水跃区水流脉动压力的大涡模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高坝的不断兴建,高速水流引起的脉动荷载对水工建筑物的影响也越来越成为工程上关注的焦点。由于水流脉动压力成因极其复杂,许多重要的数据都只能通过原型观测或是相应的水工模型实验来获得。但是模型实验也存在很多的不足之处,例如,实验过程中外界因素的干扰,模型比尺相似律问题等。因此迫切需要其它方法对水流脉动进行分析研究。
     水力学与计算机技术有机结合产生的CFD数值模拟技术极大地增强了解决复杂问题的能力。相比模型实验,数值模拟技术具有可实现对复杂流场在理想状态下的全域模拟,提供的信息量大而丰富,可直接对原型进行模拟而不用考虑相似律问题等优势。
     本文所要研究的主要内容就是采用大涡模拟方法对水跃现象中的水流脉动压力进行模拟,并通过模型实验进行验证。主要研究内容和成果有:
     (1)通过大涡模拟数值计算方法,利用VOF自由液面追踪方法,建立三维有限元数学模型,对带自由表面的水跃现象进行数值模拟。
     (2)进行水工模型实验,对脉动壁压实验结果进行统计分析,包括标准差、偏态系数、峰态系数、概率密度函数,脉动壁压的时空相关特征、功率谱密度函数等,并将计算结果与实验结果进行对比,两者吻合较好,表明大涡模型能成功地模拟出水跃现象中的水流脉动压力。
     (3)在此基础上,分析水槽侧壁上水流脉动压力沿水深的分布规律。
     (4)将大涡模拟方法应用到水利工程中,对青铜峡泄洪闸的流场和水流脉动压力进行模拟,表明采用大涡模拟方法对大尺度模型进行三维数值模拟是可行的。
As a continual construction of high dams, the influence of fluctuating pressure caused by high speed discharge on hydraulic structure becomes the focus. Because the cause of fluctuating pressure is rather complex, many important parameters are obtained only from prototype observation or hydraulic model experiment. But there are many defects in model experiment, such as the influence of environment in the process of experiment, the similarity law of model scale. Therefore, other methods are needed urgently to study the pressure fluctuations.
     CFD numerical simulation technique which was combined organically by hydraulics and computer technology enhances the ability to solve more complex problems. In contrast with model experiment, numerical simulation technique has many advantages, as follows, the ability to simulate the whole region in perfect state, the information supplied greatly and abundantly, the ability to simulate prototype which don’t need to consider the problem of similarity law.
     The main work of this paper is to simulate fluctuating pressure of the hydraulic jump by the method of large eddy numerical simulation and to proof the results by model experiment. The principal contents and achievements of the paper are as follows:
     (1) With large eddy numerical simulation, three-dimensional numerical model is established to simulate hydraulic jump with free surface by VOF free surface track method.
     (2) The statistical characteristics that consist of standard deviation, skewness, kurtosis, probability density function, space-time correlation and power spectral density function of the fluctuating pressure recorded in the experiments are analyzed in the paper. The numerical simulation results are analyzed and compared with the test results, and they are well agreed with each other. It shows that the large eddy numerical simulation can simulate the fluctuating pressure of the hydraulic jump successfully.
     (3) On the base, regularity of fluctuating pressure distribution on water channel’s side wall is investigated in depth of water.
     (4) Applying the large eddy numerical simulation to hydraulic engineering, this paper simulates flow and fluctuating pressure of Qingtongxia sluice. The result shows that it is feasible to carry out three-dimensional simulation of large scale model with large eddy numerical simulation.
