华北克拉通中生代壳幔交换作用的地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通是世界上最古老的太古宙克拉通之一。在中生代时期,该古老克拉通的下地壳和岩石圈地幔拆沉进入了软流圈地幔,产生了壳-幔之间的物质交换。本文试图从辽西中生代火山岩和龙岗地幔包体的地球化学特征揭示这一过程发生的机制和作用时限。由于准确的分析数据是地球化学问题研究的基础,因此本文第一章对地质样品的处理和分析方法进行了研究。
     1.地质样品的处理和分析方法研究
     选用纯净的石英作为研究对象,分别采用玛瑙和碳化钨钵体进行样品的细碎,通过ICP-MS对所碎样品和未经细碎样品的对比分析显示,除WC钵体会对样品产生W、C和Co的严重污染外,对所测定的其它元素均未造成明显的污染。
     采用38个标准参考物质建立的XRF主量元素分析方法对BCR-2、GSR-1和GSR-3的测定显示对氧化物含量小于0.5%的元素测定平均值与推荐值的相对误差小于5%,MgO和Na_2O的误差小于3%;其它氧化物的误差一般小于1%。用相同标准参考物质建立的部分微量元素分析方法对GSR-9的测定结果显示Ni、Cu、Pb、Zn和Nb的相对误差大于10%,V和Cr在7%左右,所测其它元素均小于5%。
     建立的ICP-MS溶液方法在近两年的时间内对USGS的AGV-1和BHVO-1标准参考样品的近40次分析结果表明对所测定的元素平均值与推荐值之间的相对误差一般小于10%,大部分元素小于5%。过渡族元素、轻质量元素和含量相对较低的元素分析误差相对较大。
    
    采用NlsT610作外标建立的LA一ICP一MS微量元素原位分析方法对BCR一ZG、
    BIR一IG、BHVO一ZG和AGV一ZG的测定结果显示,所测的4个主量元素和38个
    微量元素的相对标准偏差和平均值与参考值之间的相对误差一般小于10%。分析
    的精密度和准确度可以与溶液方法的分析媲美。
     采用标准错石91500作外标建立的LA一ICP一MS错石U一Pb定年方法对标准错
    石几MoRAI的测定所获得的206Pb/z3 su加权平均年龄为417.肚l.3Ma。该错石的
    In一TD吐s206Pb/2,su年龄为416.75士o.4sMa。二者年龄数值非常一致。
     XRf对辽西火山岩样品中微量元素Rb、sr、Y、Zr、Nb和Ba含量的测定
    值与ICP一MS的测定值之间的相对偏差一般小于10%。在参加三次GcoPT测试
    的48种元素中,只有在GcoPTll中的Cu和sc两个元素的Z值超出了+2,其
    它所测元素的Z值均在+2和一2之间,且绝大多数元素的Z值在+l和一1之间。
    2.辽西地区中生代中性一中酸性火山岩地球化学特征及其对下地
    壳拆沉作用的示踪
     辽西中生代义县组和兴隆沟组中的中性一中酸性火山岩分布于华北克拉通东
    部辽西义县一北票地区相互孤立的盆地中,这些火山岩中的高镁伽酬>54)岩石具
    有较高的sr(477一1 618林9/9)及较低的Y(9一17林g/g)和Yb(0.98一1.65林g/g)含
    量,SrfY值为32一119,亏损HREE伍aN/YbN为12一31),在蜘蛛图上相对于La
    出现Nb一Ta的负异常。特别是一些样品中的OPX斑晶在核部具有低Mg、Cr和
    Ni,高Zr、Sr和Ga的特征,而在慢部恰恰相反。火山岩的Nd同位素模式年龄
    TnM达1 .SGa,火山岩中的继承错石具有2500、1800、780、420、310、230、
    160和130Ma的年龄值。初始吕6Sr/s7S:与Rb含量之间不存在相关性。由以上事
    实推断辽西中生代义县组和兴隆沟组中的中性一中酸性火山岩是由增厚的华北克
    拉通下地壳榴辉岩拆沉进入地慢后发生部分熔融,并在上升过程中与地慢橄榄岩
    发生作用形成的。加厚榴辉岩下地壳的形成与23OMa左右扬子克拉通向华北克
    拉通俯冲形成世界上最大的秦岭一大别一苏鲁造山带超高压变质带有关。火山岩中
    最年轻的错石年龄限定了下地壳的拆沉作用可能发生157一125Ma之间。
    3.龙岗地慢包体的地球化学特征及其对地慢交代作用的示踪
    龙岗地慢包体的主量元素含量变化范围较大,5102%为41 .13一45.24、Mgo%
    
