藏北高原新生代高钾钙碱性系列火山岩与壳—幔相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原的形成和演化经历了一个漫长的历程,而新生代以来的50Ma又是一个有着特殊地质意义的时期,藏北高原新生代火山岩正是在这一特定时期内形成的。其中高钾钙碱性系列火山岩(high-k calc-alkaline volcanic rock series)是一类重要且具有特殊成因指示意义的火山岩。
     藏北高原新生代高钾钙碱性系列火山岩主体分布于昆仑山脉主脊的南侧和羌塘微板块北部,作为板块俯冲、碰撞及高原形成、演化过程中深部地质作用事件的浅部响应,是探索新生代以来高原岩石圈物质组成、壳幔结构及其相互作用方式以及高原隆升机制的“重要窗口”和“地质探针”,长期以来一直受到地学界的极大关注。
     由于藏北高原自然地理条件极端恶劣、高寒缺氧、交通异常困难,平均海拔在5000m以上,是“世界屋脊”的核心,素有“生命禁区”和“地球第三极”之称。迄今,国内外有关青藏高原地质学、岩石学和大地构造学的著述不少,但大多偏重于高原的南部或东部,北部很少,尤其是关于藏北高原广泛分布的新生代高钾钙碱性火山岩的区域地质调查和系统研究尚属空白。作者历经五个春秋的艰苦拼搏,通过大量的野外地质科学考察和地质填图,夯实了野外第一手资料,将火山活动的研究置于高原形成和演化的总体框架之内,视为新生代高原地质历史过程中一个重大的地质事件响应,应用区域地质学、岩石学、矿物学、同位素年代学、地球化学等学科的新研究方法和手段,从时空分布、岩相特征、岩石和矿物化学、微量元素和稀土元素地球化学、同位素年代学和同位素地球化学等方面对藏北高原新生代高钾钙碱性火山岩进行系统研究,取得了如下认识和进展。
     1.查明了藏北高原新生代高钾钙碱性火山岩的分布、产状、喷发类型和地层层序。其主体分布于东经87°~91°、北纬33°40′~35°范围内,出露面积约6000km~2,集中分布在祖尔肯乌拉山、多格错仁—太平湖、错尼—乱青山、永波湖、跃进拉和美日切错等地区,其中以祖尔肯乌拉山地区出露面积最大,约为2500km~2,厚度10m~424m;火山岩产状平缓,主要以熔岩台地和熔岩被方式产出,呈面状展布,为典型的陆相中心式喷发;岩相类型主要为爆发相和喷溢相,火山岩地层层序自下而上可划分为火山角砾岩段、橄榄玄粗岩段、安粗岩段和粗面岩段等四个岩性段,其中安粗岩段和粗面岩段构成了藏北高原新生代高钾钙碱性火山岩的主体。
     2.K-Ar、Ar-Ar同位素年代学系统测试结果分析表明,藏北高原新生代高钾钙碱性火山岩年龄介于45Ma~35Ma之间,特别是通过Ar-Ar同位素年龄的精确限定,其喷发时代集中分布于40Ma左右,可大致视为同期火山活动。不仅为藏北高原新生代高钾钙碱性火山岩形成时代提供了新的同位素年龄时限,更正了许多学者认为藏北高原新生代高钾钙碱性火山
    
    岩主要形成于中新世以后,始新世藏北高原火山活动相对宁静的看法,而且为藏北高原富集
    n型地慢形成和岩石圈增厚、减薄及隆升等深层次地质作用时限提供了同位素年代学的约
    束,始新世藏北高原广泛发育的高钾质钙碱性火山熔岩与下伏不同时代的沉积地层呈角度不
    整合接触,下伏最新陆相沉积地层时代为sl.7Ma~46.2Ma,与野外地质事实相吻合。
     3.根据主要造岩矿物组成、含量和TAS化学成分分类图解,藏北高原新生代高钾钙碱
    性火山岩以中性岩类占绝对优势,主要为一套安粗岩一粗面岩岩石组合,其次为安山岩一英
    安岩岩石组合,相当部分火山岩具有过渡性质。
     4.藏北高原新生代高钾钙碱性火山岩化学成分较稳定,510:含量集中分布于55%~65%
    之间,A1203含量13.03%~17.77%,TIO:平均值0.51%,全碱(KZO例贬。)含量为5.470/005.84%,
    K20/N aZo比值0.57一1 .62,显示出富碱的特征,KZO含量峰值为2.5%、口4.0%,属典型的高钾
    钙碱性岩系,不存在拉斑玄武岩系列。CIPw标准矿物组合主要为Qz+o什Ab+An+Hy,大
    部分属于510:过饱和的正常岩石类型。
     5.对藏北高原新生代高钾钙碱性火山岩中最重要的造岩矿物及麻粒岩包体中变质矿物
    进行了系统的电子探针矿物化学分析,为探讨火山岩熔体的生成和岩浆演化提供了大量的信
    息。
     6.藏北高原新生代高钾钙碱性火山岩强烈富集大离子亲石元素K、Rb、sr、Ba、Th、
    Pb等,亏损相容元素C。、Ni和Cr;具有类似的不相容元素分布型式,高场强元素Ta、Nb、
    Zr、H么Ti、P等相对其它大离子亲石元素为负异常,出现Th、Ce、Sm三个峰值和Nb、P、
    Ti三个亏损槽。火山岩稀土总量高,平均364.10xl。一,LREE强烈富集,且有相似的稀土元
    素配分型式,均属强烈右倾轻稀土富集型,基本不显示或具有微弱的负铺异常。Sr、Nd、
    Pb同位素成分系统测试分析表明,藏北高原新生代高钾钙碱性火山岩具有相对高的“75护6sr
    和低的’4加‘144Nd值及高的Pb同位素组成,且变化范围很窄。“,s沪65:比值介于
    0.707101一0.707998之l’ed,明显地高于均匀储集库的(s,s沪6sr)皿现代值0.7045;’43N出,44Nd
