclic aromatic hydrocarbons (naphthalene, anthracene, pyrene) were used as raw materials respectly to composite three single raw material systems. The effects of various factors, such as reaction temperature, cross -linking agent contents, catalyst contents, etc. on the condensed poly nuclear aromatic (COPNA) resin synthesis and its properties were investigated. On this basis, by combining different contents of the naphthalene, anthracene, pyrene, a complex hybrid system was established. The impacts of different aromatic hydrocarbon on its product were estimated through analysis of IR,and weight loss.Additionally, COPNA/polystyrene materials was also prepared by means of using COPNA resin as a matrix and polystyrene (PS) as a modifier. Through analysis of residual carbon, soften point, hardness, resistance to corrosion and solubility, the effects of polystyrene contents and curing processing parameters were discussed.
     The results show that the best COPNA resin reaction temperature of naphthalene, anthracene, pyrene system were 140℃, 180℃, 160℃, the best cross-linking agent contents (agent/monomer) were 1.0/1.0. The optimum catalyst dosage was at 5%,and under these conditions, the same results occurred in these three systems relatively. Generally, Soften point and residual carbon were increased with the increasments of the temperature, cross-linking agent and catalyst content. In the complex system, it was reveled that the degree of Polycondensation in the period of COPNA-B resin synthesis was domainated by the reactivity of aromatic hydrocarbons. However, the spatial scale of polycyclic aromatic hydrocarbons determines the network structure of the composite in the period of COPNA-C resin synthesis. With a higher reactivity, anthracene can enhance the soften point and carbon residue of the COPNA, but reduce its solubility in organic solvents. Because of its larger molecule scale, pyrene can increase the heat-resistance of COPNA-C resin, but decline its solubility in organic solvents. It was realized that the performance of COPNA resin can be improved through the method by adding PS. When PS content goes up to 10%,the soften point increased 5℃and residual carbon increased 1.32% ,and its solubility in methylbenzene was increased from 55.66% to 78.15% comparing with unmodified COPNA resin. A conclusion can be drawn that there are some chemical reactions in modification process, which make the intermolecular combination stronger. It is also revealed that hardness of the modified resin material was increased and resistance to chemical corrosion was declined in higher curing temperature. The hardness and resistance to the corrosion can both be improved with the increasement of curing time. The reason for this phenomenon is that long time and low temperature curing can make deeper condensation, and cooling the material. The best curing condition of modifying COPNA resin is being curred 20 hours at 120℃and its hardness can be approached 77.6HSD.
