沼液农用对玉米产量、品质及土壤环境质量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沼液作为人畜粪便等有机物在厌氧条件下充分发酵后的液体残余物,不仅含有N、P、K等营养元素,而且含有丰富的腐殖酸、有机质、氨基酸、生长激素、抗生素、微量元素等营养物质,是一种腐熟水溶性速效肥。目前,沼液在农业生产上的应用越来越广泛。
     本试验以正红6号玉米为供试材料,利用养猪场猪尿粪发酵的沼液,按照随机区组排列的试验设计,设置不同的沼液量处理梯度,针对四川山丘区沼液农用对当地玉米产量、品质及土壤环境质量的影响,种植玉米的沼液适宜施用量以及当地土壤沼液农用环境承受力状况等问题,在四川省资阳市临江镇大型养猪场的责任地上开展了玉米大田试验。本试验的具体研究结果如下:
     1、沼液农用对玉米生长发育、农艺性状的影响
     从玉米的生育进程和农艺性状的表现来看,各施肥处理生育期和生育时期的差异不明显,全生育期最大相差3d,施用沼液能促进玉米的生长发育,各农艺性状表现较好,从而使玉米表现出良好的生长状态,特别是当沼液施用量在5000~7000kg/667m2的范围内时,沼液对玉米生长发育的促进作用与常规化肥相当。
     2、提高玉米产量和品质的最佳沼液施用范围
     施用沼液能明显提高玉米产量、改善营养品质、提高矿质元素含量,并促进籽粒对氮、磷、钾素的吸收。综合沼液提高玉米产量和品质的因素来考虑,本研究认为,当沼液施用量控制在5000~7000kg/667m2的范围内时,玉米的产量最高、品质最佳。
     3、控制玉米中重金属含量的沼液最佳施用范围
     玉米铜(Cu)、锌(Zn)的含量随着沼液施用量的增加总体上呈逐渐上升的趋势,但最大含量均低于食品中Cu、Zn的限量标准(Cu:10mg/kg, Zn:50mg/kg).与《食品中污染物限量》(GB2762-2005)的限值相比,施用沼液的各处理玉米铅(Pb)、镉(Cd)、铬(Cr)、镍(Ni)、砷(As)、汞(Hg)的含量均低于相应的污染物限量标准(其中Hg未检出),在本试验范围内,说明沼液农用不会引起食品重金属污染,所种植的玉米符合食品卫生标准的要求。综合考虑,就本次试验而言,当沼液施用量控制在4000~5000kg/666.7m2的范围内时,玉米重金属含量均低于常规化肥处理,施用沼液与施用常规化肥相比能明显降低玉米重金属含量,从而能在一定程度上提高食品安全。
     4、兼顾土壤肥力和土壤环境质量的沼液最佳施用范围
     与玉米种植前相比,施用沼液能在一定程度上提高土壤pH值,防止土壤酸化;随着沼液施用量的增加,土壤全氮、碱解氮、速效磷、速效钾、有机质含量均不同程度地提高,且沼液处理的最大含量均超过常规施肥处理的含量,施用沼液对改善土壤理化性质效果明显。沼液能明显提高土壤矿质元素的含量,当沼液施用量控制在4000~7000kg/666.7m2的范围内时,土壤矿质元含量均处于较高的水平。随着沼液施用量的增加,土壤重金属含量有不同程度地上升。与玉米种植前相比,所有施用沼液的处理土壤Cr、As的含量符合国家土壤环境质量一级标准,Pb、Cd、Ni、Hg的含量符合国家土壤环境质量二级标准。当沼液施用量控制在4000~6000kg/666.7m2的范围内时,土壤重金属含量处于较低的水平。
     从土壤肥力和土壤环境质量状况的角度来看,在本试验范围内,当沼液施用量控制在4000~6000kg/666.7m2时,土壤肥力较高,环境质量较好,施用沼液的环境效益较高。
     综上所述,在本试验范围内,从玉米的生长发育、产量、品质、食品安全、土壤肥力及土壤环境质量等方面综合考虑,在四川山丘区的紫色土上种植玉米的沼液(养猪场猪粪尿厌氧发酵的沼液)最佳施用范围为5000~6000kg/666.7m2,此时沼液农用的经济效益和环境效益达到最佳平衡。
Biogas slurry, the liquid remnant of fully-fermented organic matters like animal dung and human sewage under anaerobic condition, not only contains nutrient elements such as N, P and K, but also is rich in humic acid, organic matter, amino acid, growth hormone, antibiotics, microelements etc. It is a rotten water-soluble active fertilizer, which is more and more wiediy applied in agriculture nowadays.