    比值为0.512379司.512480,明显低于球粒陨石均一储集库现代值0.512638,限制了其源区
    具有壳一慢物质混合的性质。
     7.岩石地球化学和同位素地球化学提示了藏北高原新生代高钾钙碱性火山岩不是直接
The formation and evolution of the Tibetan Plateau, which occupies a very important position in contemporary geological research field, has gone through a very long geological time and the last 50 Ma is thought as the most important period with specific geological significances, during which the Cenozoic high-k calc-alkaline volcanic rocks occurred in the Northern Tibetan Plateau.
    The main part of the Cenozoic high-k calc-alkaline volcanic rock series distributes at the south margin of the prime back of the Kunlun mountain and at the Northern part of the Qiangtang mini-plate. As the respond in the shallow position of such deep geological events as the subduction and collision of the plates and the formation and evolution of the Tibetan Plateau, the Cenozoic high-k calc-alkaline volcanic rocks are thought as the important window and geological probe for researching the material composition of the lithosphere, the structure and interaction of the crust-mantle in the plateau and the mechanism of the plateau uplift. The rocks have been followed with great interest by geologists for a long time.
    Although some publications on geology, petrology and architectonics in Qinghai Tibetan Plateau have been involved, most of writings concentrate on researching field in Eastern and Southern Tibet. Due to such rough conditions as extremely cold, less oxygen, bad transport in this area with the elevation more than 5000 m, systematic study and regional geologic survey on the widely distributed Cenozoic high-k calc-alkaline volcanic rocks in Northern Tibetan Plateau have not been reported. The writer has worked for more than 5 years and got magnanimous first-hand field geological data in this area. In this dissertation, the volcanism study is put into the general framework of the formation and evolution of the whole plateau and the volcanism is thought as an important geologic event. Based on the systematic study of regional geology, petrology, petrography, mineralogy, isotopic geochronology and geochemistry, the following conclusions about the Cenozoic high-k calc-alkaline volcanic rocks in the Northern Tibetan
    Plateau are obtained.