    为37.99一47,77、Cao%为0.55一2.78和Feo%为7.90一9.16,反映这些包体既有接
    近于原始地慢的二辉橄榄,又有高度亏损的方辉橄榄岩。球粒陨石标准化模式有
    轻稀土富集型、轻稀土亏损型、U型和平坦型四种分布形式,显示这些地慢包体
    经历了不同程度的交代作用改造。依据Pb的异常,可以推断交代物质可能为硅
    酸盐熔体,且熔体具有较高的Pb和较低的Y含量以及轻稀土富集的特征。与汉
    诺坝二辉橄榄岩包体的交代物质相似,交代熔体可能来自中生代拆沉榴辉岩质下
    地壳的部分熔融。
The North China craton is one of the world's oldest Archaean cratons, its lower crust and lithospheric mantle delaminated into asthenospheric mantle during the Mesozoic, which caused the material exchange between mantle and crust. The geochemicl characteristics of western Liaoning Cenozoic lavas and Longgan mantle xenoliths reveal the occurrence and the period of this process in this paper. Because the accurate analytical data are the basis of geological research, the proper sample preparations and analysing methods for geological samples are discussed in the first chapter.
    1. The research on the analytical method and the preparation of
    geological samples
    The pure quartz grains were grinded in both agate and tungsten carbide mortars and were then analysed by ICP-MS. The analytical results of grinded pure quartz grain compared with those of ungrinded show that tungsten carbide and agate mortars have no apparent contamination to geological samples for measured trace elements except for W, C and Co in tungsten carbide mortars.
    Major element concentrations of BCR-2, GSR-1 and GSR-3 were determined as unknown samples by XRF method that was established by using 38 national reference samples. The obtained values usually agree with recommended values within 1% relative, 5% relative for the oxide concentrations less than 0.5% and 3% relative for MgO and Na2O. Some trace element concentrations of GSR-9 were determined as unknown sample by XRF method that was also set up by using 38 national reference samples. The obtained values agree with recommended values within 10% relative
    
    
    except for Ni, Cu, Zn, Pb and Nb.
    Trace element concentrations of USGS reference rokcs AGV-1 and BHVO-1 have been determined nearly 40 times within two years by ICP-MS solution method as unknown samples. The relative errors of obtained values from recommended values were less than 10%, most of which less than 5% except for transition elements, lighter mass elements and lower concentration elements.
    4 major and 38 trace elements of USGS glass reference materials BCR-2G, BIR-1G, BHVO-2G and AGV-2G were determined as unknown samples by LA-ICP-MS. The calibration was performed using NIST 610. The relative standard deviations and relative errors between obtained and recommended values were less than 10% for most elements, which were comparable with ICP-MS solution method.
    The weighted mean 206Pb/238U age of standard zircon TEMORA 1 determined by LA-ICP-MS method using standard zircon 91500 as external caliberate is 417.6+1.3Ma, which agrees with the age 416.75+0.48Ma determined by ID-TIMS method.
    The concentrations of trace elements Rb, Sr, Y, Z, Nb and Ba in Liaoning lavas determined by XRF and ICP-MS solution methods. The results obtained by XRF agree with those measured by ICP-MS within 10% relative for most elements. The Z-score for all 48 elements measued in GeoPTIO, GeoPTll and GeoPTIS respectively are between -2 and +2 except for Cu and Sc in GeoPT11. Most of them are in fact between +1 and -1.
    2. Characteristics of Mesozoic Liaoning intermediate-acidic
    volcanic rocks and their tracing for delamination of lower crust
    Mesozoic Liaoning intermediate-acidic volcanic rocks in Yixian and Xinglonggou Formations occur in isolated continental basins in the Yixian-Beipiao area of western Liaoning Province in the Eastern block of the North China craton. The features of the high-Mg volcanic rocks from these two formations include higher Sr (477 to 1618ug/g), lower Y (9-17ug/g) and Yb(0.98-1.65ug/g), depletion in HREE (LaN/YbN= 12-31), higher Sr/Y (32-119) ratio and Nb-Ta depletion relative to La in
    
