UV-B辐射增强对葡萄幼苗内源激素的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气臭氧层的不断破坏引起了地球生物圈表面紫外线-B(UV-B)辐射强度不断增加,这将对植物的生长发育产生重要影响,而植物的生长发育过程与内源激素的变化密切相关。本试验以酿酒葡萄“赤霞珠”(Cabernet Sauvignon)为材料,在玻璃温室内通过增加0μw·cm~(-2)(CK组)、10.8μw·cm~(-2)(T1组)、20.7μw·cm~(-2)(T2组)、25.6μw·cm~(-2)(T3组)4个不同强度的UV-B辐射处理,研究了UV-B辐射增强对葡萄新梢、叶片和根尖五种内源激素含量变化的影响,以期为进一步研究UV-B辐射增强对植物生长发育的影响机制提供理论依据。本研究主要获得以下结果:
     1.生长素含量变化在UV-B辐射增强条件下,葡萄新梢和叶片内IAA含量明显下降,且下降幅度始终表现为T3>T2>T1>CK,这表明UV-B辐射增强抑制了葡萄幼苗地上部的生长。但UV-B辐射增强对根尖IAA含量的影响并不明显,仅在T3处理下的辐射后期(40~50 d)显著的降低了IAA含量。
     2.赤霉素含量变化增强UV-B辐射处理下,新梢GA_3含量总体呈现先上升后下降的变化趋势。叶片GA_3含量在T1处理下有所增加,仅在累积处理50 d时略有降低,为CK的98.98%;在高辐射强度(T2、T3)的处理初期,叶片GA_3含量呈上升趋势,但处理组与CK间并没有显著差异;在累积辐射处理后期,GA_3含量转而开始下降,并且与辐射强度正相关。与此同时,根尖GA_3含量在T1和T2处理下并没有明显的变化规律,仅在T3处理辐射后期明显下降,与其它组差异极显著。
     3.玉米素含量变化增强UV-B辐射整体上提高了新梢ZT的含量,但T1处理下的变化并不明显。与之相反,叶片中ZT含量总体呈现下降的变化趋势,累积辐射处理50 d时,T1、T2、T3处理分别较CK下降了2.4%、19.21%、23.16%。UV-B辐射增强对根尖ZT含量并未产生明显的影响。
     4.脱落酸含量变化在UV-B辐射增强条件下,新梢和叶片中ABA含量显著增加,且表现为T3>T2>T1>CK。根尖中ABA的含量在高辐射强度(T2、T3)处理后期显著增加,分别比CK增加了75.47%倍和92.95%。这说明UV-B辐射增强促进了葡萄幼苗体内ABA的合成,从而加速了葡萄植株的衰老。
     5.乙烯释放量的变化UV-B辐射增强明显加速了葡萄新梢和叶片内的乙烯释放量,且释放速率随辐射强度的增加和时间的延长而显著增加;而根系乙烯的释放量受UV-B辐射增强的影响并不大,仅在高辐射处理后期(40~50 d)呈现一定程度的上升。
Increase in UV-B radiation on earth biosphere surface resulted from continual destruction of atmosphere ozone layer can have significantly effect on the process of growth and development of plants accordingly which was closely related with the change of plant endogenous hormones. The experiment were performed in glasshouse, and the contents of endogenous hormones were assessed in new shoots, leaves and root tips of grapevine that were treated with UV-B radiation of differernt intensities including 0μw·cm~(-2)(CK), 10.8μw·cm~(-2)(T1), 20.7μw·cm~(-2)(T2), and 25.6μw·cm~(-2)(T3) respectively. This will provides the referrence basis for further studies. The main conclusions were as follows:
     1. Effect of enhanced UV-B radiation on IAA
     Under the enhanced of UV-B radiation, the contents of IAA in new shoots and leaves of grapevine were decreased obviously, and the range of decline in the order T3>T2>T1>CK, this indicated that enhanced UV-B radiation inhibited grapevine seedling upside growth. But the influence of enhanced UV-B radiation on the contents IAA of root tips were not clear; just in the later period (40~50~(th) d) of T3 treatments reduced IAA contents remarkable.