    1. The distribution, occurrence, eruption type and strata sequence of the Cenozoic high-k calc-alkaline volcanic rocks were cleared through investigation. The main parts of the rocks distribute in the range of E 87~91, N3340' -35, with an outcrop area about 6000 km2. The high-k calc-alkaline rocks are mainly seen at Znerkenwula mountain region, Duogecuoren-Taiping lake region, Cuoni-Luanqing mountain, Yaojinla region and Meiriqiecuo region. In the Zuerkenwula region, the area of the volcavic rocks is the biggest (about 2500 km2) and the thickness is from 10 to 424 m. The volcanic rocks in this region are with gentle inclinations,
    
    
    
    exposed mainly as lava plateau and lava sheet. Typical continental central eruption can be found and two facies, explosion and extrusion-overflow facies can be mainly distinguished. Upwards, 4 lithological segments(volcanic breccia segment, olive basaltic trachyandesite segment, latite seqment and trachyte segment) can be divided in the volcanic sequence, among with the trachyte and latite segments can be commonly seen in the Cenozoic high-k calc-alkaline volcanic rock area in the Northern Tibetan Plateau.
    2. The K-Ar, Ar-Ar isotopic chronology measurement result shows that the ages of the high-k calc-alkaline rocks are from 45 to 35 Ma. The Ar-Ar isotopic age exactly prescribes the limit to the volcanic eruption at about 40 Ma and it can be regarded as synchronous volcanic movement. It not only provides with new ages of the Cenozoic high-k calc-alkaline volcanic rocks and makes corrections of the theories as many researchers believe that the high-k calc-alkaline volcanic rocks mainly occurred after the Miocene and during the Eocene there was no obvious volcanic movements but provides isotopic chronology binding to time limit of the formation of enriched EII mantle and the thickening, thinning and uplifting of the lithosphere in the Northern Tibetan Plateau. The Eocene hi
引文
1 Allegre C J. Chemical geodynamics. Tectonophysis, 1982, 81: 109~132
    2 Allegre C J et al. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 1984, 307: 17~22
    3 Allegre C J. Isotope geodynamics. Earth and Planet. Sci. Lett., 1987, 86: 175~203
    4 Aymstrong R L. Radiogenic isotopes: the case crustal recycling on a near-steady-state continental growth. Earth. Philos. Trans. R. Soc., London, 1981, A301: 443~473
    5 Arnaud N O, Vidal, Tapponnier P, et al. The high-K_2O volcanism of northwestern Tibet: Geochemistry and tectonic implication. Earth and Planet Sci. lett., 1992, 111: 351~367
    6 Battistini G D, Montanini A, Vernia L et al. Petrology and geochemistry of ultrapotassic rocks from the Montefiascone Volcanic Complex (Central Italy): magmatic evolution and petrogenesis. Lithos., 1998, 43: 169~195
    7 Beccaluva L, Di Girolamo P, Serri G. Petrogenesis and tectonic setting of the Roman Province, Italy. Lithos., 1991, 26:191~261
    8 Beck R A, Burtank D W, Sercombe W J et al. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 1995, 373:55~58