引文
[1]王木兰,水流脉动压力的数据处理、工程应用及机理研究的进展,河海大学科技情报,1990,10(3):28~43
    [2]王木兰,蒋传丰,夏宝莲等,水跃底部脉动压力随机分析及紊动比尺初探,华东水利学院学报,1985,1:67~73
    [3]丁灼仪,泄水建筑物水流脉动压强振幅统计特性的探讨,水利学报,1984,4:50~55
    [4]练继建,崔广涛,董淑芳,水工结构流激振动响应的反分析,水利水电技术,1998,29(8):51~54
    [5] B. B.布哈诺夫等,萨彦舒申斯克水电站宣泄小流量时主要建筑物的振动,水利水电快报,1994,12:8~11
    [6]谢省宗等,泄水建筑物的压力脉动和振动问题、高速水流研究述评,水利水电泄水建筑物高速水流情网,1986,5~10
    [7]练继建,崔广涛,黄锦林,导墙结构的流激振动研究,水利学报,1998,11:33~37
    [8]尤季茨基等,水流动水压强对溢流坝挑流鼻坎下游河床影响的模型实验和原型观测,北京:水利电力出版社,5~8
    [9]陈永灿、许协庆,射流对下游河床冲击作用的数值模拟,水动力学研究与进展, 1992, 7(3):319~326
    [10]张声鸣,消力池导墙脉动压力特性的研究,长江科学院院报,1995,12(1):11~18
    [11]张声鸣,水垫塘底板稳定研究,长江科学院院报, 1997,14(3):5~90
    [12] D. A.欧文,H. T.法尔维,W.威瑟斯.高著,消力池底板上的压力脉动,水利水电快报,1998,19(5):9~13
    [13]张建民,挑流消能水垫塘底板冲刷机理研究:[博士学位论文],四川:四川大学,2000
    [14]肖兴斌,水流脉动压力研究进展的若干问题综述,水电工程研究,1992,2:62~70
    [15]张铁生,肖兴斌,水流脉动压力研究进展综述,中南水力发电,1995,2:68~72
    [16]李建中,宁利中,高速水力学,西安:西北工业大学出版社,1994,10~16
    [17]梁在潮,工程湍流,武汉:华中理工大学出版社,1999,222~240
    [18]崔广涛,水流脉动压力随机分析,天津大学学报,1981
    [19]崔广涛等,三峡水利枢纽厂坝导墙泄洪振动水弹性模型实验研究,天津大学研究报告。
    [20]梁兴蓉,挑流冲刷过程的压力谱场特性的随机分析,高速水流,1984,2:25~33
    [21]张声鸣,消力池导墙脉动压力特性的研究,长江科学院院报,1995,12(1):11~18
    [22]张声鸣,陈建,导墙动水压力特性研究,长江科学院院报,1996,13(1):14~20
    [23]张声鸣,挑流消能导墙动水压力特性实验研究报告,长江科学院,1995
    [24]董志勇,吴持恭,杨永全,掺气对射流冲击水垫塘底部脉动压强频谱特性的影响,成都科技大学学报,1994,1:9~13
    [25]陆晶,紊流脉动压力的正交分解与低阶近似:[博士学位论文],武汉:武汉大学,2002
    [26]郭航忠,水垫塘底板稳定性判别标准研究:[硕士学位论文],天津:天津大学,2003
    [27]杨永森,明渠自掺气水流均匀流区掺气浓度分布Wood模型的改进,武汉水利电力学院学报,1992,2:45~49
    [28]罗铭,杨永森,掺气减蚀设施水力计算的改进,水利学报,1998,9:28~31
    [29]苑明顺,掺气槽下游含气浓度分布计算,全国第一届水力学、水文水资源学青年学术讨论会论文集,1990,25~32
    [30]许唯临,杨永全,吴持恭,具有起伏表面的紊流数值模拟,水力学报,1990,10:16~22
    [31]高秋新,船舶CFD研究进展,船舶力学,1999,3(4):74~78
    [32]李谊乐,刘应中,缪国平,二阶精度的VOF自由面追踪方法及其应用,船舶力学,1999,3(1):44~52
    [33] Ashgriz N. and Poo J.Y.,FLAIR:flux line-segment model for advection and interface reconstruction.J.Copm.Phys.,1991,93:449~468
    [34]王志东,三维自由面湍流场数值模拟及其在水利工程中的应用:[博士学位论文],南京:河海大学,2004
    [35]许唯临,王韦等,水工水气两相流的数值模拟,水动力学研究与紧张(A辑),2001,16(2):225~229
    [36]林明森,陶建华,三维溃坝问题的数值模拟研究,水利学报,1996,(7):67~74
    [37]马福喜,王金瑞,三维水流数值模拟,水利学报,1998,(1):39~44
    [38]许唯临,廖华胜,杨永全等,溪落渡水垫塘流场的数值计算,四川联合大学学报,1998,2(5):34~38
    [39]李志勤,李洪,李嘉等,溢流丁坝附近自由水面的实验研究与数值模拟,水利学报,2003,(8):53~57
    [40]戴春胜,河道三维流场数值模拟计算,黑龙江水利科技,2003,(4):1~3
    [41]刁明军,杨永全,王玉蓉等,挑流消能水气二相流数值模拟,水利学报,2003,(9):77~82
    [42]程香菊,罗麟,赵文谦等,阶梯溢流坝自由表面掺气特性数值模拟,水动力学研究与进展,2004,19(2):152~157
    [43]杨忠超,邓军,杨永全等,多股多层水平淹没射流数值模拟研究,水利学报,2004,(5):31~38
    [44]戴会超,魏文礼,曲线坐标系二维带自由表面强紊动水流数值模拟,水科学进展,2004,15(6):728~734
    [45]杨校礼,高季章,刘之平,三岔管水流数值模拟研究,水利水电技术,2005,36(1):48~50
    [46]陈学良,湍流计算模型,北京:北京中国科技大学出版社,1991,10~35
    [47]黄细彬,高速含沙掺气水流及磨蚀机理的研究:[博士学位论文],南京:河海大学,2001
    [48]王福军,计算流体动力学分析-CFD软件原理与应用,北京:清华大学出版社,2004,150~153
    [49] Walter Frost and Trevor H. Moulden, Handbook of Turbulence, Plenum Press, 1977,11~15
    [50] Tennekes. H. and Lumley. J. L., A First Course in Turbulence, MIT Press, 1973,6~8
    [51] Bradshaw. P., Introduction to Turbulence and its Measurement, Pergamon Press, 1971,10~19
    [52]金忠青,N-S方程的数值解和紊流模型,南京:河海大学出版社,1989,8~15
    [53]董壮,三维水流数值模拟研究进展,水利水运工程学报,2002,(3):66~73