     Our experiment utilizes the biogas slurry made from the pig dung of the hoggery, with experimental material of maize is named No 6 Zheng hong. According to the trial design ranged by means of random blo-cking and setting treatent grads of different biogas slurry dosage, we research on the effect of biogas slurry utilized in agriculture on local maize yield, quality and environmental quality of Soil on massif area of Sichuan Province. And also this experiment researchs on the proper dosage of the biogas slurry for the maize planting and the environmental endured ability by the agricultural usage of the biogas slurry. Our maize planting experiment took place at the contracted farmland of a large-scale hoggery in Lin jiang Town, Zi yang City, Sichuan Province. The specific findings are as follows:
     1. Effect on maize growth and agronomic traits by the agricultural usage of the biogas slurry.
     In terms of the maize growth period and the agronomic traits, no big difference showed under different treatments, the biggest difference of growth period is three days. The biogas slurry can help the maize grow and each agronomic trait is good, which can bring good growth condition to the maize, especially when the biogas slurry dosage is in the range of 5000~7000kg/667m2, the biogas slurry is similar with the ordinary chemical fertilizer in promoting the maize growth.
     2. The best biogas slurry dosage range for promoting maize yield and quality.
     The biogas slurry can increase the maize yield obviously, improve the nutritional quality, raise mineral elements content and promote maize's absorption of N, P and K. Take the maize yield and quality into consideration, the biogas slurry dosage should be controlled in 5000~7000kg/667m2, when the maize yield and quality reached the summit.
     3. The best biogas slurry dosage range for maize heavy metal content control.
     The content of Cu, Zn in maize is increasing gradually with the biogas slurry dosage raising, but the largest content do not exceed the limits of Cu, Zn (Cu:10mg/kg, Zn:50mg/kg) in food, comparing the limits in Food Contamination Limit (GB2762-2005), the content of Pb, Cd, Cr, Ni, As, Hg in maize under all the biogas slurry treatments do not exceed the corresponding limits of contamination (no Hg was found in this experiment). This proves that, in this experiment, the agricultural usage of the biogas slurry will not bring heavy metal pollution of food, the miaze planting by biogas slurry meets food-sanitation standard request. Based on an overall consideration of various factors, on the part of this experiment, the heavy metal content in maize would be less than chemical fertilizer treatment when the biogas slurry dosage is in the range of 4000~5000kg/666.7m2. Comparing chemical fertilizer, using biogas slurry can obviously reduce heavy metal content of maize and improve food security to a certain degree.
     4. The best biogas slurry dosage range for soil fertility and soil environment quality.
     Comparing the soil before the maize planted, we found that the biogas slurry usage enhanced pH to a certain degree, which could prevent soil acidification. With the dosage raise, total nitrogen, available nitrogen, available kalium and organic matter in soil increase in different levels, and the content of the aforesaid elements under biogas slurry treatments are all higher than that in the chemical fertilizer treatment. The biogas slurry usage increases the mineral elements content in soil evidently and improves the physico-chemical characteristics of soil. When the biogas slurry dosage is within 4000~7000kg/666.7m, all mineral elements content in soil is relatively high. Heavy metal content in soil increases in different pitches with the raise in the biogas slurry dosage, Cr, As content in soil after the biogas slurry usage meets the national standard of ClassⅠsoil, while Pb, Cd, Ni and Hg content meets ClassⅡ. The heavy metal content in soil would be much lower when the biogas slurry dosage is in the range of 4000~6000kg/666.7m2.