    9 Bird P. Initiation of intracotinental subduction in the Himalaya. J. Geophys. Res., 1978, 83: 4975~4987
    10 Burchfiel B C, Molnar P, Ziyun Zhao et al. Geology of the Ulugh Muztagh area, Northern Tibet. Earth and Planetary Science Letters, 1989, 94: 57~70
    11 Chen Leshou, Booker J R, Wei Wenbo et al. Colliding continents: Electrical conductivity structure of the Asia/India collision. In 30th IGC Abst., Vol.1, Beijing: Geological Publishing House, 1996, 196
    12 Chung S L, Lo C H, Lee T Y et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 1998, 394:769~773
    13 Coleman M and Hodges K. Evidence for Tibet Plateau uplift before 14Myr ago from a new minimum age for east-west extension. Nature, 1995, 374:49~52
    14 Conticelli S, Mcculloch M T. Nd and Sr isotope geochemistry of leucite-bearing lavas from Ganssber, East Antarctica. Proc. 4th Symp., Antarctic Earth Sci., 1992, 28:221~240
    15 Condie K C. Plate tectonics and crustal evolution. New York: Pergamon Press, 1976
    16 Coulon C, Maluski H, Bollinger C et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: ~(40)Ar/~(39)Ar dating, Petrological characteristics and geodynamical significance. Earth and Planet. Sci. Lett., 1986, 79:281~302
    17 Dawson J B and Stephens W E. Statistical analysis of garnets from kimberlites and associated
    
    xenoliths. J. Geol., 1975, 83:589~607
    18 Deer W A, Howice R A, Zussman J. Rock-forming minerals. New york: John Wiley and Sons Press, 1963, 1~210
    19 Depaolo D J. Crustal growth and mantle evolution: inference from models of element transport and Nd isotopes. Geochim. Cosochim. Acta., 1980, 44:1185~1196
    20 Dewey J F. Shackleton R M, Chang Chengfa et al.The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond., 1988, A327:379~413
    21 Dewey J F, Cande S and Pitman W C. Tectonic evolution of the India Eurasia collusion zone. Ecologae gedol. Helv., 1989, 82:717~734
    22 England P, Houseman P. Extension during continental convergence with application to the Tibetan plateau. J. Geophys. Res., 1989, 94:17561~17579
    23 Feldstin S N, Lange R A. Pliocene potassic magmas from the kings River region, California: evidences for melting of a subduction modified mantle. Journal of Petrology, 1999, 40: 1301~1320
    24 Fiedling E J. Tibet uplift and erosion. Tectonophysics, 1996, 160:55~84
    25 Frey F A. Intergrated models of basalt petrogenesis: a study of quartz-tholeiites to olivine melilities from southeasthern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 1978, 119:463~513
    26 Harrison T M, Copeland P, Kidd W S F et al. Raising Tibet. Science, 1992, 255:1663~1670
    27 Hart S R. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature, 1984, 309:753~757
    28 Hawkesworth C J, Kempton P D, Rogers N W et al. Continental mantle lithosphere and shallow level enrichment processes in the earth's mantle. Earth and Planetary Science Letters, 1990, 96:256~268