    primitive mantle normalized spider diagram. A striking feature of some lavas is the presence of zoned orthopyroxene phenocrysts which have lower Mg, Cr and Ni and higher Zr, Sr and Ga cores and just reversed mantles. The Nd isotopic model ages (TDM) of these lavas are as old as 1.8 Ga. The inherited zircon age populations include 2500, 1800, 780, 420, 310, 230, 160 and 130Ma and there is no correlation between initial 86Sr/87Sr ratio and Rb conte
引文
1. Rudnick, R. L., Making continental crust. Nature 378, 571-577 (1995).
    2. Taylor, S. R. & McLennan, S. M. The Continental Crust: its Composition and Evolution. Blackwell, Oxford(1985).
    3. Kay, R. W. & Kay, S. M. Delamination and delamination magmatism. Tectonophysics.219, 177-189(1993).
    4.高山,金振民.拆沉作用(delamination)及其壳.幔演化动力学意义 地质科技情报.16(1),1-9(1996).
    5. Bird, P. Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res. 83, 4975-4987(1978).
    6. Bird, P., Continental delamination and the Colorado Plateau. J Geophys. Res. 84,7561-7571(1979).
    7. Rudnick, R L. & Fountain, D. M. Nature and composition of the continental crust: A lower crust perspective. Rev. Geophys. 33, 267-309 (1995).
    8. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: A global view. J Geophys. Res. 100, 7961-9788 (1995).
    9. Sacks, P. E. & Secor, D. T. Jr. Delamination in collisional orogens. Geology. 18, 999-1002(1990).
    10. Arndt, N. T. & Goldstein, S. L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics. 161,201-212 (1989).
    11. Kay, R. W. & Kay, S. M. Creation and destruction of lower continental crust. Geologische Rundschau. 80, 259-278 (1991).
    12. Wedepohl, K. H., Chemical composition and fractionation of the continental crust. Geologische Rundschau. 80, 207-223 (1991).
    13. Liu, D.-Y., Nutman, A. P., Compston, W., Wu, J.-S. & Shen, Q.-H. Remnants of>3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology. 20, 339-342 (1992).
    14. Fan, W.-M. & Menzins, M. A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonics et Metallogenia. 16(3-4), 171-180(1992).
    
    
    15. Menzies, M. A., Fan, W.-M. & Zhang, M. Paleozoic and Cenozoic lithoprobes and the loss of>120 km of Archean lithosphere, Sino-Korean craton, China. in Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, H. M., Harris, T. & Neary, C. R.) 71-81 (Geol. Soc. London) (1993).
    16. Griffin, W. L., Zhang, A.-D., O'Reilly, S. Y. & Ryan, C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. in Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. F. J., Chung, S.-L., Lo, C.-H. & Lee, T.-Y.) 107-126 (American Geophysical Union)(1998).
    17. Deng, J.- F., Mo, X.- X. & Zhao, H.- L., et al. Lithosphere root/de-rooting and activation of the east China continent. Geoscience. 8,349-356 (1994) (in Chinese)[邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”.现代地质,8:349-356.1994].
    18. Deng, J.- F., Zhao, H.- L. & Mo, X.- X. , et al. Continental Roots-Plume Tectonics of China-Key to the Continental Dynamics. Beijing: Geological Publishing House, 110(1996)(in Chinese).[邓晋福,赵海玲,莫宣学,等.中国大陆根.柱构造—大陆动力学的钥匙.北京:地质出版社,110.1994].
    19. Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet. Sci. Lett. 198, 307-322 (2002).
    20. Zheng, J.-P. Mantle Replacement in Eastern China and Mesozoic-Cenozoic Lithosphere Thinning. Wuhan: China University of Geoscience Press, (1999)(in Chinese)[郑建平.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社.1999].
    21. Wu, F.-Y. & Sun, D.-Y. The Mesozoic magmatism and lithospheric thinning in eastern China. Changchun Uni. Sci. Tech. 29(4):313-318(1999)(in Chinese).[吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报.29(4),313-318(1999)].
    22. Wu, F.-Y., Ge, W.-C., Sun, D.-Y. & Guo, C.-L., Discussion on the Lithospheric Thinning in eastern China. Earth Science Frontiers. 10(3), 52-60 (2003)(in Chinese).[吴福元,葛文春,孙德有,郭春丽.中国东部岩石圈减薄研究中的几个问题.地学前沿.10(3),52-60(2003)].
    23. Gao, S., Roberta, L. R., Richaed, W. C., William, F. Mc. & Liu, Y.-S., Removal of Lithospheric Mantle in the Eastern China Craton: Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth. Earth Science Frontiers. 10(3),61-67(2003) (in Chinese). [高山,Roberta, L. R.,
    