     In terms of the soil fertility and soil environment quality, in this experiment, the biogas, slurry dosage should be controlled within 4000~6000kg/666.7m2, to achieve a good soil fertility, good edatope and high environmental performance.
     All in all,5000~6000kg/666.7m2 is the best range of biogas slurry dosage from the hoggery for maize planting in the purple soil in massif area of Sichuan Province, in terms of the growth period, maize yield, quality, food security, soil fertility and environmental quality of soil in this experiment.
引文
[1]余东波,胡向军,宋洪川等.沼液对甜玉米幼苗素质、产量和品质影响的试验研究[J].研究与试验,2006(2):42-45.
    [2]龚传书,李国碧.沼肥在玉米生产上施用效果初探[J].安徽农业科学,2008,36{9):3767-3768.
    [3]甄达蓉,罗小俊,高玉宇.沼液浸种与喷施对玉米产量影响初探[J].贵州农业科学,2007,35(增刊)::65-66.
    [4]钱靖华,林聪,王金花等.沼液对苹果品质及土壤肥效的影响[J].可再生能源,2005(4):36-38.
    [5]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2000:287-289.
    [6]施骏,陶学军,童有怀.施用沼肥对补充磷钾肥和改良土壤的探讨[J].中国沼气,1996,14(1):27-29.
    [7]熊玲.沼肥在玉米生产上的应用[J].大田农艺,2007(16):142-144.
    [8]全国农业技术推广服务中心.中国有机肥料资源[M].北京:中国农业出版社,1999:102-119.
    [9]欧少伟.沼渣养鱼技术初探[J].渔业致富指南,2003(17):27.
    [10]郭梦云,郭保安.利用沼渣喂猪试验研究[J].河北省科学院学报,1991(3):13-17.
    [11]广东省潮州市农村能源办公室.茶园施用沼渣的效果研究[J].中国沼气,1993,11(2):44-45.
    [12]兰家泉,田启建,罗来和.玉米栽培施用沼渣沼液的肥效试验[J].山地农业生物学报,2004,23(6):475-478.
    [13]戴小阳,蔡斯,彭琼等.沼液对玉米种子的发芽及生理特性的影响[J].安徽农业科学,2007,35(6):1679-1680.
    [14]尹一萌,赵洪.沼液在西瓜和甜玉米设施栽培中的效果初探[J].安徽农业科学,2006,34(7):1343.
    [15]徐德富,任华,罗小珏.沼液在玉米生产上施用效果试验[J].贵州农业科学,2007,35(增刊):62-63.
    [16]张媛,洪坚平,王炜等.沼液对石灰性土壤速效养分含量的影响[J].中国沼气,2008,26(2):14-16.
    [17]张无敌,周长平.厌氧消化残留物对改良土壤的作用[J].生态农业研究,1996,4(3):35-37.
    [18]陈仙平,曹群芳.不同浓度沼液浸种对杂交水稻种子发芽率、成秧率的影响[J].福建稻麦科技,2008,26(3):10-11.
    [19]王跃贵.水稻、玉米应用沼液的效应效果[J].耕作与栽培,2001(2):49-51.
    [20]王玉法.春植玉米种浸沼液效果试验初报[J].福建农业科技,2007(3)::62-63.
    [21]季方兴.沼液浸种[J].农业能源,1995(4):18-20.
    [22]赵利晖,毛伟.沼液浸种对玉米种子发芽的影响[J].贵州农业科学,2006,34(增刊):85.
    [23]张廷光,雷明贵,陆清忠等.杂交水稻应用沼液的效果初探[J].耕作与栽培,2005(2):36-37.
    [24]甄达蓉,杜秋萍.水稻生态旱育秧沼液浸种与培肥苗床试验初探[J].贵州农业科学,2007,35(增刊):55-56.