     2. Effect of enhanced UV-B radiation on GA_3
     Under the enhanced of UV-B radiation, the total tendency of GA_3 in new shoots was increased in first stage and then it reduced at last. During the whole treatments, the contents of GA_3 in leaves were increased under T1 treatments except for the 50~(th) day which its contents were 98.98% compared with CK. At the earlier stage of high-intensity radiation (T2 and T3), the contents of GA_3 in leaves taken on a rising tendency and no significant difference between treating groups and counterparts; with the increased of radiation accumulation, GA_3 contents began to lower and positively correlation to radiation doses. At the same time, the contents of GA_3 in root tips have no obvious change rules except its significant descended compared to other groups at later stage of T3 treatments.
     3. Effect of enhanced UV-B radiation on ZT
     The enhanced UV-B radiation heightens ZT contents in new shoots totally, although there is no distinct change in T1 treatments. The reverse was true in the case of ZT in leaves which shown a falling tendency; with the accumulative radiation of 50~(th) day, the contents of ZT were decreased by 2.4%, 19.21% and 23.16% respectively compared with their counterparts. And there is no influence on the contents of ZT in root tips in exposure to enhanced UV-B radiation.
     4. Effect of enhanced UV-B radiation on ABA
     Under the enhanced of UV-B radiation, the contents of ABA in new shoots and leaves were notable increased, and in the order T3>T2>T1>CK. The contents of ABA in root tips were more 1.75 times and 1.93 times in the later period of T2 and T3 high radiation than CK respectively. This result indicated that enhanced UV-B radiation accelerated the synthesis of ABA in grapevine seedling, thereby speed up plants translation to senescence.
     5. Effect of enhanced UV-B radiation on ethylene
     The enhanced UV-B radiation advanced the release rates of ethylene in grapevine new shoots and leaves which remarkable increased with the intensities of radiation accumulation and treatment times extend. The release rates of ethylene in root tips was not influence by the enhanced UV-B radiation, just has some certain risen in the later period (40~50~(th) d) of high-intensity radiation.
引文
[1] 张继澍主编. 植物生理学[M]. 西安:世界图书出版公司, 1999, 221-260
    [2] 郝建军, 康宗利主编. 植物生理学[M]. 北京:化学工业出版社, 2005
    [3] 潘瑞帜主编. 植物生理学(第四版)[M]. 北京:高等教育出版社, 2001, 169-205
    [4] 张海娥, 郭修武. 激素在葡萄分子发育调控上的作用研究进展[J]. 栽培技术, 2004: 28-32
    [5] 武维华主编. 植物生理学[M]. 北京科学出版社, 2003, 265-314
    [6] [加]R.G.S.比德韦尔著, 刘福林译. 植物生理学[M]. 北京:高等教育出版社, 1986
    [7] 潘瑞帜, 董愚得编. 植物生理学[M]. 北京:人民教育出版社, 1979
    [8] [日]古谷雅树, 宫地重远, 玖村敦彦主编, 廉平湖, 周永春译. 植物生理学讲座(第三卷)[M]. 北京:科学出版社, 1977
    [9] 杨学荣主编. 植物生理学[M]. 北京:人民教育出版社, 1979, 218-245
    [10] Brenner M L. Hormone control of assimilate partioning, regulation in the sink[J]. Acta. Hort., 1989, 23(9): 141-146
    [11] 梁雪莲, 王引斌. 小麦生长发育进程中 ABA 等内源激素的变化与调节研究[J]. 种子, 2004, 23(7): 49-52
    [12] 陈小鹏, 王秀峰, 孙小镭. 黄瓜果实发育与内源激素含量关系的研究[D]. 山东农业大学硕士学位论文, 2005
    [13] Faust M, Erez A, Rowland L J. et al. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance and release[J]. Amer. Soc. Hort. Sci., 1997, 32(4): 623-62