    Richaed, W. C., William, F. Mc.,刘勇胜.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据.地学前沿.10(3),61-67(2003)].
    24. Kay, R. W. & Kay, S. M. Andean adakites: three ways to make them. Acta Petrol. Sinica. 18, 303-311 (2002).
    25. Xu, J.-F., Shinjo, R., Defant, M.C., Wang, Q. & Rapp, R.P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology. 30, 1111-1114 (2002).
    26. Trevor, H.G, Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology. 120,347-359(1995).
    27. Sun, S.-s. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. (eds Saunders, A. D. and Norry, M. J. Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ). 42,313-345 (1989).
    28. Taylor, S. R. & Mclennan, S. M. The Continental Crest: Its Composition and Evolution. Blaekwell. Oxford. 212pp (1985).
    29. Wedepohl, K. H. Chemical composition and fractionation of the continental crust. Geol. Rundsch. 80,225-331(1991).
    30. Joehum, K. P., Seufert, A. D., Spettel, B. & Paime, H. The solar-system abundances of Nb, Ta and Y, and the relative abundances of refractory lithospile elements in differentiated planetary bodies. Geochem. Cosmochem. Acta. 50,1173-1183(1986).
    31. Robin, G. Modern analytical geochemistry, Pearson Education Asia (Pte) Ltd.25, 24-25(1997).
    32. G(?)nther, D., Frischknecht, R. & Heinrich, C. A. Capabilities of an Argon Fluoride 193 nm Excimer Laser Ablation Coupled Plasma mass Spectrometry Microanalysis of Geological Materials. J. Anal. At. Spectrom. 12,939-944 (1997).
    33. G(?)nther, D., Jackson, S. E., & Longerich, H. P. Laser ablation and arc/sparc solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochimica Acta Part B 54, 381-40(1999).
    34. G(?)nther, D. & Heinrich, C. A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier, J. Anal. At. Spectrom. 14,1363-1368(1999).
    35. Longerich, H. P., G(?)nther, D., & Jackson, S. E. Elemental fractionation in laser ablation
    
    inductively coupled plasma mass spectrometry. Fresenius J Anal Chem, 355,538-54(1996).
    36. Steven, F. D. Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J. Anal. At. Spectrom. 14, 1385-1403(1999).
    37. G(?)nther, D. & Heinrich, C. A. Comparision of the ablation behavior of 266 nm Nd: YAG and 193 nm ArF excimer laser for LA-ICP-MS analysis. J. Anal. At. Spectrom., 14,1369-1374 (1999).
    38. Horn, I., Hinton, R. W. Jackson, S. E & Longerich, H. P. Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS): a comparison with secondary ion mass spectrometry (SIMS). Geostandards Newsletters, 21,191-203(1997).
    39. Pearee, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R. & Chenery, S. P. A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM 612 glass reference materials. Geostandards Newsletters, 20,247-261 (1997).
    40. Dulski, P. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. Geostandards Newsletter, 25, 87-125(2001).
    41. Norman, M. D., Griffin, W. L., Pearson, N. J., Garciac, M. O. & O'Reilly, S. Y. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13, 477-482(1998).
    42. Rocholl, A. Major and trace element composition and homogeneity of microbeam reference material: Basalt glass USGS BCR-2G. Geostandards Newsletter, 22, 33-45 (1998).
    43. Eggins, S. M., Woodhead, J. D., Kinsley L. P. J., Mortimer, G. E., Syivester, P., McCulloch, M. T., Hert, J. M. & Handler, M. R. A simple method for the precise determination of>40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology. 134, 311-326 (1997).
    44. Horn, I., Rudnick, R. L. & Mc Donough, W. f. Precise elemental and isotope ratio determination by solution nebulization and laser ablation-ICP-MS: Applacation to U-Pb geochronology. Chemical geology. 167,405-425(2000).
    