    [54]李炜,黏性流体的混合有限分析解法,北京:科学出版社,2000,25~30
    [55] Thompson J.F., Weatherill N.P., Aspects of numerical grid generation, current and art, AIAA(paper),93~35
    [56] Shih T.I.P.,Bailey R.T., Algebraic grid generation for complex geometries, Int. J. Numer. Meth. in Fluids, l991,(l3):1~13
    [57] Spekreuse S.P., Elliptic grid generation based on Laplace equation and algebraic J.of Compu.Phys.1995,(118):38~61
    [58] Thornpson J.F.,arsi E.U.A., Numerical Grid Generation. North-Holland, Amsterdam,1985
    [59] Kenichi Matsuno, High-order upwind method for hyperbolic grid generation, computers & Fluids, l999,(28):825~851
    [60] Chars W.M., Steger J.L., Ageneralized scheme for three-dimensional hyperbolic grid generation, 1991,AIAA,91~158
    [61] Dwyer H.A., A geometric interpretation of hyperbolic grid generation, Compu.&Fluids 1994,(23):737~748
    [62] Tai CH, Yin SL.A novel hyperbolic grid generation procedure with inherent adaptive dissipation. J.Comput.Phys. 1995, (116):l73~179
    [63] Thompson J. F., Composite grid generation code for 3-Dregions-the EAGLE code. AIAA J.,1998,(26):271~272
    [64] Steinbrener J.P., Chawner J.R., Multiple block grid generation in the interactive environment. AIAA (paper),90~1602
    [65] K.Yannis, A finite volume Navier-Stokes algorithm for adaptive grids, Int.J.for Numer.rneth. in fluids,1992(15):193~217
    [66] O.Hassan, E.J.Probert, K.Morgan, Unstructured mesh procedures for the simulation of three-dimensional transient compressible inviscid flows with moving boundary components, Int.J.for Numer.meth. in fluids,1998(27):41~55
    [67] H.K. Versteeg, W.Malalasekera, An Introduction to Computational Fluid Dynamics:The Finite Volume Method,Wiley,New York,1995,3~10
    [68]许唯临,紊流代数应力模型在水力学中的应用研究: [博士学位论文],四川:成都科技大学,1991
    [69] Harlow F H, Welch J E, Shannon J P, Daly B J, The MAC Method, Los Alamos Scientific Laboratory Report,LA-3425,1965,5~12
    [70] Hirt C W, Nichols B D, Volume of fluid(VOF)for the Dynamics of Free Boundaries, Journal of Computational Physics,1981,(39):201~225
    [71] Schuster A. On the Investigation of Hidden Periodicities with Application to a Supposed 26Day Period of Meteorological Phenomena, Terr. Mag., 1898, 3(1):13~41
    [72] Yule G. U. On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers, Philos. Trans. R. Soc. London, ser. A, 1927,226(6):267~298
    [73] Walker G. On Periodicity in Series of Related Terms, Proc. R. Soc. London, ser A, 1931,131,518~532
    [74] Wiener N. Generalized Harmonic Analysis, Acta Math., 1930, 55,117~258
    [75] Tukey J. W. The Sampling Theory of Power Spectrum Estimates, J. Cycle Res., 1957, 6,31~52
    [76] Bartlett M. S. Smoothing Periodograms from Time Series with Continuous Spectra, Nature, London, 1948, 161(5):686~687
    [77] Levinson N. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction, J. Math. Phys., 1947, 25:261~278
    [78] Burg J. P., Maximum Entropy Spectral Analysis, Proc. 37th Meeting of Society Exploration Geophysicists, Oklahoma City,1967,10~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700