    [14] Shindell D T, Rind D, Lonergan P. Increased polar stratospheric ozone losses and delayed eventual recovery owing to the increasing greenhouse-gas concentrations[J]. Nature, 1998, 392(9): 589
    [15] Kerr L B, McElroy C T. Evidence for large upward trend of ultraviolet-B radiation linked to ozone depletion[J]. Science, 1993, 262: 1032-1034
    [16] 曹凑贵. 生态学概论[M]. 北京:高等教育出版社, 2002
    [17] 陈立民, 吴人坚, 戴星翼编著. 环境科学原理[M]. 北京:科学出版社, 2003
    [18] 王勋陵. 增强紫外B辐射对植物及生态系统影响研究的发展趋势[J]. 西北植物学报, 2002, 22(3): 670-681
    [19] Madronich S, McKenzie R L, Bjorn L O. et al. Changes in biologically active ultraviolet radiation reaching the earth’s surface[J]. Photochem. Photobiol. B, 1998, 46: 5-19
    [20] Biggs R H, Kossuth S V. Effects of ultraviolet-B radiation enhancements under field conditions. In: UV-B Biological and Climate Effects Research, Final. Report, 1978
    [21] Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation[J]. Plant Physiol., 1991, 83: 373-380
    [22] Sullivan J H, Teramura A H. Field study of the interaction between solar ultraviolet-B radiation and drought in photo-synthesis and growth in Soybean[J]. Plant Physiol., 1990, 92: 141-146
    [23] Barnes P W, Flint S D, Caldwell M M. Morphological Responses of Crop and Weed Species of Different Growth Forms to Ultraviolet-B Radiation[J]. Amer. Bot., 1990, 77(10): 1354-1360
    [24] Teramura A H, Tevini M, Iwanzik W. Effects of ultraviolet-B irradiation on plants during mild water stress. I. Effects on diurnal stomatal resistance[J]. Plant Physiol., 1983, 57: 175-180
    [25] Dai Q, Peng S B, Chavez A Q. et al. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation[J]. Environ. Exp. Bot., 1994, 34: 433-442
    [26] Caldwell M M. Solar ultraviolet radiation as an ecological factor for alpine plants[J]. Ecol. Monogr., 1968, 38(3): 243-268
    [27] Ziska L H, Teramura A H, Sullivan J H. Physiological sensitivity of native plants collected along an elevational gradient in Hawaii to increased UV-B radiation[J]. Amer. Bot., 1992, 79 (8): 863-871
    [28] Zepp R G, Callaghan T V, Erickson D J. Effects of increased solar ultraviolet radiation on biogeochemical cycle[J]. Ambio., 1995, 24(3): 181-187
    [29] Mark U, Sailemark M, Tevini M. Effects of solar UV-B radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.)[J]. Photochem. Photobiol., 1996, 64(3): 457-463
    [30] Tevini M, Teramura A H. UV-B effects on terrestrial plants[J]. Photochem. Photobiol., 1989, 50: 479-487
    [31] Hopkins L, Bond M A, Tobin A K. Effects of UV-B on the development and ultrastrucure of the primary leaf of wheat (Triticum aestivum)[J]. Exp. Bot., 1996, 47(sup): 20
    [32] Teramura A H, Biggs R H, Kossuth S. Effects of ultraviolet-B irradiances on soybean. II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration[J]. Plant Physiol., 1980, 65(3): 483-488
    [33] Jordan B R, He J, Chow W S. et al. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphophate carboxylase in response to supplementary ultraviolet-B radiation[J]. Plant cell environ., 1992, 15(1): 91-98
