沥青及沥青混合料旋转剪切试验装置与试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青混合料高温稳定性及抗剪强度不足是沥青路面存在的拥包、车辙等破损现象的根本原因。多年来,国内外针对沥青及沥青混合料抗剪性能试验设备与试验方法进行了广泛研究。目前,动态剪切流变试验(DSR)、Superpave剪切试验(SST)是用于测定沥青及沥青混合料动态特性并用于高温稳定性能评价的典型方法,但由于DSR功能单一、SST价格昂贵等原因而缺乏普及实用性。
     论文基于微型电机、变频器、扭矩传感器、位移传感器及温度传感器等硬件和自行开发的计算机自动控制系统软件,设计并组装了具有良好经济实用性、采用旋转加载方式、适用于沥青及沥青混合料、具有静态及动态剪切性能测定的系列试验装置,可进行静态破坏性能试验、动态黏弹性特性试验、振荡(疲劳)破坏性能试验、蠕变及重复蠕变回复性能试验、应力松弛及循环加载试验。计算机自动控制系统软件可完成试验进程自动控制,具有应变控制方式的正弦、余弦、三角形等动态函数加载功能,可完成试验数据自动处理和图表自动绘制。
     为检验试验装置的运行稳定性和试验方法的可行性,论文基于25组共470余个试件进行了沥青旋转剪切破坏性能试验研究,基于17组共150余个试件进行了振荡破坏性能试验,并考虑剪切加载速率(0.1~2.0rad/s)、试验温度(-6~40℃)、沥青类型(普通AH90、橡胶沥青及SBS改性沥青)、沥青厚度(0.5~3.5mm)、试件直径(30mm、21mm)等因素的影响。在室温20℃条件下,基于93个方形截面、AC13沥青混合料进行了沥青混合料旋转剪切破坏性能试验,重点考虑旋转剪切加载速率因素的影响。在室温20℃条件下进行了不同应力水平的沥青旋转剪切蠕变性能试验和应力松弛性能试验,并重点针对3种沥青类型、4种应力水平进行了重复蠕变回复试验,研究沥青试件的黏弹塑性变形及变形回复性能。
     试验检验结果表明:(1)旋转剪切破坏性能试验、振荡破坏性能试验、蠕变及重复蠕变性能试验的试验装置运行稳定、试验方法切实可行,与DSR相比具有较好的经济性和宽广的适用范围;(2)应力松弛试验装置在“持荷”阶段不能完全限制旋转轴的同向旋转位移,试验结果的准确性受到一定影响,但对于应力松弛循环加载试验,当持荷时间极短时可忽略该影响。
     基于论文试验装置的试验研究结果,可得出以下结论:(1)沥青试件的旋转剪切破坏存在沥青屈服、沥青脆性、纯黏结界面破坏、黏结界面破坏同时沥青脆裂等类型;加载速率、试验温度、沥青类型等对沥青试件的破坏形态、破坏剪应力、剪切变形模量、破坏加载时间等有明显影响;(2)振荡破坏过程中,复数剪切模量呈明显曲线下降趋势,但相位角的变化不明显;加载函数周期对复数剪切模量和相位角有一定影响;试验温度对复数剪切模量影响很明显,对相位角也有较大影响;沥青厚度及试件直径对复数剪切模量和相位角的影响不明显;(3)沥青类型、应力水平对沥青变形回复性能有较大影响;(4)加载速率对沥青混合料的剪切破坏加载时间、破坏应力、破坏应变有很大影响,对变形模量有明显影响。
Distresses on asphalt pavements such as swells and ruts are essentially caused by the insufficiency of high temperature stability and shear resistance of asphalt mixtures. Extensive studies on test apparatus and test methods of shear resistance of asphalt and asphalt mixtures have been carried out over the years. Currently, the dynamic shear rheometer (DSR) test and the Superpave shear test (SST) are the traditional methods of testing dynamic properties and evaluating high temperature stability for asphalt and asphalt mixtures. However, due to the single function of DSR and the high price of SST, these methods are not widely used.
