高盐度碱液纳滤脱盐研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外经济的不断发展,纯碱产品需求增长,前景广阔。目前我国生产纯碱的方法主要有氨碱法、联碱法和天然碱加工法。在天然碱加工制纯碱时,为保证蒸发结晶过程的顺利进行,提高产品质量,需要排放适量母液;排放的母液中除含有大量的NaCl外,还含有较高浓度的Na_2CO_3和NaHCO_3。如果将排放母液中的NaCl分离出来,而保留Na_2CO_3和NaHCO_3,并将其返回到系统中利用,则可以减少母液排放量,提高经济效益。因此,本文采用纳滤过程对高盐度碱液的脱盐过程进行了详细研究,为实际应用提供依据。
     试验中采用DK1812C卷式纳滤膜元件,对含有NaCl:187.9g/L、Na_2CO_3:30.5g/L、NaHCO_3:7.4g/L的原料液,在不同进料流量、操作压力和料液浓度下,考察了纳滤膜对CO32-、HCO3-和Cl-三种离子的截留率、离子间分离系数、膜通量及回收率的变化情况。结果表明浓度和操作压力对纳滤膜性能具有较大影响。离子间分离系数、膜通量和回收率也都随着压力的增大和料液浓度的减小而增大。流量主要是通过改变膜表面附近的流动状况及浓差极化来影响结果,影响较其他因素不明显,随流量增大,离子截留率及膜通量呈微弱上升趋势。较优实验条件下分离系数CO32-/Cl-、HCO3-/Cl-分别达到25.7和1.8。
     当原料为碳酸钠-氯化钠两元物系时,相对于碳酸钠-盐酸氢钠-氯化钠三元物系,原料利用率较高。在料液组成为Cl-:0.622mol/L、CO32-:0.0646mol/L和压力12bar条件下,碳酸根和氯离子的截留率分别为93.5%和4.4%,此时两离子间的分离系数为14.9,较改变物料前碳酸根、碳酸氢根与氯离子间的总分离系数5.5提高幅度较大。因此将母液中HCO3-转化成CO32-后再进行纳滤处理,有利于提高原料利用率。
With the continual development of international economic, the need of soda ash is increasing and has a well prospect. At present, the main methods of producing soda ash in China, include Solvay process, combined method and trona processing. In order to ensure the process of evaporation and crystallization smoothly and improve the quality of product when obtain soda ash from trona, we should discharge proper mother liquor during trona processing, which contains large amounts of NaCl and high concentration of Na_2CO_3 and NaHCO_3 also. If NaCl is separated from discharged mother liquor, while Na_2CO_3 and NaHCO_3 components are retained to return to the system, we can not only reduce emissions, but also increase the economic efficiency. In this paper, we made a detailed research on desalination effect of high salinity alkali solution by nanofiltration to provide the basis for practical application.
     The experiment use GE-DK1812C roll nanofiltration membrane to make research on the changes of rejections about nanofiltration membrane to CO32-, HCO3- and Cl-, separation coefficient, membrane flux and recovery rate at different feed flow, operating pressure and feed concentration; in experiment, the raw material solution is composed of NaCl:187.9g/L, Na_2CO_3:30.5g/L and NaHCO_3:7.4g/L. The experiment results indicate that feed concentration and operating pressure have greater impact to the performance of nanofiltration membrane. Ion separation factor, membrane flux and recovery rate are all increased with increase of operating pressure and decrease of feed concentration. Feed flow affects experiment results mainly by changing the flow conditions near the surface of membrane and the concentration polarization, the effect of which is less obvious than other factors; ion rejection and membrane flux are slightly increasing with the increase of feed flow. Under optimum conditions, separation factors of CO32-/Cl- and HCO3-/Cl- are 25.7 and 1.8.
     When the feed solution is two element system of sodium carbonate - sodium chloride, the raw material has a higher utilization rate compared to ternary system of sodium carbonate - sodium hydrochloride - sodium chloride. Under the conditions that feed solution is composed of Cl-:0.622mol/L and CO32-:0.0646mol/L and operating pressure is 12bar, the rejection of carbonate and chloride ions are 93.5% and 4.4%; meanwhile, the separation coefficient of carbonate and chloride ions is 14.9, which is larger than total separation coefficient 5.5 of carbonate, bicarbonate and chloride ions before feed solution changed. So changing HCO3- in mother liquor to CO32- and then making treatment by nanofiltration can improve utilization rate of raw material.