    [25]李大臣,韩景红,吴继红.水稻生态旱育秧大田应用沼肥试验[J].贵州农业科学,2007,35(增刊):92-93.
    [26]穆元相,邓小强,王摇.小麦施用沼肥试验[J].贵州农业科学,2007,35(增刊):68-69.
    [27]中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2003:
    [28]屈宝香.农业中的化肥使用与环境影响[J].环境保护,1994(8):41-44.
    [29]王敬国.农用化学物质的利用与污染控制[M].北京:科学出版杜,2001:
    [30]吕殿青,同延安,孙本华,Ove Emteryd.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,]998,4(1):8-15.
    [31]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001:7.
    [32]国家环境保护局自然保护司.中国生态问题报告[M].北京:中国环境科学出版社,1999:
    [33]翁定河.沿海旱地玉米施用有机肥对土壤肥力的影响[J].江西农业学报,2007,19(5):66-68.
    [34]刘恩科,赵秉强,胡昌浩.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报,2007,13(5):789-794.
    [35]夏荣基.土壤有机质研究[M].北京:科学出版社,1982:9-15.
    [36]于淑芬,杨力,张玉兰等.长期施肥对土壤腐殖质组成的影响[J].土壤通报,2002,33(3):165-167.
    [37]窦森,华土英.使用有机肥料对胡敏素的影响[J].土壤学报,1997,34(3):225-230.
    [38]马俊永,陈金瑞,李科江等.施用化肥和秸秆对土壤有机质含量及性质的影响[J].河北农业科学,2006,10(4):44-47.
    [39]吕家珑,张一平,王旭东等.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报,2001,12(4)::569-572.
    [40]Bai J-L, zhang Y-P, Zhao G-X, et al. Research in energetic and pyrolytic characteristics of huntic acid from several principal soils in Shanxi Province[J]. Acta Pedol Sm,1990, 27(2):151-158.
    [41]Zhao G-X,Zhang Y-P, Bai J-L, et al. Effect of different fertilization conditions and years on energy state and pyrolytic characteristics of soil huntic acid[J]. Acta Pedol Sm,1995, 32(3):284-291.
    [42]张奇春,王光火.施用化肥对土壤腐殖质结构特征的影响[J].土壤学报,2006,43(6):617-623.
    [43]刘小虎,贾庆宇,安婷婷等.不同施肥处理对棕壤腐殖酸组成和性质的影响[J].土壤通报,2005,36(3):328-332.
    [44]鲁如坤.土壤—植物营养学[M].北京:化学工业出版社,1998:69-83.
    [45]王改兰,段建南,贾宁凤等.长期施肥对黄土丘陵区土壤理化性质的影响[J].水土保持学 报,2006,20(4):82-85.
    [46]林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[M].北京:中国农业科技出版社,1996:1-12,34-49,60-69,110-122.
    [47]王慎强,李欣,徐富安等.长期施用化肥与有机肥对潮土土壤物理性质的影响[J].中国生态农业学报,2001,9(2):77-78.
    [48]赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-173.
    [49]王胜佳,陈义,吴春艳等.施用不同肥料对稻田作物产量与土壤肥力的长期影响[J].浙江农业学报,2004,16(6):372-376.
    [50]赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2002:
    [51]黄国勤,王兴祥,钱海燕等.施用化肥对农业生态环境的负面影响及对策[J].生态环境,2004,13(4):656-660.
    [52]Blake L, Goulding. K W T, Mott C J B, et al. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station[J]. UK.European Jovrnal of Soil Science,1999,50:401-412.
    [53]Rasmussen.P E,Rohde,C R. Soil acidification from ammonium-nitrogen fertilization in moldboard plow and stubble-mulch wheat fallow tillage[J]. Soil Sei.Soc.Am.J,1989,53(1): 119-122.
    [54]Johnston,A E,Goulding.K W T,Poulton,P R.Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted[J].Soil Use and Management,1986,2(1):3-10.