     Utilizing a micro motor, an inverter, a torque sensor, a displacement sensor, a temperature sensor and a computer automatic controlled system software self-developed, a series of practical and economical test devices with functions of static and dynamic shear performance testing under rotational loading are designed and assembled for the experimental study of static shear performance and dynamic properties of asphalt and asphalt mixtures. These devices are applied to the failing strength test, the dynamic viscoelastic performance test, the oscillation (fatigue) failure performance test, the creep and repeated creep recovery performance test and the stress relaxation test and cyclic loading test. The computer automatic controlled system software can automatically complete the test process, process the test data and draw the graphs. The strain-controlled dynamic load modes such as sine, cosine, triangle is also developed for the loading function.
     To validate the operation stability of the test apparatus and the feasibility of the test method, a failure performance test using more than470asphalt specimens (divided into25groups) and a oscillation failure performance test using more than150asphalt specimens (divided into17groups) are conducted. The effects of factors such as the shear loading rate (0.1~2.0rad/s), test temperature (6~40℃), asphalt type (AH90asphalt, rubberized asphalt and SBS modified asphalt), asphalt thickness (0.5~3.5mm), and specimen diameter (30mm and21mm) are taken into account in these tests. In addition, a rotational shear failure performance test for AC-13using93specimens with square section is also conducted at the room-temperature of20℃to investigate the effect of rotational shear rate. To investigate viscoelastoplastic deformation and deformation recovery performance of the asphalt specimens, an asphalt rotational shear creep performance test and a stress relaxation performance test under various stress levels are implement, and a cyclic loading test including3asphalt types and4stress levels is also carried out at the room temperature of20℃.
     The test results show that the devices for the rotational shear failure performance test, the oscillation failure performance test, the creep and repeated creep recovery performance test run stably and the test methods are feasible. The devices and the methods have better economical efficiency and broader scope of application than DSR. The device of stress relaxation test can't completely constrict the synclastic rotation displacement of the rotation axis in the "continuous loading" stage, which will affect the accuracy of test results. But for the cyclic loading stress relaxation test, the effect mentioned above can be ignored when the "continuous loading" stage is very short.
     Based on the test apparatus and test results described in this paper, following conclusions can be drawn:(1) Several rotational shear failure modes for the asphalt specimens such as yielding, brittleness fracture, pure bonding interface failure and mixed mode failure of bonding interface and asphalt fracture are observed; the failure modes, failure shear stress, shear deformation modulus and failure loading time of asphalt specimens are affected significantly by the loading rate, test temperature and types of asphalt.(2) In the process of the oscillation failure, complex shear modulus curve shows a significant downward trend, while the change of the phase angle is not obvious; the period of loading function has a certain influence on complex shear modulus and phase angle; complex shear modulus and phase angle are also significantly affected by the test temperature; thickness of asphalt and diameter of the specimen have little effect on complex shear modulus and phase angle.(3) Asphalt type and stress level have great effect on deformation recovery performance.(4) Loading rate has strong effect on shear failure loading time, failure stress, failure strain and deformation modulus of asphalt mixtures.
引文
[1]交通运输部综合规划司,2012年公路水路交通运输行业发展统计公报[EB]. [2013,04.25]. http://www. moc. gov. cn/zhuzhan/tongjigongbao/fenxigongbao/hangyegongbao/201304/ t20130426_1402794.html
    [2]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001:68.
    [3]交通运输部,“十二五”公路养护管理发展纲要[EB].[2011,09,15].http://www. moc. gov. cn/zhuzhan/zhengcejiedu/guihuajiedu/shierwuguihuaJD/xianggu anzhengcefagui/201110/t20111010_1064458.html
    [4]上海市公路管理处.JTJ 073.2-2001公路沥青路面养护技术规范[S].北京:人民交通出版社,2001:10.
    [5]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006:3-10.
    [6]Kim Sungun, Park Jiyong, Kim Kwang W. Correlation analyses for implementation of binder properties for rut potential estimation of asphalt mixtures[J]. Journal of Testing and Evaluation,2011,39(5)
    [7]Li Qiang, Lee Hyun Jong, Lee Sang Yum. Permanent deformation model based on shear properties of asphalt mixtures:Development and calibration[J]. Transportation Research Record,2011,2210:81-89.
    [8]Li Qiang, Lee Hyun Jong, Hwang Eui Yoon. Characterization of permanent deformation of asphalt mixtures based on shear properties[J]. Transportation Research Record, 2010,2181:1-10.
    [9]Huang Baoshan, Chen Xingwei, Shu Xiang, etc. Effects of coarse aggregate angularity and asphalt binder on laboratory-measured permanent deformation properties of HMA[J]. International Journal of Pavement Engineering,2009,10(1):19-28.