    [34] Bornman J F, Vogelmann T C. Effect of UV-B Radiation on Leaf Optical Properties Measured with Fibre Optics. J. Exp. Bot., 1991, 42(4): 547-554
    [35] Strid A, Chow W S, Anderson G M. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum[J]. Biochem. Biophs. Acta., 1990, 120: 260-268
    [36] Brandle T R. et al. Net photosynthesis electron transport capacity and ultrastructure of pisum sativuml exposed to ultraviolet B radiation[J]. Plant Physiol., 1977, 60: 165
    [37] Mirecki R M, Teramura A H. Effects of ultraviolet-B irradiation on soybean V.: The Dependence of Plant Sensitivity on the Photosynthetic Photon Flux Density during and after Leaf Expansion[J]. Plant Physiol., 1984, 74(3): 475-480
    [38] 郑有飞, 杨志敏, 颜景义等. 作物对太阳紫外线辐射增加的生物效应及其评估[J]. 应用生态学报, 1996, 7(1): 107-109
    [39] 杨志敏, 颜景义, 郑有飞等. 紫外辐射增强对植物生长的影响[J]. 植物生理学通讯, 1994, 30(4): 241-248
    [40] Murphy T M. Membranes as targets of ultraviolet radiation [J]. Plant Physiol., 1983, 58: 381-388
    [41] Kramer G F, Norman H A, Krizek D T. et al. Influence of UV-B radiation on polyaimines, lipid peroxidation and membrane lipid in cucumber[J]. Phytochem., 1991, 30(7): 2101-2108
    [42] 祖艳群, 李元, 陈建军等. 20 个小麦品种细胞膜透性对 UV-B 辐射增强的响应[J]. 中国学术期刊文摘, 1999, 10: 1314-1315
    [43] Jordan B R, Chow W S, Strid A. et al. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation[J]. FEBS Lett., 1991, 284(1): 5-8
    [44] 冯国宁, 安黎哲, 冯虎元等. 增强 UV-B 辐射对菜豆蛋白质代谢的影响[J]. 植物学报, 1999, 41(8): 833-836
    [45] Taylor R M, Nikaido O, Jordan B R. et al. Ultraviolet-B-induced DNA lesions and their removal in wheat (Triticum aestivum L.) leaves[J]. Plant Cell Environ., 1996, 19(2): 171-181
    [46] Doanhue B A, Yin S, Taylor J S. et al. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template[J]. Proc. Natl. Acad. Sci., 1994, 91(18): 8502-8506
    [47] Teramura A H, Murali N S. Interaspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions[J]. Environ. Exp. Bot., 1986,26(1): 89-95
    [48] Murali N S, Teramura A H. Effects of ultraviolet-B irradiance on soybean. VII. Biomass and concentration and uptake of nutrients at varying P supply[J]. Plant Nutr., 1985, 8 (2): 177-192
    [49] Teramura A H, Sullivan J H, Lydon J. Effects of UV-B radiation on soybean yield and quality: A 6-year field study[J]. Plant Physiol., 1980, 80(1): 5-11
    [50] Day T A, Vogelmann T C, DeLucia E H. Are some plant life forms more effective than others in screening out ultraviolet-B radiation[J]. Oecologia., 1992, 92(4): 513-519
    [51] Musil C F, Wand S J E. Differential stimulation of an arid-environment winter ephemeral Dimorphotheca pluvialis (L.) Moench by ultraviolet-B radiation under nutrient limitation[J]. Plant Cell Eniviron., 1994,17(3): 245-255
    [52] Van T K, Garrard L A, West S H. Effects of UV-B radiation on net photosynthesis of some crop plants [J]. Crop Sci., 1976, 16: 715-721
    [53] He J, Huang L K, Chow W S, Whitecross M I. et al. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Austr. J. Plant Physiol., 1993, 20(2): 129-142
    [54] Caldwell M M, Bjorn L O, Bornman J F. et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems[J]. Photochem. Photobiol. B: Biology, 1998, 46 (1-3): 40-52