引文
[1]程之光.重油加工技术[M].北京:中国石化出版社,1994:20~58
    [2]李京子,柯扬船,王英年,等.渣油芳香烃复合树脂及聚乙烯复合材料研究[J].石油学报(石油化工),2009,4(25):564~570
    [3]大谷衫郎.ピしン,フエナントしン混合物を原料とする缩合多环芳香族炭化水素の重缩合体树脂の合成と性质[J].日本化学会志,1986,(9):122~228
    [4]张林,吕慧.石油系新型炭材料的研发现状和发展趋势[J].化工新型材料,2004,32(11):6~9
    [5]王茂章.国外新型炭材料的开发[J].新型炭材料,1991,(3):1~10
    [6]操宏学.新炭素材料的发展[J].炭素技术,1996,(1):39~43
    [7]印杰,陈一东.以萘及萘酚为单体苯甲醛为交联剂的COPNA树脂的研究[J].高分子材料科学与工程,1995,(1):29~33
    [8]查庆芳,吴铭铂.COPNA树脂的开发及应用—腾飞的翅膀[M].东营:石油大学出版社,2000:114~115
    [9]查庆芳.煤焦油沥青树脂的开发和应用[A].第四届全国新型炭材料学术研讨会议[C],北京:中国石化出版社,2000:96~100
    [10]燕永利,何力.以石油沥青为单体的COPNA树脂的合成及其机理[J].高分子材料科学与工程,2003,19(5):93~96
    [11]郭燕生,查庆芳,吴明铂,等.FCC油浆的富芳烃富集及COPNA树脂的合成[J].石油大学学报,2002,26(4):80~84
    [12]林起浪,李铁虎.甲基苯甲醛-煤沥青COPNA树脂的合成及性能[J].高分子材料科学与工程,2006,22(5):102~104
    [13]仇汝臣,麻金海,孔锐睿,等.胜利100号沥青合成改性COPNA树脂[J].天津大学学报,2004,37(7):647~650
    [14]郭燕生.沥青树脂的交联行为[D].东营:中国石油大学,2006
    [15]柯昌美,强敏,林惠珊,等.COPNA树脂的合成及酚醛树脂的复配研究[J].武汉科技大学学报(自然科学版),2001,24(2):157~159
    [16]李福普,沈金安.聚合物改性沥青的配伍性与相容性[J].公路交通科技,1999,16(3):1~5
    [17]陈开勋,何力.新型碳材料前躯体COPNA树脂的合成工艺研究[D].西安:西北大学,2000
    [18]大谷杉郎,真田雄三.炭化工学基础[M].1985:90~91
    [19]阮湘泉,郑嘉明,刘伟昌,等.缩合多核芳烃树脂固化机理[J].天津大学学报,1997, 130(2):217~222
    [20]徐音,印杰.以萘为单体、三聚甲醛为交联剂的缩合多核芳香烃树脂的合成、交联及性能研究[J].高分子材料科学与工程,1997,(13):27~31
    [21]印杰,徐音.以三氧六环为交联剂的COPNA树脂的合成与性能研究[J].高分子材料科学与工程,1996,12(3):23~28
    [22]查庆芳,张玉贞,吴明铂,等.用菲和苯甲醛合成沥青树脂的反应机理[J].石油大学学报,2001,25(5):79~82
    [23]阮湘泉,董奕,郑嘉明.芘、苯甲醛COPNA树脂的合成及其磁性行为的研究[J].燃料化学学报,1997,25(5):469~473
    [24]汪道明,石昌东.用催化裂化重质芳烃制备多环芳烃树脂[J].石油炼制与化工,2002,33(7):54~58
    [25]魏兴海,查庆芳,陈红艳,等.以煤焦油研制耐热性沥青树脂[J].新型炭材料,2000,15(1):40~43
    [26]林起浪,李铁虎,单玲,等.煤沥青-二乙烯基苯COPNA树脂的合成及表征[J].高分子材料科学与工程,2003,19(1):53~56
    [27]印杰,张斌.以沥青为单体的缩合多核芳香烃树脂的合成和性能研究[J].高分子材料科学与工程,1999,15(3):27~29
    [28]燕永利,何力.以石油沥青为单体的COPNA树脂的合成及其机理[J].高分子材料科学与工程,2003,19(5):93~96
    [29]郭燕生,查庆芳,吴明铂,等.FCC油浆的富芳烃富集及COPNA树脂的合成[J].石油大学学报,2002,26(4):80~84
    [30]郭燕生,陈丽丽等.炭纤维/沥青树脂复合材料的性能研究[J].中国石油大学学报,2006,30(5):118~124
    [31]李青梅.煤系沥青树脂的合成及其与石墨复合性能的研究[D].东营:中国石油大学,2008
    [32] Katsuki Kusakabe, Satoru Gohgi, Shigeharu Morooka. Carbon Molecular SievingMembranes Derived from Condensed Polynuclear Aromatic (COPNA) Resins for Gas Separations [J]. Ind. Eng. Chem. Res. 1998, (37): 4262~4266
    [33] Michiya OTA, Sugio OTANI. The Preparation and Properities of the Condensed Polynuclear Aromatic (COPNA) Resins Using an Aldehyde as Crosslinking Agent[J]. Chemistry Letter, 1989, 20(4): 1175~1178
    [34] Hiroshi Suwa, Michiya, Akira Kojima. Friction Property of Multi-Layer Interlocked Fabric Reinforced COPNA Resin Composite[J]. Chemistry Letter ,2006, 18(4):45~48