    [10]Muraya P.M., Molenaar A. A. A., Van De Ven M. F. C. Contribution of the bituminous mortar and stone skeleton to the resistance to permanent deformation in asphalt mixtures[J]. Journal of Testing and Evaluation,2009,37(5):424-430.
    [11]Hanaa Mohammed Mahan. Behavior of permanent deformation in asphalt concrete pavements under tempweature variation[J]. Al-Qadisiya Journal For Engineering Sciences,2013,6(1):73
    [12]Morea F., Agnusdei J.0., Zerbino R. The use of asphalt low shear viscosity to predict permanent deformation performance of asphalt concrete[J]. Materials and Structures/Materiaux et Constructions,2011,44(7):1241-1248.
    [13]Fontes Liseane P. T. L., Triches Glicerio, Pais Jorge C., etc. Evaluating permanent deformation in asphalt rubber mixtures[J]. Construction and Building Materials, 2010,24(7):1193-1200.
    [14]Su K., Sun L. J., Hachiya Y., etc. A new rutting evaluation indicator for asphalt mixtures[J]. Bearing Capacity of Roads,2009,1:269-274.
    [15]Su K., Sun L.J., Hachiya Y. Rut prediction for semi-rigid asphalt pavements[J]. Transportation and Development Innovative Best Practices 2008-Proceedings of the 1st International Symposium on Transportation and Development Innovative Best Practices 2008,2008,319:486-491.
    [16]Shu X., Huang B., Chen X., etc. Effect of coarse aggregate angularity on rutting performance of HMA[J]. Geotechnical Special Publication,2006,154:126-133.
    [17]Soon-Jae Lee, Serji N. Amirkhanian, Bradley J. Putman, etc. Laboratory Study of the Effects of Compaction on the Volumetric and Rutting Properties of CRM Asphalt Mixtures[J]. Journal of Materials in Civil Engineering,2007,19(12):1079-1089.
    [18]Rabbira Garba. Permanent Deformation Properties of Asphalt Concrete Mixtures[D]. Norwegian University of Science and Technology,2002.
    [19]Mehrara Amir, Khodaii Ali. Evaluation of asphalt mixtures'moisture sensitivity by dynamic creep test[J]. Journal of Materials in Civil Engineering,2011, 23(2):212-219.
    [20]Moraes Raquel, Velasquez Raul, Bahia Hussain. Measuring the Effect of moisture on asphalt-aggregate bond with the bitumen bond strength test[J]. Transportation Research Record,2011,2209:70-81.
    [21]Mo L T., Huurman M., Wu S. P., etc. Bitumen-stone adhesive zone damage model for the meso-mechanical mixture design of ravelling resistant porous asphalt concrete[J]. International Journal of Fatigue,2011,33(11):1490-1503.
    [22]Xiao Y., Molenaar A.A. A., Van De Ven M. F. C., etc. Adhesion properties of tar-containing antiskid surface layers on runways in airf ield[J]. T and DI Congress 2011:Integrated Transportation and Development for a Better Tomorrow-Proceedings of the 1st Congress of the Transportation and Development Institute of ASCE, 2011,:854-863.
    [23]Chen Jian-Shiuh, Huang Chien-Chung. Effect of surface characteristics on bonding properties of bituminous tack coat [J]. Transportation Research Record,2010,2180: 142-149.
    [24]Khattak Mohammad J., Baladi Gilbert Y., Drzal Lawrence T. Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures[J]. Journal of Materials in Civil Engineering,2007, 19(5):411-422.
    [25]Ota Vacin, Joseph Ponniah, Susan Tighe. Quantifying the shear strength at the asphalt interface. University of Waterloo, Canada,2005.
    [26]Sutanto M. H., Collop A. C., Airey G. D., etc. Laboratory measurement of shear interface strength beneath a thin asphalt layer[J]. Advanced Characterisation of Pavement and Soil Engineering Materials-Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, 2007,2:1327-1336.
    [27]Hajj E. Y., Sebaaly P. E., Siddharthan R. V., etc. Investigation and analysis of hot mix asphalt mixtures at Nevada's intersections[J]. Advanced Characterisation of Pavement and Soil Engineering Materials-Proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, 2007,2:1679-1689.