    [55] Caldwell M M, Flint S D, Searles P S. Spectral balance and UV-B sensitivity of soybean: a field experiment[J]. Plant Cell Environ., 1994, 17(3): 267-27
    [56] Jordan B R. The effects of ultraviolet-B radiation on plants: A molecular perspective[J]. Adv. Bot. Res., 1996, 22: 97-162
    [57] Sullivan J H, Teramura A H. The effects of ultraviolet-B radiation on loblolly pine 2.Growth of field grown seedlings[J]. Tree Struct. Funct., 1992, 6(3): 115-120
    [58] 玄祖迎, 姚银安, 李春阳. 大田作物对 UV-B 辐射的响应及其研究方法现状和展望[J]. 应用与环境生态学报, 2007, 13(3): 426-430
    [59] Caldwell M M, Robberecht R, Flint S D. Internal filters prospects for UV-acclimation in high plant[J]. Plant Physiol., 1983, 58: 445-450
    [60] 李元, 王勋陵. 增强的 UV-B 辐射对麦田生态系统中种群数量动态的影响[J]. 生态学报, 2001, 21(1): 131-135
    [61] 祖艳群, 李元, 王勋陵. 增强的 UV-B 辐射对麦田生态系统能量累积和流动的影响[J]. 西北植物学报, 2000, 20(3): 387-391
    [62] Olszyk D, Dai Q, Teng P. et al. UV-B effects on crops: Response of the irrigated rice ecosystem[J]. plant physiol., 1996, 148(1~2): 26-34
    [63] Caldwell M M, Teramura A H, Tevini M. et al. Effects of increased solar ultraviolet radiation on terrestrial plants[J]. Ambio., 1995, 24(3): 166-173
    [64] 祭美菊, 冯虎元, 安黎哲等. 增强的 UV-B 辐射对植物影响的研究[J]. 应用生态学报, 2002, 13(3): 359-364
    [65] Li Y, Yue M, Wang X L. Competition and sensitivity of wheat and wild oat exposed to enhanced UV-B radiation at different densities under field condition[J]. Environ. Exp. Bot., 1999, 41: 47-55
    [66] McCloud E S, Berenbaum M R. Stratospheric ozone depletion and plantinsect interactions: Effects of UV-B radiation on foliage quality of Citrus jambhiri for Trichoplusia Ni[J]. Chem. Ecol., 1994, 20(3): 525-539
    [67] 井金学, 商鸿生, 李振岐. 紫外线照射对小麦条锈菌生物生物学效应的研究[J]. 植物病理学报, 1993, 23(4): 299-340
    [68] Ernst W H O, Jos W M, Van de Staaij. Et al. Reaction of savanna plants from Botswana on UV-B radiation[J]. Plant Ecol., 1997, 128(1-2): 163-170
    [69] Gehrke C, Johanson G, Callaghan T V. The Impact of Enhanced Ultraviolet-B Radiation on Litter Quality and Decomposition Processes in Vaccinium Leaves from the Subarctic[J]. Oikos., 1995, 1972(2): 213-222
    [70] 徐建祥, 杨海燕, 吴进才. 紫外 B 辐射增强对植食性昆虫的影响[J]. 生态学杂志, 2006, 25(7): 845-850
    [71] 冯虎元, 安黎哲, 陈书燕等. 增强 UV-B 辐射与干旱复合处理对小麦幼苗生理特性的影响[J]. 生态学报, 2002, 22(9): 1564-1568
    [72] 聂磊, 刘鸿先, 彭少麟. 水分胁迫对长期 UV-B 辐射下柚树苗生理特性的影响[J]. 植物资源与环境学报, 2001, 10(3): 19-24
    [73] Berkelear E J, Ormrod D P, Hale B A. The influence of PAR on the effects of UV-B radiation on Arabidopsis thaliana[J]. Photochem. Photobiol., 1996, 64: 110-116
    [74] Mark U, Tevini M. Combination effects of UV-B radiation and temperature on sunflower (Helian- thus amuus L.cv.Polstar) and maize (Zea mays l .cv. Zenit 200) seedlings[J]. Plant Physiol., 1996, 148: 49-56
    [75] 陈怡平, 刘永军, 赵萌萌等. 低剂量微波辐射对增强 UV-B 辐射损伤菘蓝幼苗抗氧化酶活性的影响[J]. 西北植物学报, 2005, 25(11): 2219-2225
    [76] 马晓丽, 郝金花, 韩榕. He-Ne激光对增强UV-B辐射小麦幼苗多胺氧化酶和过氧化物酶活性的研究[J]. 植物研究, 2007, 27(6): 669-673
    [77] 梁婵娟, 曾庆玲, 沈东兴等. 稀土对 UV-B 辐射伤害植物的影响(Ⅰ ): Ce 对 UV-B 辐射胁迫下油菜幼苗生长的影响[J]. 农业环境科学学报, 2004, 23(1): 22-25