    [55]Blake L, Goulding. K W T, Mott C J B, et al. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station[J]. UK.European Jovrnal of Soil Science,1999,50:401-412.
    [56]Goulding K W T, Bailey N J, Bradbury N J, et al. Nitrogen deposition and its contribution to nitrogen cycling and associated soil progresses[J]. New Phytologist,1998,139:49-58.
    [57]Blake L, Johnston A E, Goulding K W T. Mobilization of Alumium in soil by acid deposition and its uptake by grass cut for hay-a Chemical Time Bomb[J]. Soil Use and Management, 1994,10:51-55.
    [58]Cassman K G, Pingali P L. Agricultural sustainabilityin economic, environmental and statistical considerations[M]. Barnett,V. Payne R & R.Steiner,1995:63-84.
    [59]Johnston J. Cadmium in cereal grain and herbage from long-term experiments plots as Rothamsted[J]. UK Environ Pollut,1989,57:199-216.
    [60]Mortvedt J J. Cadmium levels in soils plants from some long-term soil fertility experiments in the United States of America[J]. J Environ Quality,1987,16:137-142.
    [61]Gavi F, Basta N T, Raun W R. Wheat grain cadium as effected by long-term fertilization and soil acidity[J].J Environ Quality,1997,26:265-271.
    [62]鲁如坤,时正元.我国磷矿磷肥中镉的含量及其对生态环境影响的评价[J].土壤学报,1992,29(2):150-157.
    [63]刘敏超,曾长立,王兴等.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究,2000,21(5):309-312.
    [64]古巧珍,杨学云,孙本华等.早地嵝土长期定位施肥土壤剖面硝态氮分布与累积研究[J].干旱地区农业研究,2003,21(4):48-52.
    [65]夏立忠,杨林章.大棚番茄优化施肥与土壤养分和盐分的变化特征[J].中国蔬菜,2003,2:4-7.
    [66]崔正忠,陈友,单德新.蔬菜保护地土壤养分变化趋势[J].北方园艺,2001,2:10-12.
    [67]薛继澄,毕德义,李家金等.保护地栽培蔬菜土壤硝酸盐积累对辣椒生长和锰含量的影响[J].南京农业大学学报,1995,18(1):53-56.
    [68]洪坚乎,谢英荷.不同施肥条件下土壤微生物生物量的研究[J].山西农业大学学报,1996,16(1):19-21.
    [69]Insam H C C, Mitchel J F. Donnaar.Relationship of soil microbial biogas slurry and activity with fetilization practice and crop yield of three Ultisols[J]. Soil Biol Biochem,1991,23: 459-464.
    [70]俞慎.土壤微生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):387-394.
    [71]薛景珍,郭树范,程国华等.长期施用含氯化肥对土壤微生物区系及固氮细菌生理群的影响[J].土壤通报,1995,26(3):135-138.
    [72]王树起,韩晓增,乔云发等.长期施肥对东北黑土酶活性的影响[J].应用生态学报,2008,19(3):551-556.
    [73]Li D-P, Wu Z-J, Chen L-J, et al.Dynamics of urease activity in a long-term fertilized black soil and its affecting factors[J]. Chinese Journal of Applied Ecology,2003,14(12): 2208-2212.
    [74]Li D-P, Wu Z-J, Chen L-J, et al.Dynamics of phosphatase activity and influencing factors in black soil under long-term fertilization[J]. Plant Nutrition and Fertilizer Science,2004,10(5): 550-553.
    [75]He-Wen Xiang, Lai-Hang Xian, Wu-Yong Jun. Study on soil enzyme activities affected by fertilizing cultivation[J]. Journal of Zhe jiang University,2001,27(3):265-268.
    [76]Teng-Ying,Huang-ChangYong,Long-Jian.Studies on soil enzymatic activities in areas contaminated by tailings from Pb, Zn, Ag mine[J]. China Environmental Science,2002,22(6):551-555.