    [28]Raposeiras Aitor C., Vega-Zamanillo angel, Calzada-Perez Miguel angel, etc. Influence of surface macro-texture and binder dosage on the adhesion between bituminous pavement layers[J]. Construction and Building Materials,2012, 28(1):187-192.
    [29]Zielinski P. Investigation of geosynthetic interlayer bonding in asphalt layers [J]. Archives of Civil Engineering,2011,57(4):401-42.1
    [30]交通运输部公路科学研究院.JTG E20-2011公路工程沥青及沥青混合料试验规程[S],北京:人民交通出版社,2011:117-119,260-264,325-331.
    [31]美国沥青协会著,贾渝,曹荣吉,李本京编译.高性能沥青路面(Superpave)基础参考手册[M].北京:人民交通出版社,2005:3-4.
    [32]Ameri Mahmoud, Mansourian Ahmad, Sheikhmotevali Amir Hossein. Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters[J]. Construction and Building Materials,2013, 40:438-447.
    [33]Hajj Elie, Salazar Luis, Sebaaly Peter. Methodologies for estimating effective performance grade of asphalt binders in mixtures with high recycled asphalt pavement content[J]. Transportation Research Record,2012,2294:53-63.
    [34]AASHTO T315-08. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), Washington, D.C.,1994.
    [35]ASTM D7552-09, Standard Test Method for Determining the Complex Shear Modulus (G*) Of Bituminous Mixtures Using Dynamic Shear Rheometer. ASTM International, United States.2009.
    [36]Shenoy Aroon. Fatigue testing and evaluation of asphalt binders using the dynamic shear rheometer[J]. Journal of Testing and Evaluation,2002,30(4):303-312.
    [37]Johnson Carl M., Wen Haifang, Bahia Hussain U. Practical application of viscoelastic continuum damage theory to asphalt binder fatigue characterization[J]. Asphalt Paving Technology:Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2009,78:597-631.
    [38]Wen Haifang, Bahia Hussain. Characterizing fatigue of asphalt binders with viscoelastic continuum damage mechanics[J]. Transportation Research Record,2009, 2126:55-62.
    [39]Maithili Mohanty. Performance based characterization of bituminous biners[D], Department of Civil Engineering, National Institute of Technology, Rourkela.2012.
    [40]Mike Anderson. Evaluation of DSR Creep-Recovery Testing as a Replacement for PG Plus Tests. Asphalt Institute:AMAP Annual Meeting Boston, MA,2007.
    [41]Shin-Che Huang, Francis P. Miknis, William Schuster, etc. Rheological and Chemical Properties of Hydrated Lime and Polyphosphoric Acid-Modified Asphalts with Long-Term Aging[J]. Journal of Materials in Civil Engineering,2011,23(5): 628-637.
    [42]Dessouky Samer, Contreras David, Sanchez Jeremy, etc. Influence of hindered phenol additives on the rheology of aged polymer-modified bitumen[J]. Construction and Building Materials,2013,38:214-223.
    [43]Biro S., Gandhi Tejash, Amirkhanian Serji. Midrange temperature rheological properties of warm asphalt binders[J]. Journal of Materials in Civil Engineering, 2009,21(7):316-323.
    [44]Morea Francisco, Marcozzi Rosana, Castao Gonzalo. Rheological properties of asphalt binders with chemical tensoactive additives used in Warm Mix Asphalts (WMAs)[J]. Construction and Building Materials,2012,29:135-141.
    [45]Wang Hainian, You Zhanping, Goh Shu Wei, etc. Laboratory evaluation on the high temperature rheological properties of rubber asphalt:A preliminary study[J]. Canadian Journal of Civil Engineering,2012,39(10):1125-1135.
    [46]Wang Hainian, Dang Zhengxia, You Zhanping, etc. Effect of warm mixture asphalt (WMA) additives on high failure temperature properties for crumb rubber modified (CRM) binders[J]. Construction and Building Materials,2012,35:281-288.
    [47]Yong-Rak Kim, D. N. Little. Linear Viscoelastic Analysis of Asphalt Mastics[J]. Journal of Materials in Civil Engineering,2004,16(2):122-132.
    [48]Dong-Woo Cho, Lee Tai Sik, Lee Sang Yum, etc. Comparison of linear visco-elastic complex modulus and yield shear stress in DSR moisture damage test[J]. Journal of Testing and Evaluation,2009,37(6):573-581.