引文
[1]叶铁林,天然碱,北京:化学工业出版社,2003
    [2]大连化工设计研究院,纯碱工学,北京:化学工业出版社,2004
    [3] Demirbas A,Production of sodium carbonate from soda ash via flash calcination in a drop tube furnace,Chemical Engineering and Processing,2002,41:215~221
    [4]钱志奎,低盐重质纯碱的生产,纯碱工业,1999(6):8~12
    [5]艾伯特?豪金斯,面向二十一世纪挑战的世界纯碱工业,纯碱工业,2001(6):3
    [6] Steinhauser G,Cleaner production in the Solvay Process: general strategies and recent developments,Journal of Cleaner Production,2008,16:833~841
    [7] Kasikowski T , Buczkowski R , Utilization of distiller waste from ammonia-soda processing,Journal of Cleaner Production,2004,12:759~769
    [8]王军成,崔文池,小联碱产品的质量和膜分离技术的应用,纯碱工业,2003(4),35~37
    [9] Ozdemir O,Karaguzel C,Nguyen A V,etal,Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts,Minerals Engineering,2009,22:168~175
    [10]李武,中国天然碱工业,北京:化学工业出版社,1994,197~198
    [11] G?rtber R S,Witkamp G J,Mixed solvent reactive recrystallization of trona (sodium sesqui-carbonate) into soda (sodium carbonate anhydrate) ,Hydrometallurgy,2007,88:75~91
    [12]阎秉忠,我国天然碱现状及前瞻[R],中国未来与发展研究报告,2002,661~663
    [13] Kyungmin J C,Keener T C,Khang S J,A study on the conversion of trona to sodium bicarbonate,Power Technology,2008,184:58~63
    [14]戴连荣,贺占海,张玉萍,中国天然碱工业发展近况,纯碱工业,2005(6),10~12
    [15]赵天源,赵红坤,曾之平等,天然碱矿生产倍半碱和食盐是工艺路线简析,郑州工业大学学报,1998,19:35~37
    [16] G?rtber R S,Witkamp G J,Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent,Journal of Crystal Growth,2002,237-239:2199~2204
    [17]邱会仙,杜合兵,安棚碱矿生产系统中循环脱盐的可行性分析,纯碱工业,2007(1),24~25
    [18]任保增,赵天源,曾之平,重碱催化湿分解过程的实验研究,纯碱工业,1995(2),27~29
    [19]张玉忠,郑领英,高从堦,液体分离膜技术及应用,北京:化学工业出版社,2004,348~385
    [20]李琳译,膜技术基本原理,北京:清华大学出版社,1999,193~197
    [21] Winston Ho W S,Sirkar Kamalesh K,Menbrane Handbook,New York:Van Nostrand Reinhold,1992,240
    [22] Scott K,Handbook of Industrial Membranes,1998,3~185
    [23] Matsuura T, Progress in membrane science and technology for seawater desalination-review,Desalination,2001,134:47~54
    [24]李卉,李光明,纳滤膜在水处理中的应用,江苏环境科技,2006,19(2):130~132
    [25] Levenstein R,Hasson D,Semiat R,Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes,Journal of Membrane Science,1996,16:77~92
    [26] Rautenbach R , Groschl A , Separation potential of Nanofiltration Membrane,Desalination,1990,73~84
    [27]高从堦,陈国华,篕际跤牍こ淌植幔本夯Чひ党霭嫔纾?2004
    [28]彭跃莲,秦振平,孟洪等,膜技术前沿及工程应用,北京:中国纺织出版社,2009,70~98
    [29]杨座国,膜科学技术过程与原理,上海:华东理工大学出版社,2009,91~105
    [30]王世昌,海水淡化工程,北京:化学工业出版社,2003,155~174
    [31] Pontalier P Y,Ismail A,Ghoul M,Mechanisms for the selective rejection of solutes in nanofiltration membranes,Separation Purification Technolofy,1997,12:175~181
    [32] Nguyen C M,Sunbaek B,Performance and mechanism of arsenic removal from water by a nanofiltration membrane,Desalination,2009,245:82~94
    [33] Eriksson P,Kyburz M,Pergande W,NF membrane characteristics and evaluation for sea water processing applications,Desalination,2005(184):281~294
    [34]鲁永宏,李东亮,纳滤膜分离技术的研究进展,化工之友,2006(12):17~19
    [35]朱淑飞,钱钰,鲁学仁,我国纳滤膜技术的研究进展,水处理技术,2002,28(1):12~16
    [36]姜华,方建慧,沈霞,纳滤膜对无机盐水溶液脱盐性能的研究,过滤与分离,2004,14(4):15~18
    [37]汪宁伟,王大新,王晓琳等,无机盐水溶液体系的纳滤膜分离实验研究,高校化学工程报,2002,16(3):257~262
    [38] Jesus G A , James M D , Mathematical modeling of nanofiltration membranes with mixed electrolyte solution,Journal of membrane science,2004,235:1~13
    [39]王大新,廖卓丹,伍灵等,用纳滤膜分离混合无极电解质溶液的性能评价方法,化工学报,2007,58(3):673~678
    [40] GE工艺膜分离技术产品手册(2008版).