    29 Hawkesworth C J, Vollmer R. Crustal contamination versus enriched mantle: ~(143)Nd/~(144)Nd and ~(87)Sr/~(86)Sr evidence from the Italian volcanics. Contrib. Min. Petrol., 1979, 69:151~165
    30 Him A, Nercession A, et al. Lhasa block and bordering sutures a continuation of a 500km Moho traverse through Tibet. Nature, 1984, 307:25~27
    31 Irvine T N. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 1971, 8:523~548
    32 Jacobsen S B, Wasserburg G J. The mean age of mantle and crustal reservoirs. J. Geophys. Res., 1979, 84:7411~7427
    29 Jakes P, Gill J. Rare earth elements and the island arc tholeiitic series. Earth Planet Sci. Lett., 1970, 9: 17~28
    30 Kyser T K. Stable isotope variations in the mantle. In: Valley J W, Taylor H P J., O' Neil J R
    
    (eds.). Stable isotope in high temperature geological processes, reviews in mineralogy 16, mineralogy of society of America, 1986, 141~163
    31 Kamencev E Y, Cmetannikova O G. The composition and order degree testing for feldspar using powder method. Mineralogical Magazine of the Soviet Union, 1977, 106: 476~481 (in Russian with English abstract)
    32 Leake B E. Nomenclature of amphiboles. Can. Mineral, 1978, 16(4): 501~520
    33 Le Bas M J, Le Maitre R W, Strckeisen et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 1986, 27: 745~750
    34 Le Maitre R W. A classification of igneous rocks and glossary of geological terms. Blackewell, Oxford, 1989, 1~193
    35 Le Roex A P. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouvet triple junction and 11 degree east. J. Petrol, 1983, 24: 267~318
    34 Macgrego P, Baker B H. The thermal structure and thermal evolution of the continental lithosphere. Phys & Chem Earth, 1984, 15: 107~194
    35 Maluski H, Ploust F, Xiao X C. ~(39)Ar/~(40)Ar dating of the trans-Himalayan calc-alkaline magmatism of southem Tibet. Nature, 1982, 289: 153~154
    36 Mattauer M. Intracotinental subduction, crust-mantle decollement and crustal-stacking wedge in the Himalaya and other collision belts. Collision Tectonics, Oxford: Blackwell Scientific Publication, 1986, 37~50
    37 Mckenzie D P. Some remarks on the movement of small melt fraction in the mantle. Earth and planetary science letters, 1989, 95: 53~72
    38 Meen J K. Elevation of potassium content of basaltic magma by fractional crystallization: the effect of pressure. Contribution to Mineralogy and Petrology, 1990, 104: 309~331
    39 Meen J K. Formation of shoshonites from talk-alkaline basalt magmas:geochemical and experimental constraints from the type locality. Contribution to Mineralogy and Petrology, 1987, 97: 333~351
    40 Miller C, Schuster R, Klotzli U, Frank Wet al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet, Geochemical and Sr-Nd-Pb-oisotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 1999, 40:1399~1424
    41 Molner P, Bechfiel B C, Kuangyi L et al. Geologic evolution of Northern Tibet: Results of an expedition to Ulugh Muztagh. Science, 1987, 235: 299~305
    42 Morrison G W. Characteristics and tectonic setting of the shoshonite association. Lithos., 1980, 13: 97~108