    [49]Virginie Mouillet, Chantal De la Roche, Emmanuel Chailleux, etc. Thixotropic Behavior of Paving-Grade Bitumens under Dynamic Shear [J]. Journal of Materials in Civil Engineering,2012,24(1):23-31.
    [50]Mihai 0. Marasteanu, Timothy R. Clyne. Rheological Characterization of Asphalt Emulsions Residues[J]. Journal of Materials in Civil Engineering,2006,18(3): 398-407.
    [51]A. R. Abbas, A. T. Papagiannakis, E. A. Masad. Linear and Nonlinear Viscoelastic Analysis of the Microstructure of Asphalt Concretes[J]. Journal of Materials in Civil Engineering,2004,16(2):133-139.
    [52]Yoshida N., Fuke A., Uehara T., etc. Interpretation and application of repeated torsional shear test on asphalt mixtures[J]. Advances in Transportation Geotechnics II-Proceedings of the 2nd International Conference on Transportation Geotechnics,2012,:414-419.
    [53]Khodaii Ali, Mehrara Amir. Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test[J]. Construction and Building Materials,2009,23(7):2586-2592.
    [54]Akisetty Chandra, Xiao Feipeng, Gandhi Tejash, etc. Estimating correlations between rheological and engineering properties of rubberized asphalt concrete mixtures containing warm mix asphalt additive[J]. Construction and Building Materials,2011,25 (2):950-956.
    [55]Wong W. G., Han Haifeng, He Guiping, etc. Rutting response of hot-mix asphalt to generalized dynamic shear moduli of asphalt binder[J]. Construction and Building Materials,2004,18(6):399-408.
    [56]Saadeh Shadi, Masad Eyad, Stuart Kevin, etc. Comparative analysis of axial and shear viscoelastic properties of asphalt mixes[J]. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2003,72:122-153.
    [57]Serkan Tapkin, Ahmet Tuncan, Mustafa Tuncan. Repeated Creep Behavior of Polypropylene Fiber-Reinforced Bituminous Mixtures[J]. Journal of Transportation Engineering,2009,135(4):240-249.
    [58]W. Martono, H. U. Bahia, J. D Angelo. Effect of Testing Geometry on Measuring Fatigue of Asphalt Binders and Mastics[J]. Journal of Materials in Civil Engineering,2007, 19(9):746-752.
    [59]Arash Motamed, Hussain U. Bahia. Influence of Test Geometry, Temperature, Stress Level, and Loading Duration on Binder Properties Measured Using DSR[J]. Journal of Materials in Civil Engineering,2011,23(10):1422-1432.
    [60]Zahid Hossain, Musharraf Zaman. Sensi tivity of Oklahoma Binders on Dynamic Modulus of Asphalt Mixes and Distress Functions[J]. Journal of Materials in Civil Engineering,2012,24(8):1076-1088.
    [61]Haithem Soliman, Ahmed Shalaby, Leonnie Kavanagh. Performance Evaluation of Joint and Crack Sealants in Cold Climates Using DSR and BBR Tests [J]. Journal of Materials in Civil Engineering,2008,20(7):470-477.
    [62]Yong-Rak Kim, D. H. Allen, D. N. Little. Computational Constitutive Model for Predicting Nonlinear Viscoelastic Damage and Fracture Failure of Asphalt Concrete MixturestJ]. International Journal of Geomechanics,2007,7(2):102-110.
    [63]Dong-Woo Cho, Hussain U. Bahia. New Parameter to Evaluate Moisture Damage of Asphalt-Aggregate Bond in Using Dynamic Shear Rheometer[J]. Journal of Materials in Civil Engineering,2010,22(3):267-276
    [64]Yong-Rak Kim, A. M. ASCE, Flavio V. Souza, etc. Multiscale Modeling of Bituminous Mixtures Considering Material Viscoelasticity and Cohesive Zone Fracture[J]. Pavements and Materials,2012:74-85.
    [65]Sarah Zorn, Yusuf Mehta, Kevin Dahm, etc. Rheological Properties of the Polymer Modified Bitumen with Emphasis on SBS Polymer and Its Microstructure[C]. Road Materials and New Innovations in Pavement Engineering,2012:41-48.
    [66]才洪美,徐济安,刘洋,梅顺平.沥青高温指标与其高温路用性能的相关性研究[J].新型建筑材,2011,(6):65-68.