    
    45. Ballard, J. R., Palin, J. M. & Williams, I. S., et al. Two ages of porghyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 29,383-386(2001).
    46. Kosler, J., Fonneland, H. & Sylvester P., et al. U-Pb dating of detrital zircons for sediment province studies-a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology. 182,606-618(2002).
    47. Yuan, H.-L., Wu, F.-Y. & Gao, S., et al, Determination of U-Pb age and rare earth element concentration of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin. 48(22), 2411-2421 (2003).
    48. Yuan, H.-L. Accurate U-Pb Age and Trace Element Determination of Zircon by Laser Ablation-Inductively Coupled Plasma Mass. Geostandard Newsletters (in press) (2004).
    49. Wedenbeck, M., Alle, P. & Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newsletters, 19, 1-23(1995).
    50. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C., TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology 200,155-170(2003).
    51. Defant, M. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665 (1990).
    52. Chen, Y.-X. & Chen, W.-J., Mesozoic volcanic rocks in western Liaoning Province and surrounding area-geochrology, geochemistry and tectonic environment. Beijing Seis Publ House 1-279( 1997)(in Chinese).[陈义贤,陈文寄.辽西及邻区中生代火山岩-年代学、地球化学和构造背景.北京:增震出版社.1-279(1997)].
    53. Li, W.-P., Li, X.-H. & Lu, F.-X. Genesis and geological significance for the middle Jurassic high Sr and lower Y type volcanic rocks in Fuxin area of Western Liaoning, northeastern China. Acta Petrologica Sinica. 17,523-532 (2001) (in Chinese)[李伍平,李献华,路风香.辽西中侏罗世高Sr低Y型火山岩成因及其地质意义.岩石学报.17,523-532(2001)].
    54. Li, W.-P., Lu, F.-X. & Li, X.-H. et al. Geochemical features and origin of volcanic rocks of Diaojishan Formation in Western Hills of Beijing. Acta Petrologica et Mineralogica, 20,123-133(2001)(in Chinese)[李伍平,路风香,李献华等.北京西山髫髻山组火山岩的地球化学特性及其岩浆起源.岩石矿物学杂志.20,123-133(2001)].
    
    
    55. Wang, Q., Wang, R.-J. & Fang, J.-Y. Petrological characteristics and petrogenesis of intermediate-acidic rocks of Yanshan Period in Kouquan, Zhuolu County, Hebei Province. Geology and Minerail Resource of South China, 2,34-42(1997)(in Chinese)[王强,王人镜,方金云.河北诼鹿县口前燕山期中酸性和酸性岩浆岩的岩石学特征及其成因.华南地质与矿产.2,34-42(1997)].
    56. Deng, J.-F., Liu, H.-X. & Zhao, H.-L. Yanshan igneuos rocks and orogeny model in Yanshan-Liaoning area. Geoscience 10,137-148(1996)(in Chinese)[邓晋福,赵国春,赵海玲.燕辽地区燕山期火山岩与造山模式.现代地质.10,137-148(1996)].
    57. Zhang, Q., Qian, Q. & wang, E.-Q. et al. An east China plateau in mid-late Yanshan period: Implication from adakites Chinese Journal of Geology. 36,248-255(2002)(in Chinese)[张旗,钱青,王二七等,燕山中晚期的“中国东部高原:埃达克岩的启事.地质科学 36,248-255(2001)].
    58. Ge, X.-Y., Li, X.-H. & Chen, Z.-G. et al. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China:Constraints on crustal thickness. Chinese Science Bulletin.47,474-48(2002)(in Chinese)[葛小月,李献华,陈志刚,等.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及其成因:对中国东部地壳厚度的制约.科学通报.47,474-480(2002)].
    59. Wang, W.-L., Zhang, H. & Zhang, L.-J., et al. The Standart Stratigraphic Sections of Tuchengzi Stage and Yixian Stage and Their Stratigraphy, Palaeontology and Tectonic-Volcanic Action. Beijing Geo Publ House(2004) (in press) (in Chinese)[王五力 张宏 张立君,等.土城子阶、义县阶标准地层剖面及其地层古生物、构造—火山作用。北京:地质出版社(2004)(出版中)].
    60. Swisher, C. C. et al. Cretaceous age of the feathered dinosaurs of Liaoning, China. Nature 400, 58-61 (1999).
    61. Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421,807-814 (2003).
    62. Kay, R. W. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J. Volcanol. Geotherm. Res. 4, 117-132 (1978).
    63. Martin, H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411-419(1999).
    