    43 Muller D, Rock N M S, Groues D I. Geochemical discrimination between shoshonitic and
    
    potassic volcanic rocks from different tectonic setting: a pilot study. Mineral Petrol., 1992, 46: 259~289
    44 Nelson D R. Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis, lithos, 1992, 28: 403~420
    45 Nelson D R, Mcculloch M T, Sun S S. The origin of uitrapotassic rocks as inferred from Sr, Nd and Pb isotopes Geochim. Cosmochem. Acta., 1985, 50: 231~245
    46 Neumann E R, Andersen T and Mearns E W. Olivine clinopyroxenite xenoliths in the Oslo rift, SE Norway, Contribution to Mineralogy and Petrology, 1988, 98: 184~193
    47 Norman M D, Leeman W P. Geochemical evolution of Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U. S. A. Earth. Planet. Sci. lett., 1989, 94: 78~96
    48 Owens T J, Zandt G. Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 1997, 387(5):37~42
    49 Patriat P and Achache J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 1984, 311:615~621
    50 Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth. Planet. Sci. lett., 1973, 19:290~300
    51 Pearce J A. Trace element characteristics of lavas from distructive bundaries. In: Trope R S ed. Andesites. New York: Join Willey and Suns, 1982, 525~548
    52 Pearce J A. Trace element discrimination diagrams for tectonic interprelation of granitic rock. J. Petr., 1984, 25:956~983
    53 Peccerillo A Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contr. Miner. Petr., 1976, 58:63~81
    54 Pognante U. Shoshonitic and ultrapotassic post-collisional dykes from northern Karakorum. Lithos, 1990, 26:305~316
    55 Powell C M, Conaghan P J. Plate tectonics and the Himalayas. Earth planet. Sci. Lett., 1973, 20:1~12
    56 Rock N M S. A Fortran program fortabulating and naming amphibole analyses according to the International Mineralogical Association Scheme. Mineral. Petro(TMPM), 1987, 37(1): 79~88
    57 Rock N M S, Leake B E. The International Mineralogical Association amphibole nomenclature Scheme computeri Eation and its consequences. Mineral. Mag., 1984, 48(34): 211~227
    58 Rollision H R. Using geochemical data: Evaluation, Presentation, Interpretation. John Willey N Y, Sons, Inc., 1993
    59 Stormet J R. A practical two-feldspar geothermometer. Amer. Miner., 1975, 60:7~8
    
    
    60 Tapponnier P, et al. The Tibetan side of the India-Eurasia collison. Nature, 1981, 294: 405~410
    61 Turner S, Arnaud N, Liu J, Q et al. Post-collision shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrololgy, 1996, 37:45~71
    62 Turner S, Hawksworth C J, Lin J Q et al. Timing of Tibetan uplift constrained by analysis volcanic rocks. Nature, 1993, 364, 50~53
    63 Varne R. Ancient subcontinental mantle: a source for k-rich orogenic volcanics. Geology, 1985, 13:405~408
    64 Vollmer R and Hawksworth C J. Lead isotopic composition of the potassic rocks from Roccamonfina(South Italy). Earth. Planet. Sci. lett., 1980, 47:91~101