    [77]Yang-WanQin,Zhong-ZhangCheng,Tan-JianPing. Study on relationship between soil enzymic activities and plant species diversity in forest ecosystem of Mt.Jinyun[J].Scientia Silvae Sinicae,2001,37(4):124-128.
    [78]Liu-Yi,Guan-JiYi,Ge-JianPing.Comparison of soil fertility for different forest types[J].Jounal of Northeast Forestry University,2002,30(3):76-78.
    [79]段文霞,牟树森,徐可南.厌氧发酵液在土壤生态系统中的循环与利用研究[J].农业环境保护,1993,12(4):181-186.
    [80]沈瑞芝.一种广谱性的生物肥料和生物农药一厌氧消化液与植物抗逆性[J].上海农业学报,1997,13(2):89-96.
    [81]王慎强,蒋其鳖,钦绳武等.长期施用有机肥与化肥对潮土土壤化学及生物学性质的影响[J].中国生态农业学报,2001,9(1):67-69.
    [82]王树起,韩晓增,乔云发等.长期施肥对东北黑土酶活性的影响[J].应用生态学报,2008,19(3):551-556.
    [83]倪亮,孙广辉,罗光恩等.沼液灌溉对土壤质量的影响[J].土壤,2008,40(3)::608-611.
    [84]陈道华,刘庆玉,艾天等.施用沼肥对温室内土壤理化性质影响的研究[J].可再生能源,2007,25(1):23-25.
    [85]郝鲜俊.沼液、沼渣对三种蔬菜产量品质及土壤性状影响的研究[D].太原:山西农业大学,2007:
    [86]田纪春.谷物品质测试理论与方法[M].北京:科学出版社,2006:
    [87]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:
    [88]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:
    [89]GB2762-2005,食品中污染物限量[S].北京:中国标准出版社,2005:
    [90]GB15199-1994,食品中Cu限量卫生标准[S].北京:中国标准出版社,1994:
    [91]GB13106-1991,食品中Zn限量卫生标准[S].北京:中国标准出版社,1991:
    [92]GB15618-1995,土壤环境质量标准[S].北京:中国标准出版社,1995:
    [93]韩瑾,张妙仙,孙达超.甜15号玉米施用沼液效果分析[J].土壤肥料,2009,1:40-41.
    [94]殷文.水稻施钾技术研究[J].西南学报,2002,2:1-4.
    [95]江立庚,曹卫星,甘秀芹等.不同氮肥水平对南方旱稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [96]Stanley Omar P.B.Samonte,Loyd T.Wilson,James C.Medlet,et al.Nitrogen utilization efficiency:relationships with grain yield,grain protein,and yield-related traits in rice[J].Agronomy Journal,2006,98(1):168-169.
    [97]王德仁,卢婉芳,陈苇.氮素对稻米蛋白质、氨基酸含量的影响[J].植物营养与肥料学 报,2001,7(3):353-356.
    [98]张进,张妙仙,单胜道等.沼液对水稻生长产量及其重金属含量的影响[J].农业环境科学学报,2009,28(10):2005-2009.
    [99]覃舟.施用沼液对紫甘蓝产量、营养品质及土壤质量的影响[J].江西农业学报,2009,21(7):83-86.
    [100]朱海平,姚槐应,张勇勇等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):140-142.
    [101]李轶,张玉龙,宋春萍等.施用沼肥对保护地蔬菜栽培土壤理化性质的影响[J].中国沼气,2006,24(4):17-19.
    [102]张无敌,尹芳,李建昌等.沼液对土壤有机质含量和肥效的影响[J].可再生能源,2008,26(6):45-47.
    [103]王宗寿.利用沼液种植黑麦草对土壤环境质量的影响[J].农业环境科学学报,2007,26(B03):172-175.
    [104]李彦超,廖新俤,林东教等.不同沼液灌溉强度对土壤和渗滤液的影响[J].家畜生态学报,2009(4):52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700