    [67]尹应梅,张肖宁.沥青路面夹层动态黏弹性及抗剪性能[J].科学技术与工程,2009,(9):2378-2383.
    [68]Vincent Labiouse. Hollow cylinder simulation experiments on Boo,Opalinus[R]. TIMODAZ Workshop,2012.
    [69]E. Ibraim, P. Christiaens, M. Pope. Development Of A Hollow Cylinder Torsional Apparatus For Pre-failure Deformation And Large Strains Behaviour Of Sand[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA,2011,42(4):1-10
    [70]Yanyan Cai, BEng, MSc. An Experimental Study of Non-Coaxial Soil Behaviour Using Hollow Cylinder Testing[D]. University of Nottingham,2010.
    [71]P.J. Naughton, B.C.O'Kelly. STRESS NON-UNIFORMITY IN HOULOW CYLINDRICAL TEST SPECIMENS[C].2005 Joint ASME/ASCE/SES Conference on Mechanics and Materials,2005, Baton Rouge, Louisiana, USA.
    [72]S. Jourine, P. P. Valk, A. K. Kronenberg. Modelling poroelastic hollow cylinder experiments with realistic boundary conditions[J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS,2004,28:1189-1205.
    [73]Koichi Shin. Practical Method for Measuring Anisotropy of Rock Using a Hollow Cylinder[J]. ISRM 2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy,2003:1053-1056.
    [74]M. L. Talesnick, M. Ringel. Completing the hollow cylinder methodology for testing of transversely isotropic rocks:torsion testing[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:627-639.
    [75]MARC E. NOVAK. CREATION OF A LABORATORY TESTING DEVICE TO EVALUATE INSTABILITY RUTTING IN ASPHALT PAVEMENTS[D]. UNIVERSITY OF FLORIDA,2007.
    [76]GHAZI G. AL-KHATEEB, WILLIAM G. BUTTLAR. Hollow-Cylinder Tensile Tester for Asphaltic Paving Mixtures[J]. MID-CONTINENT TRANSPORTATION SYMPOSIUM 2000 PROCEEDINGS,2000:14-19.
    [77]Sousa J. B., Weiswnan S.L., Deacon J.A., etc. Permanent pavemnent deformation response of asphalt aggregate mixes[R]. Washington D. C:SHRP, National Research Council.1994.
    [78]Standard test for determining the permanent shear strain and stiff iness of asphalt mixtures using the Superpave Shear Tester(SST)[S]. Washington D. C:American Association of State Highway and Transportation Officials(AASHTO)Designation TP7-00,2000.
    [79]National Cooperative Highway Research Program. Field Shear Test for Hot Mix Asphalt[S]. Research Results Digset,2002,262:1-14.
    [80]Epps Martin A., Park Dae-Wook. Use of the asphalt pavement analyzer and repeated simple shear test at constant height to augment superpave volumetric mix design [J]. Journal of Transportation Engineering,2003,129(5):522-530.
    [81]Romero Pedro, Mogawer Walaa S. Evaluation of ability of superpave shear tester to differentiate between mixtures with different aggregate sizes[J]. Transportation Research Record,1998,1630:69-76.
    [82]Annie KAMMERER, Jiaer WU, Michael RIEMER, etc. A new multi-directional Direct Simple Shear Testing Database[C].13th World Conference on Earthquake Engineering, Canada,2004:Paper No.2083.
    [83]Cassandra Janel Rutherford. Development of a multi-directonal direct simple shear testing device for characterization of the cyclic shear respore of marine clays[D]. Texas A&M University,2012.
    [84]H. Daiyan, E. Andreassen, F. Grytten, etc. Shear Testing of Polypropylene Materials Analysed by Digital Image Correlation and Numerical Simulations[J]. Experimental Mechanics,2012.
    [85]T. Sivadass, C. Y. Lee. Simple Shear Testing of Residual Soils with High Silt Content[C]. ICCBT 2008, Part E (38):469-484.
    [86]Seth McGuire. Comparison of Direct Simple Shear Confinement Methods on Clay and Silt Specimens[D]. University of Rhode, Island,2011.
    [87]B. Zillmann, T. Clausmeyer, S. Bargmann, etc. Validation of Simple Shear Tests for Parameter Identification Considering the Evolution of Plastic Anisotropy[J]. Technische Mechanik,2012,32(2-5):622-630.