    [78] Breznik B, Germ M, Gaberscik A. et al. Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat[J]. Photosynthetica., 2005, 43(4): 583-589
    [79] 贺军民, 佘小平, 刘成等. 增强 UV-B 辐射和 NaCl 复合胁迫下绿豆光合作用的气孔和非气孔限[J]. 植物生理与分子生物学学报, 2004, 30(1): 53-58
    [80] Dube S L, Bornman J F. Response of spruce seedlings to simultaneous exposure to UV-B radiation and cadmium[J]. Plant Physiol.,1992,30(6): 761-767
    [81] Rai L C, Tyagi B, Rai P K. et al. Interactive effects of UV-B and heavy metals (Cu and Pb) on nitrogen and phosphorus metabolism of a N2-fixing cyanobacterium Anabaena doliolum[J]. Environ. Exp. Bot., 1998, 39(3): 221-231
    [82] 唐学玺, 黄键, 王艳玲. UV-B 辐射和蒽对三角褐指藻 DNA 伤害的相互作用[J]. 生态学报, 2002, 22(3): 375-378
    [83] Miller H E, Booker F L, Fiscus E L. UV-B radiation and ozone effects on growth, yield and photo- synthesis of soybean[J]. Environ. Qual., 1994, 23: 83-91
    [84] 梁婵娟, 周青, 沈东兴等. UV-B 辐射与酸雨复合胁迫对油菜幼苗生长的影响[J]. 农业环境科学学报, 2004, 23(2): 231-234
    [85] Teramura A H, Sullivan J H, Ziska L H. Interaction of Elevated Ultraviolet-B Radiation and CO2 on Productivity and Photosynthetic Characteristics in Wheat, Rice, and Soybean[J]. Plant Physiol., 1990, 94(2): 470-475
    [86] Zhao D L, Reddy, Raja K, et al. Leaf and canopy photosynthetic characteristics of cotton (Gossyp- ium hirsutum) under elevated CO2 concentration and UV-B radiation[J]. Plant Physiol., 2004, 161 (5): 581-590
    [87] Tevini M, Mark U. Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings[J]. Plant Ecol., 1997, 128(1-2): 225-234
    [88] 安黎哲, 冯虎元, 王勋陵. 增强的紫外线(UV)-B 辐射对几种作物和品种生长的影响[J]. 生态学报, 2001, 21(2): 249-253
    [89] Rozema J, Jos van de Staaij, Bjorn L O. et al. UV-B as an environmental factor in plant life: stress and rugulation[J]. Trends Ecol. Evol., 1997, 12 (1): 22-28
    [90] Murali N S, Teramura A H. Effect of UV-B irradiance on soybean.Ⅵ Influence of phosphorus nutrition on growth and flavonoid content[J]. Plant Physiol., 1985, 63: 413-417
    [91] 王传海, 郑有飞, 万长建等. 紫外辐射增加对作物种子发芽及幼苗生长的影响[J]. 中国农业气象, 2000, 21(3): 33-35
    [92] 李元, 岳明. 紫外线辐射生态学[M]. 北京:中国环境科学出版社, 2000, 45-47
    [93] Ros J, Tevni M. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower [J]. Plant Physiol., 1995, 146: 295-302
    [94] YUAN C X, DING J. Effects of water stress on the content of IAA and activities of IAA oxidase and peroxidase peroxidases contribute to the protection of plant from ultraviolet radiation stressin cotton leaves[J ]. Acta Phytoph. siologica Sinica., 1990.16(2): 179-184
    [95] 杨晖, 焦光联, 冯虎元等. 紫外-B 辐射对番茄幼苗生长、POD 和 IAA 氧化酶活性的影响[J]. 西北植物学报, 2004, 24(5): 826-830
    [96] Huang S B, Dai Q J, Peng S B. Influence of supplemental ultraviolet-B on indoleacetic acid and calmodalin in the leaves of rice; (O-ry z a sativa L.)[J ]. Plant Growth Regulation., 1997, 21: 59-64
    [97] 黄少白, 戴秋杰, 刘晓忠等. 紫外光-B 辐射增强对水稻叶片内 IAA 和 ABA 含量的影响[J]. 植物学通报, 1998, 15 (增刊): 87-90
    [98] 李卓杰编著. 植物激素及其应用[M]. 广州:中山大学出版社, 1993: 18
    [99] 陈少裕. 植物谷胱甘肽的生理作用及其意义[J]. 植物生理学通讯, 1993, 29(3): 210-214
    [100] 杨景宏, 陈拓, 王勋陵. 增强紫外线-B 辐射对小麦叶片内源 ABA 和游离脯氨酸的影响[J]. 生态学报, 2000, 20(1): 39-42
    [101] 王三根. 细胞分裂素在植物抗逆和延缓衰老中的作用[J]. 植物学通报, 2000, 7(2): 121-126
    [102] 李海涛, 董铭, 廖迎春等. 模拟 UV-B 增强胁迫对大田水稻生长及内源激素含量的影响[J]. 中国农学通报, 2007, 23(3): 392-397