    [41] Van der Meer WGJ,van Dijk J C,Theoretical optimization of spiral-wound and capillary nanofiltration models,Desalination,1997,113(2~3):129~146
    [42]宋玉军,孙本会,影响纳滤膜分离性能的因素分析,水处理技术,1997,23(2):78~82
    [43]方建慧,姜华,刘继全等,纳滤膜在海水淡化中的应用,膜科学与技术,2006,26(1):50~54
    [44] Ikeda I,Nakano T,Ito H,etal,New composite charged reverse osmosis membrane,Desalination,1988,68:109~119
    [45]高从堦,陈益棠,纳滤膜及其应用,中国有色金属学报,2004,14 (1):310~316
    [46] Nanda D,Tung K L,Hsiung C,Effect of solution chemistry on water softening using charged nanofiltration membranes,Desalination,2008,234:344~353
    [47]崔崇威,纪峰,纳滤膜法生产桶装饮用水与提高水资源利用率[N],哈尔滨工业大学学报,2007,39:258~261
    [48] Wenzel H,Reclamation and reuse of process water from reactive dyeing of cotton,Desalination,2000,130:177~183
    [49] Bartels C,Wilf M,Casey W,New generation of low fouling nanofiltration membranes,Desalination,2008,221:158~167
    [50] Hilal N,AI-Zoubi H,Nanofiltation of highly concentrated salt solutions up to seawater salinity,Desalination,2005,184:315~326
    [51] Turek M,Gonet M,Nanofiltration in the utilization of coal-mine brines,Desalination,1996,108:171~177
    [52] He Y,Li G M,Wang H,etal,Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane,Journal of the Taiwan Institute of Chemical Engineers,2009,40:289~295
    [53] Kertész Sz,LászlóZs,Horváth Zs.H,etal,Analysis of nanofiltration parameters of removal of an anionic detergent,Desalination,2008(221):303~311
    [54] Lau W J,Ismail A F,Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modeling, and fouling control-a review,Desaliantion,2009,245:321~348
    [55]吴麟华,分离膜中的新成员-纳滤膜及其在制药工业中的应用,膜科学与技术,1997,17:11~15
    [56] Hong S UK,Bruening M L,Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membrane,Journal of Membrane Science,2006,280:1~5
    [57] Sj?man E,M?ntt?ri M,Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions , Journal of Membrane Science,2007,292:106~115
    [58] Subhas K S,Grosse D,Rogut I,Membrane technologies for remediating contaminated soils: a critical review,Journal of Membrane Science,1998,151:75~85
    [59] Wang X L,Shang W J,Wang D X,etal,Characterization and application of nanofiltration membranes:state of the art,Desalination,2009,236:316~326
    [60] Ortega L M,Rémi L,Blais J F,Removal of metal ions from an acidic leachate solution by nanofiltration membranes,Desalination,2008,227:204~216
    [61]刘杰,纳滤海水淡化及其脱硼性能研究:[博士学位论文],天津,天津大学,2010
    [62]赵欣,碱卤母液电渗析精制研究:[硕士学位论文],天津,天津大学,2007
    [63]刘文洁,海水纳滤过程研究:[硕士学位论文],天津,天津大学,2008
    [64]刘杨,纳滤和离子交换除硼实验的研究:[硕士学位论文],天津,天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700