    
    64. Kelemen, P. B. Genesis of high Mg andesites and the continental crust. Contrib. Miner Petrol. 120, 1-19 (1995).
    65. Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol. 160, 335-356 (1999).
    66. Yogodzinski, G. M. et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409, 500-504 (2001).
    67. Defant, M. J. & Kepezhinskas, P. M. Evidence suggests slab melting. EOS 82, 65-69 (2001).
    68. Shirey, S. B. & Hanson, G. N. Mantle-derived Archean monzodiorites and trachyandesites. Nature 310, 222-224 (1984).
    69. Stern, R. A. & Hanson, GN. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J. Petrol. 32, 201-238 (1991).
    70. Hirose, K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25, 42-44 (1997).
    71. Grove, T. et al. Fractional crystallization and mantle melting controls on calc-alkaline, differentiation trends. Contrib. Mineral. Petrol., DOI 10.1007/s00410-003-0448-z (2003).
    72. Petford, N. & Atherton, M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanea Batholith, Peru. J Petrol 37, 1491-1521 (1996).
    73. Rapp, R. B. & Watson, E. B. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891-931 (1995).
    74. Sensarma, S., Palme, H. & Mukhopadhyay, D. Crust-mantle interaction in the genesis of siliceous high magnesian basalts: evidence from the Early Proterozoic Dongargarh Supergroup, India. Chem. Geol. 187, 21-37 (2002).
    75. Kelemen, P., Shimizu, N. & Dunn, T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La, and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111-134 (1993).
    76. Prouteau, G., Pichavant, M. & Maury, R. C. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197-200 (2001).
    77. Li, X.-H. Cretaceous magmatism and lithospheric extension in Southeast China. J Asian Earth Sci. 18, 293-305 (2000).
    
    
    78. Davis, G. A. et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geol. Soc. Am. Mem. 194, 171-197 (2001).
    79. Yogodzinski, G. M. & Volynets, O. N. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far Western Aleutians. J. Petrol 35, 163-204(1994).
    80. Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. Magnesian andesites in the western Aleutian Komandorsky region: implications for slab melting and metasomatic processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505-519 (1995).
    81. Aguill(?)n-Robles, A. et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? Geology 29, 531-534 (2001).
    82. Sajona, F. G. et al. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos 54, 173-206 (2000).
    83. Stern, C. R. & Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral Petrol 123, 263-281 (1996).
    84. Xu, W. L., Wang, D. Y., Liu, X. C., Wang, H. Q. & Lin, J. Q. Findings and geological significance of eclogitic xenoliths in Early Jurassic intrusive complex in Xu-Huai area, North China craton. Chinese Sci. Bull. 47, 1212-1216 (2002).
    85. Wang, H.-Q. Petrology and Geochemistry of Mesozoic Intrusive Complex and its Deep-Seated Xenoliths in Xu-Huai region, China: Constraints on Evolution of Mesozoic Lithosphere in Eastern Part of North China Craton. Ph. D. thesis, Jiling University, 145 pp, 2003. (In Chinese with English summary).[王清海.徐淮地区中生代侵入杂岩及深源捕掳体的岩石学和地球化学:对华北克拉通东部中生代岩石圈演化的制约。吉林大学博士学位论文.145页(2003)].
    86. Zheng, J.-P., Sun, M., Lu, F.-X. & Pearson, N. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics 361, 37-60 (2002).
    87. Ayers, J. C., Dunkle, S., Gao, S. & Miller, C. Constraints on timing of peak and retrograde
    
    metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem. Geol. 186, 315-331 (2002).
    88. Wu, F.-Y., Richard, J. W., Ren, X.-W., Sun, D.-Y., Zhou, X.-H. Osmium isotopic constrains on the age of lithospheric mantle beneath northeast China. Chemical Geology 196, 107-129(2003).
    89. Boyd, F. R Compositional distinction between ocenic and cratonic lithosphere. Earth Planet. Sci. Lett. 96,15-26(1989).
    90. Klemme, S. R. Van der Laan, Foley, S. F., G(?)nther, D. Experimental determined trace and minor elements partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth Planet. Sci. Lett. 133, 439-448 (1995).
    91. Stalder, R., Foley, S. F., Brey, G. P., & Horn, I. Mineral-aqueous fluid partitioning of trace elements at 900-1200℃ and 3.0-5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochiraica Acta, 62, 1781-1801(1998).
    92. McCulloch, M. T. and Gamble, J. A. Geochemical and geodynamics on subduction zone magmatism .Earth Planet. Sci. Lett. 102, 358-374(1991).
    93. Yuan, H.-L. Application of Solution nebulization and Laser Ablation ICP-MS in Geosciences. Ph. D. thesis, China University of Geosciences, 110 pp (2003)[袁洪林.溶液进样和激光剥蚀等离子体质谱在地球科学中的应用.中国地质大学博士学位论文.110页(2003)].
    94. Runick, R., Gao, S., Ling, W.-L., Liu, Y.-S. & McDonough, W. F., Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos (2004) (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700