    [103] 董铭, 李海涛, 廖迎春等. 大田条件下模拟 UV-B 辐射滤减对水稻生长及内源激素含量的影响[J]. 中国生态农业学报, 2006, 14(3): 122-125
    [104] Slocum R D, Kaur-Sawhney R, Galston A W. The physiology and biochemistry of polyamines in plant[J]. Archives of biochemi. biophysi., 1984, 235(2): 283-303
    [105] Smith T A. Polyamines. Ann. Rev. Plant Physiol., 1985, 36: 117-143
    [106] Kramer G F, Krizek D T, Mirecki R M. Influence of photo synthetically active radiation and spectral quality on UV-B induced polyamine accumulation in soybean[J]. Phytochemi., 1992, 31(3): 1119-1125
    [107] Kitada M, Igarashi K, Hirose S. et al. Inhibition by polyamines of lipid peroxide formation in rat liver microsomes[J]. Biochem.Biophys. Res.Commum., 1979, 87 (2): 384-388
    [108] Bors W, C Langebartels, C Michel, H Sandermann. Polyamines as radical scavenger and protectent against ozone damage[J]. Phytochemi., 1989, 28 (6): 1589-1595
    [109] Santos I, Almeida J M, Salema R. Plants of Zea mays L. developed under enhanced UV-B radiation. I: some ultrastructural and biochemical aspects[J]. Plant Physiol., 1993, 141(4): 450-456
    [110] Barsig M, Malz R. Fine structure, carbohydrates and photosynthetic pigments of sugar maize leaves under UV-B radiation[J]. Environ. Exp. Bot., 2000, 43(2): 121-130
    [111] Demchik S, Day T A. Effect of Enhanced UV-B Radiation of Pollen Quantity, Quality, and Seed Yield in Brassica Rapa (Brassicaceae). Am. J. Bot., 1996, 83(5): 573-579
    [112] Johanson U, Gehrke C, Bjorn L O. et al. The effects of enhanced UV-B radiation on the growth of dwarf shrubs in a subarctic heathland[J]. Funct. Ecolo., 1995, 9(5): 713-719
    [113] Cen Y P. Bornman J F. The Response of Bean Plants to UV-B Radiation under Different Irradiances of Background Visible Light[J]. Exp. Bot., 1990, 41(11): 1489-1495
    [114] 何永美, 李元, 祖艳群. 作物对增强 UV-B 辐射的响应及调控对策[J]. 云南环境科学, 2004, 23(S1): 19-22
    [115] 侯扶江, 贲桂英, 颜景义等. 田间增加紫外线(UV)辐射对大豆幼苗生长和光合作用的影响[J]. 植物生态学报, 1998, 22(3): 256-261
    [116] Laakso K, Sullivan J H, Huttunen S. The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.)[J]. Plant Cell Environ., 2000, 23(5): 461-472
    [117] Tevini M, Braun J, Fieser G. The protective function of the epidermal layer of rye seedling against ultraviolet-B radiation[J]. Photochem. Photobiol., 1991, 53: 329-333
    [118] Li J, Ou-Lee T M, Raba R. et al. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation[J]. Plant Cell., 1993, 5(2): 171-179
    [119] Zu Y Q, Li Y, Chen H Y. et al. Intraspecific differences in physiological response of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions[J]. Environ. Experi. Bot., 2003, 50(1): 87-97
    [120] Beggs C J, Wellmann E. Photocontrol of flavonoid biosynthesis. In: Kendrick, R.E., Kronenberg, G.H.M., (Eds), Photomorphogenesis in Plants, 2nd ed. Kluwer Academic Publishers, Dordrecht., 1994, 733-751
    [121] 师生波, 李惠梅, 王学英等. 青藏高原几种典型高山植物的光合特性比较[J]. 植物生态学报, 2006, 30(1): 40-46
    [122] 黎峥, 段舜山, 武宝玕. UV-B 对两种藻光合色素和多糖含量的影响[J]. 生态科学, 2003, 22(1): 42-44
    [123] Green R, Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species[J]. Plant Cell, 1995, 7(2): 203-212