    65 Vollmer R and Norry M. J. Possible origin of K rich volcanic rocks from Virunga, East Africa, by metasomatism of continental crustal material, Pb, Nd and Sr isotopic evidence. Earth and Planetary Science Letters, 1983, 64:374~386
    66 Vollmer R, Ogden P, Schilling J G, et al. Nd and Sr isotopes in ultrapotassic volcanic rocks from the Leucite Hills, Wyoming. Contribution to Mineralogy and Petrology, 1984, 87:359~368
    67 Xixi Zhao, Haisheng Yi, Chengshan Wang et al. Magnetostratigraphy of tertiary sediments from the Wulanwula lake basin: implications for the Cenozoic tectonic history of the Tibetan plateau. Abstract volume of the 18th Himalaya-Karakoram-Tibet workshop (Switzerland), 2003: 135~136
    68 Zindle A, Hart S R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 1986, 14: 493~573
    69 边千韬,郑祥身.青海可可西里地区构造特征与构造演化,大陆岩石圈构造与资源.(徐贵忠,常承法主编),北京:海洋出版社,1992,19~29
    70 常承法,R. M. Shackleton, J. F Dewey等.青藏高原地质演化,北京:科学出版社,1990,1~415
    71 迟效国,李才,金巍等.藏北新生代火山作用的时空演化与高原隆升.地质论评,1999,45(增刊):978~986
    72 崔军文.青藏高原岩石圈变形及其动力学.北京:地质出版社,1992
    73 崔军文,许志琴.再论青藏高原动力学模式.岩石圈深层热动力扩展模型.北京:中国地球物理学会年刊,1995
    74 崔军文.岩石圈深层扩展——青藏高原隆升、岩石圈深层扩展模式初探.地质论评,1994,40(2):106~110
    75 崔军文,朱红,武长德等.青藏高原岩石圈变形及动力学.亚东-格尔木岩石圈地学断面综合研究.北京:地质出版社,1992
    
    
    76 崔作舟,尹周勋.青藏高原速度结构和深部构造.北京:地质出版社,1992
    77 邓晋福,吴宗絮,杨建军等.格尔木.额济纳旗地学断面走廊域地壳.上地幔岩石学结构与深部过程。地球物理学报,1995,38,Suppl.Ⅱ:130~143
    78 邓晋福,赵海玲,莫宣学等.中国大陆根-柱构造-大陆动力学的钥匙.北京:地质出版社,1996,1~110
    79 邓万明.青藏北部新生代钾质火山岩微量元素和Sr,Nd同位素地球化学研究.岩石学报,1993,9(4):379~387
    80 邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社,1998,1~168
    81 邓万明,孙宏娟.青藏北部板内火山岩的同位素地球化学与源区特征.地学前缘,1998,5(4):307~317
    82 邓万明.西藏阿里北部的新生代火山岩.兼论陆内俯冲作用.岩石学报,1989,3:1~11
    83 邓万明.藏北第四纪火山岩岩石学和岩石化学初步研究.地质学报,1978,52(2):148~162
    84 邓万明,郑锡澜,松本征夫.青海可可西里地区新生代火山岩的岩石特征和时代.岩石矿物学杂志,1996,15(4):289~298
    85 邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,43(23):2474~2482
    86 邓万明.中昆仑造山带钾玄质火山岩的地质、地球化学和时代.地质科学,1991,3:193~206
    87 丁林,张进江,周勇等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(3):408~421
    88 方同辉,马鸿文.建立古地温曲线的理想地质温压计.地质科技情报,1997,16(4):93~100
    89 樊祺诚,李霓.镁铁质麻粒岩捕虏体与壳幔相互作用.世纪之交矿物岩石地球化学的回顾与展望.北京;原子能出版社,1998,123~126
    90 高延林,肖序常,常承法等.青藏高原及邻区构造单元划分及其地质构造特征.喜马拉雅岩石圈构造演化总论(肖序常等编).北京:地质出版社,1988,31~48
    91 韩同林.青藏高原活动构造基本特征,喜马拉雅岩石圈构造演化总论.北京:地质出版社,1988,160~173
    92 黄怀增,王松产,黄路桥等.青藏高原岩浆活动及岩石圈演化.北京:地质出版社,1993,10~46
    93 姜枚,许志琴.Hirn A.等.青藏高原及部分邻区地震各向异性和上地幔特征.地球学报,2001,22(2):111~116
    94 赖绍聪,邓晋福,赵海玲.青藏高原北缘火山作用与构造演化.西安:陕西科学技术出版社,1996,95~133
    95 赖绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区.岩石学报,2001,17(3):459~468
    
    
    96 赖绍聪.青藏高原北部新生代火山岩成因机制.岩石学报,1999b,15(1):98~104
    97 赖绍聪.青藏高原新生代火山岩矿物化学及其岩石学意义.矿物学报,1999a,19(2):236~244
    98 赖绍聪,伊海生,刘池阳等.青藏高原北羌塘新生代高钾钙碱岩系火山岩角闪石类型及痕量元素地球化学,2002,18(1):17~24
    99 李才,范和平,徐锋.青藏高原北部新生代火山岩岩石学化学特征及其构造意义.现代地质,1989,3(1):58~60
    100 李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992,30~50
    101 李光岑,袁学诚.青藏高原地球物理场特征.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1988,141~159