    [88]Guler M., Bahia H. U., Bosscher P. J., etc. Device for measuring shear resistance of hot-mix asphalt in gyratory compactor [J]. Transportation Research Record,2000, 1723:116-124.
    [89]Anderson R. Michael, Nady Robert, Kluttz Bob, etc. Relationship between superpave gyratory compaction properties and the rutting potential of asphalt mixtures[J]. Asphalt Paving Technology:Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2002,71:207-247.
    [90]Stakston Anthony D., Bahia Hussain U., Bushek Jared J. Effect of fine aggregate angularity on compaction and shearing resistance of asphalt mixtures[J]. Transportation Research Record,2002,1789:14-24.
    [91]董生贵,米继军.GSC旋转剪切压实机的研制[J].交通标准化,2006,155(7):181-184
    [92]向叔田译.沥青混疑土抗剪稳定性指标的测定[J].西南公路,1994,58(2):48-50.
    [93]吴佩瑜,郭青筠.沥青混合料抗剪参数测定方法的讨论[J].华东公路,1983,(1):21-28.
    [94]朱浩然,杨军,陈志伟.沥青混合料抗剪性能的三轴剪切试验[J].交通运输工程学报,2009,9(3):19-23.
    [95]石桂梅.复合式基层沥青路面级配碎石上基层的抗剪性能[J].建筑材料学报,2011,14(4):502-507.
    [96]马新,郭忠印,杨群.基于分形方法的沥青混合料抗剪性能研究[J].重庆交通大学学报(自然科学版),2009,28(5):873-876.
    [97]贾锦绣,韩森,徐鸥明.沥青稳定碎石混合料的抗剪性能[J].长安大学学报(自然科学版),2009,29(3):23-26.
    [98]Hanaa Mohammed Mahan. Behavior of permanent deformation in asphalt concrete pavements under tempweature variation[J]. Al-Qadisiya Journal For Engineering Sciences,2013,6(1):62-73
    [99]刘细军.沥青混合料抗剪性能研究[J].公路,2007,(10):162-167.
    [100]何昌轩,Jose Francisco Rufino Diogo,张泉.沥青混合料骨架结构抗剪强度特性的试验研究[J].交通运输工程与信息学报,2007,5(4):84-88.
    [101]郭寅川,申爱琴,张金荣,孙增智.沥青路面下封层力学响应及抗剪强度试验[J].中国公路学报,2010,23(4):20-26.
    [102]赵桂娟.半刚性基层沥青路面基面层粘结材料抗剪性能分析[J].武汉理工大学学报,2011,33(5):90-94.
    [103]肖利明,于静涛,李培植.水泥混凝土桥面板与沥青铺装层层间抗剪性能研究[J].公路交通科技(应用技术版),2008,44(8):140-142.
    [104]王瑞林,余苗.斜面剪切试验在沥青混合料中的应用[J].重庆交通大学学报:自然科学版,2009,28(1):54-56.
    [105]崔鹏,刘黎萍,孙立军.沥青混合料抗剪性能试验仪开发[J].公路,2006,(12):160-163.
    [106]王瑞宜,张俊丽.沥青混合料集料颗粒间摩擦性能的直剪试验评价[J].中南公路工程,2005,30(3).
    [107]毕玉锋.沥青混合料抗剪试验方法及抗剪参数研究[D].上海:同济大学,2004.
    [108]毕玉峰,孙立军.沥青混合料抗剪试验方法研究[J].同济大学学报(自然科学版),2005,33(8):1036-1040.
    [109]林绣贤.关于沥青混凝土路面设计中抗剪指标的建议[J].公路,2004,(12):66-69.
    [110]杨毅,王捷,赵锡娟,林绣贤等.论沥青混合料的抗剪强度测定法[J].中国公路,2012,(1):96-103.
    [111]岳雷,黄曼,刘黎萍,孙立军.沥青混合料抗剪性能试验研究[J].公路工程,2009,34(1):13-16.
    [112]高燕希,曾红雄,张东省.沥青混合料抗剪强度影响因素研究[J].公路交通科技,2009,26(8):28-32.
    [113]林苗,马步方,邵显智.广梧高速公路试验段沥青混合料抗剪性能检验[J].公路,2005,(8):347-349.
    [114]傅栋梁,钱振东.不同级配类型沥青混合料抗剪性能研究[J].重庆建筑大学学报,2008,30(2):98-102.