    [124] 刘家忠, 龚明. 植物抗氧化系统研究进展[J]. 云南师范大学学报, 1999, 19(6): 1-11
    [125] 杜秀敏, 殷文璇, 赵彦修等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001, 17(2): 121-125
    [126] Van Der Krol A R, Van Poecke R M, Vorst O F. et al. Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-2[J]. Plant Physiol., 1999, 121(4): 1153-1162
    [127] 黄少白, 张锡金. 水稻伸长生长对 GA3 的敏感性及其与内源 GA(1+4)含量的关系[J]. 华北农学报, 1998, 13(2): 48-52
    [128] Taylor R M, Tobin A K, Bray C M. et al. The effects of enhanced UV-B irradiation on DNA dam- age and repair in plant tissues[J]. Exp. Bot., 1994, 45: 55
    [129] Mclennan A. The repair of UV light-induced DNA damage in plant cells[J]. Mutat Res., 1987, 181(1): 1-7
    [130] Quaite F E, Sutherland B M, Sutherland J C. Action spectrum for DMA damage in alfalfa lowers predicted impact of ozone depletion[J]. Nature, 1992, 358, 576-578
    [131] Ries G, Heller W, Puchta H. Elevated UV-B radiation reduces genome stability in plants[J]. Nature, 2000, 406: 98-101
    [132] Kakani V G, Reddy K R, Zhao D. et al. Field crop responses to ultraviolet-B radiation: a review[J]. Gricultural and Forest Meteorology, 2003, 120: 191-218
    [133] Caldwell M M, Teramura A H, Tevini M. The changing solar ultraviolet climate and the ecological consequences for higher plants[J]. Trends in Ecolo. Evolution., 1989, 4(12): 363-367
    [134] 梁婵娟, 陶文沂, 周青. UV-B 辐射增强的环境植物学效应研究[J]. 中国生态农业学报, 2004, 12(4): 40-42
    [135] 李元, 王勋陵. 增强的 UV-B 辐射对陆地生态系统的影响[J]. 环境科学进展, 1999,7(6): 165-174
    [136] 訾先能, 陈宗瑜, 郭世昌等. UV-B 辐射的增强对作物形态及生理功能的影响[J]. 中国农业气象, 2006, 27(2): 102-106
    [137] 吴鲁阳, 张振文. UV-B 辐射增强对葡萄幼苗生长和生理生化影响的研究[D]. 西北农林科技大学硕士研究生论文, 2006
    [138] 马海燕, 张振文. 葡萄生长过程中内源激素含量变化的研究[D]. 西北农林科技大学硕士研究生论文, 2007
    [139] 曾庆钱, 陈厚彬, 鲁才浩等. HPLC 测定荔枝不同器官中内源激素流程的优化[J]. 果树学报, 2006, 23(1): 145-148
    [140] 林文雄, 吴杏春, 梁康迳等. UV-B 辐射增强对水稻多胺代谢及内源激素含量的影响[J]. 应用生态学报, 2002, 13(7): 807-813
    [141] Yang H, Zhao Z G, Qiang W Y. et al. Effects of enhanced UV-B radiation on the hormonal content of vegetative and reproductive tissues of two tomato cultivars and their relationships with reproductive characteristics[J]. Plant Growth Regulation, 2004, 43: 251-258
    [142] Behl R, Hartung W. Movement and compartmentation of abscisic acid in guard cells of Valerianella locusta: Effects of osmotic stress, external H+-concentration and fusicoccin[J]. Planta, 1986, 168(3): 360-368
    [143] Predieri S, Krizek D T, Wang C Y. et al. Influence of UV-B radiation on developmental changes, ethylene, CO2 flux and polyamines in cv. Doyenne d'Hiver pear shoots grown in vitro[J]. Plant Physiol., 1993, 87(2): 109-117
    [144] Wang Y B, Feng H Y, Qu Y. et al. The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings[J]. Environ. Exp. Bot., 2006, 57: 51-61
    [145] Mikizel L J, Knowles N R. Polyamine metabolism of potato seed-tubers during long-term storage and early sprout development[J]. Plant Physiol., 1986, 91: 183-189
    [146] Rakitina T Y, Vlasov P V, Rakitin V Y. Hormonal Aspects of Different Resistance of Arabidopsis thaliana Mutants to Ultraviolet Radiation[J]. Russian Plant Physiolo., 2001, 48(3): 353-358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700