    102 李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨.地质地球化学,2000,28(2):38~43
    103 李廷栋.青藏高原的深部构造和隆升机制.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1988,174~185
    104 李廷栋.青藏高原隆升的过程和机制.地球学报,1995,1:1~9
    105 刘丛强,谢广轰,中井俊一等.新疆于田县康苏拉克新生代火山岩SL Nd,Ce,O同位素及微量元素地球化学.科学通报,1989,23:1803~1806
    106 刘嘉麒,买买提依明.西昆仑第四纪火山的分布与K-Ar年龄.中国科学(B),1990,2:180~187
    107 刘若新.我国火山学研究进展与展望.世纪之交矿物岩石学地球化学的回顾与展望.北京:原子能出版社,1998,221~223
    108 刘若新.中国新生代火山岩年代学与地球化学.北京:地震出版社,1992
    109 刘榮,迟效国,李才等.藏北新生代火山岩系列的地球化学及成因.长春科技大学学报,2001,31(3):230~234
    110 吕庆田,姜枚,高锐.青藏高原莫霍面形态的重力模拟及其对探讨高原隆升机制的意义.地球学报,1997,18(1):78~86
    111 潘桂棠,王培生,徐耀荣等.青藏高原新生代构造演化.北京:地质出版社,1990,1~190
    112 邱检生,王德滋.富钾火山岩的研究进展与展望.世纪之交矿物岩石地球化学的回顾与展望.北京:原子能出版社,1998,108~113
    113 邱家骧.火山岩.北京:地质出版社,1996
    114 邱家骧,曾广策.中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义.岩石学报,1987,5(4):1~9
    115 勒是琴,李鸿超.成因矿物学概论.长春:吉林大学出版社,1984
    116 沈显杰.青藏高原隆升的构造热演化机制.地质科学,1986,2:101~113
    117 孙鸿烈(主编).青藏高原的形成演化.上海:上海科学技术出版社,1996,86~90
    
    
    118 孙延贵.可可西里北缘中新世火山活动带的基本特征.青海地质,1992,2:13~25
    119 谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升.岩石矿物学杂志,2000,19(2):121~130
    120 滕古文,王绍舟,姚振兴等.青藏高原及其邻近地区的地球物理场特征与大陆板块构造.地球物理学报,1980,23:254~289
    121 滕吉文,尹周勋,熊绍柏.青藏高原北部地区色林-篷错-那曲-奈县地带地壳结构与速度分布.地球物理学报,1985,28(增刊),28~12
    122 滕吉文,尹周勋,熊绍柏.喜马拉雅山北部地区的地壳结构模型和速度分布特征.地球物理学报,1983,26:525~540
    123 王碧香,叶和飞,彭勇民.青藏羌塘盆地中新生代火山岩同位素地球化学特征及其意义.地质论评,1999,45(增刊):946~951
    124 王建,李建平,王江海.滇西大理.剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19(1):61~70
    125 吴才来,杨经绥,李海兵等.青藏高原北缘火山岩中辉石岩包体研究.地球学报,2001,22(1):61~66
    126 吴春明,潘裕生,王凯怡.黑云母-斜方辉石温度计的重新标度及其应用.岩石学报,1999,15(3):463~468
    127 吴功建,高锐等.青藏高原“亚东-格尔木地学断面”综合地球物理调查与研究.地球物理学报,1991,34(5):552~561
    128 吴功建,肖序常,李廷栋.青藏高原亚东.格尔木地学断面.地质学报,1989,4(63):285~296
    129 吴向农等.青海省唐古拉山晚第三纪的火山活动.青海地质,1984(1)
    130 肖序常,王军.青藏高原构造演化及隆升的简要评述.地质论评,1998,44(4):372~381
    131 解广轰,刘丛强,增田彰正等.青藏高原周边地区新生代火山岩的地球化学特征.古老富集地幔存在的证据.中国新生代火山岩年代学与地球化学(刘若新主编).北京:地震出版社,1992,400~427
    132 熊绍柏,滕吉文,尹周勋.青藏高原地区的地壳厚度和莫霍界面的起伏.地球物理学报,1991,28(增刊),16~27
    133 许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用.地质学报,1996,70:195~206
    134 许志琴,杨经绥,姜枚.青藏高原北部的碰撞造山及深部动力学——中法地学合作研究新进展.地球学报,2001,22(1):5~10
    135 杨经绥,吴才来,史仁灯等.青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩.岩石学报,2002,18(2):161~176
    136 杨日红,董建东,李才等.藏北新生代火山岩主要造岩矿物特征及温压条件.现代地质,
    
    2002,16(2):153~157
    137 曾融生等.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型.地震学报,1992,14:523~533
    138 曾融生,吴大明,Owens T J.青藏高原地壳上地幔结构及地球动力学的研究.地震学报,1992,14(增刊):521~522
    139 张青松,周耀正,陆祥顺等.现代青藏高原上升速度问题.科学通报,1991,36(7):529~631
    140 张以弗,郑建康.青海可可西里地区地质演化.北京:科学出版社,1996,28~79
    141 张以弗,郑建康.青海可可西里及邻区地质概论.北京:地震出版社,1994,1~177
    142 郑祥身,边千韬,郑健康.青海可可西里地区新生代火山岩研究.岩石学报,1996,12(4):530~545
    143 钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D),1996,26(4):289~295
    144 周兵等.青藏高原及邻近区域的S波三维速度结构.地球物理学报,1991(3)
    145 周新华.再论壳幔相互作用的普遍性及其深部动力学意义.世纪之交矿物岩石学地球化学的回顾与展望.北京:原子能出版社,1998,203~205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700