    [35] Michiya Ota, Sugio Otani. Evolution of Ferromagnetism in the Triarylmethane Resin Synthesized Under a Magnetic Field [J]. Chemistry Letter, 1989, 21(5): 1179~1182
    [36] Michiya Ota. EVolution of Fellromagnetic Properties by Dehydrogenation of Triarl-methane Resin[J]. Chemistry Letter, 1989, 21(5): 1183~1l86
    [37] S Otani. Comnization Behavior or Condensed Polyniclear Aromatic(COPNA) Resins[J]. Synthetic Metals, 1986, (127): 162~170
    [38] S. Nakajima, Y. Iijima, T. Inoue. Anomalous Magnetic Properties of Polyandensate of Fused Molypuclear Aromatics(COPNA) resin[J]. Synthetic Metals, 1995, (71): 1817~1818
    [39] S Otani. Some Propenies of a Condensed Polynunlear Aromatic Resin(COPNA) as a Binder for Carbon Fibre Composites[J]. Journal of Materials Science, 1986, (21): 2027~2032
    [40] E Ota. Growth of Condensed Aromatic Nuclei in Some Condensed Polynuclear Aromatic (COPNA) Resins by Heating[J]. Taso, 1987, (128): 12~17
    [41]大谷杉郎,等.新型碳产品的前驱体设计[J].新型碳材料,1991,(2):34~35
    [42]付东升,朱光明,张强.COPNA树脂的合成及应用研究进展[J].高分子材料科学与工程,2004,20(5):15~18
    [43]卢水根,张志雄,查庆芳,等.重质渣油沥青树脂的耐热性[J].新型碳材料,2003,18(4):300~304
    [44]阮湘泉,刘伟昌,郑嘉明,等.COPNA树脂—一种新型的功能材料[J].化工新型材料,1997,(8):7~10
    [45]文虎.日本新型碳材料开发的现状和动向[J].电碳,2001,(2):1~16
    [46] Michiya Ota, Sugio Otani. Evolution of Ferromagnetism in the Triarylmethane Resin Synthesized Under a Magnetic Field[J]. Chemistry Letter, 1989, (5): 1179~1182
    [47]Clar E. Polycyclic Hydrocarbons[M]. New York: Academic Press. 1964: 65~78
    [48] Pullman B. Progress in Organic Chemistry[M]. New York: Ed. J. W. Cook. 1958: 31~45
    [49]侯慧玉,查庆芳.COPNA树脂的合成及其复合材料耐热性[J].中国粘结剂,2004,14(2):4~7
    [50]郑长征.高性能路用沥青材料的改性研究[D].西安:西北大学,2000
    [51]杨雨潼,蒲利君,蔡建.树脂及复合材料改性技术[J].包装工程,2006,7(6):121~123
    [52]傅长明.国外塑料改性材料的发展[J].国外塑料,1996,(2):23~31
    [53]杨梦婕,付莹等.废旧聚苯乙烯泡沫塑料制备新型纸制品防水涂料[J].辽宁化工,2007,36(12):810~812
    [54]李美庆,李海江.聚苯乙烯泡沫塑料废弃物回收利用技术[J].科技创业,2002,(12):71~72
    [55]王海涛,张天胜.天然有机溶剂回收聚苯乙烯泡沫塑料的研究[J].天津轻工业学院学报,2001,(4):7~10
    [56]张钦文.聚苯乙烯聚合机理[J].广东化工,2008,(35):71~73
    [57]吴良骏.涂料耐腐蚀性测试方法[J].涂料工业,2001,(6):49~53
    [58]霍春玲.非金属耐腐蚀材料在工程设计中的选择和应用[J].技术论坛,2005,(2):103~105
    [59]陈保华,赵晓峰.常用硬度的测试原理及表示方法[J].金属加工,2008,(15):69~71
    [60]杨光繁.超硬材料的发展及前景[J].新材料产业,2005(9):60~64
    [61] R. M.西尔费斯坦著.有机化合物光谱鉴定(第二版)[M].北京:科学出版社,1988,104~108
    [62]刘会茹,徐智策,赵地顺.多环芳烃在贵金属催化剂上竞争加氢反应的研究[J].化学学报,2007,65(18):1933~1939
    [63] Hess B. A, Schaad L. J. Aromaticity of Butalene and Its Homologues[J]. Journal of American Chemistry Society, 1971, 93(2): 302~309
    [64] Pullman B. Progress in Organic Chemistry[M]. New York: Ed. J. W. Cook. 1958: 31~45
    [65]印杰,陈一东.以萘及萘酚为单体苯甲醛为交联剂的COPNA树脂的研究[J].高分子材料科学与工程,1995,(1):29~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700