    [115]肖源杰,倪富健,蒯海东,都敬丽.基于图像的粗集料形态对沥青面层抗剪性能的影响[J].郑州大学学报(工学版),2006,27(4):44-48.
    [116]袁峻,钱野.粗集料形态特征及其对沥青混合料高温抗剪强度的影响[J].交通运输工程学报,2011,11(4):17-22.
    [117]刘朝晖,欧阳异,沙庆林.高粘度基质沥青混合料高温抗剪性能试验研究[J].长沙交通学院学报,2007,23(2):14-19.
    [118]李秀君.泡沫沥青冷再生混合料抗剪性能的试验研究[J].建筑材料学报,2010,13(1):27-32.
    [119]钱振东,陈磊磊,尹祖超,罗桑.国产环氧沥青混合料抗剪性能试验研究[J].建筑材料学报,2011,14(2):282-286.
    [120]谭巍,周刚.沥青混合料高温稳定性的单轴贯入试验研究[J].石油沥青,2009,23(2).
    [121]彭勇,孙立军,石永久,王元清.沥青混合料抗剪强度的影响因素[J].东南大学学报(自然科学版),2007,37(2):330-333.
    [122]袁峻,孙立军.沥青混合料抗剪强度影响因素评价指标研究[J].重庆建筑大学学报,2008,30(6):140-145.
    [123]王刚,刘黎萍,孙立军.沥青混凝土抗剪强度及抗压回弹模量试验研究[J].建筑材料学报,2012,15(2):279282.
    [124]吕文江,韩君良,郭平,吴德军.沥青混合料抗剪强度的影响因素分析[J].公路,2010,(11):81-85.
    [125]汤文,孙立军.不同温度下沥青混合料的抗剪性能及其评价指标[J].公路,2012,(3):191-195.
    [126]陈红,钟勇云,杨剑兰,张望,陈华斌.沥青混合料单轴贯入试验抗剪性能研究[J].公路交通科技(应用技术版),2011,83(11):127-131.
    [127]冯俊领,郭忠印,杨群,徐绍国.沥青混合料同轴剪切试验方法研究[J].2008,36(10):1395-1398.
    [128]陈光伟,李洪涛,陈荣生.沥青混合料抗剪性能研究综述[J].中国工程科学,2010,2(4):90-94.
    [129]汪水银.干拌橡胶沥青混合料抗剪能力试验分析[J].公路,2010,(3):134-140.
    [130]冯德成,宋宇.沥青路面层间结合状态试验与评价方法研究[J].哈尔滨工业大学学报,2007,39(4):627-631.
    [131]杨大田,黄涛,夏文军,杨锡武.纤维沥青胶砂的抗剪试验研究[J].重庆交通大学学报(自然科学版),2008,27(4):589-593.
    [132]陈利军,陈华兵,施德安,吴京.用旋转剪切法测量聚合物熔体零切粘度时应注意的几个问题[J].胶体与聚合物,2009,27(2):2023.
    [133]Min-Chih Liao, Jian-Shiuh Chen. Zero Shear Viscosity of Bitumen-Filler Mastics[J]. Journal of Materials in Civil Engineering,2011,23(12):1672-1680.
    [134]Sybilski Dariusz. Zero-shear viscosity of bituminous binder and its relation to bituminous mixture's rutting resistance[J]. Transportation Research Record,1996, 1535:15-21.
    [135]Erik Oscarsson, Safwat Said. Assessment of ZSV in Asphalt Concrete Using Shear Frequency Sweep Testing[J]. Journal of Materials in Civil Engineering,2012,24(10): 1305-1309.
    [136]侯航舰.沥青粘结层抗剪强度试验探析[J].郑州大学学报(工学版),2006,27(3):38-42.
    [137]俞茂宏.强度理论百年总结[J].力学进展,2004,34(4):529-560.
    [138]俞茂宏,何丽南,宋凌宇.双剪应力强度理论及其推广[J].中国科学,1985,(12):1113-1120.
    [139]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002:1-14.
    [140]刘立新.沥青混合料黏弹性力学及材料学原理[M].北京:人民交通出版社,2006:67-84.
    [141]聂忆华,张起森,徐阳,何增镇.高等级公路沥青路面剪应力分布研究[J].重庆建筑大学学报,2007,29(5):85-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700