TLJ400连续挤压机底座的结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底座是连续挤压机的主要承载部件。企业考虑安全因素,在结构设计中选取过大的安全系数。随着连续挤压机产量愈来愈大,很显然,过大的安全系数会造成钢材的浪费,同时造成整机形体庞大,不便运送,因此对于连续挤压机底座结构的优化显得非常必要。
     文本借助有限元分析软件ANSYS对底座结构进行分析和优化。首先运用Pro/E建立了TLJ400连续挤压机底座的三维几何模型,再导入到ANSYS,建立底座的有限元模型,完成了正常工作情况下的有限元静力分析,掌握其应力与变形的分布情况,在分析计算结果的基础上,提出结构改进方案并对其进行了验证计算,使得优化后的结构在强度和刚度上有很大的提高。
     在模拟计算的同时,进行了TLJ400连续挤压机底座的静、动态强度试验。比较计算结果和试验结果,修正计算模型,使有限元模型尽量和实际状况相接近,从而确保其后改进设计的准确性。
     为了实现车体的轻量化,利用APDL语言实现了底座结构的参数化建模。选取底座钢结构的重量为目标函数,以底座主要型材的截面参数为设计变量,选择材料的许用应力和挠度为约束条件对基体进行了优化设计。优化后对底座强度和刚度进行校核,以检验优化结果的合理性,确保底座质量在性能满足要求的前提下明显降低。优化结果表明:底座总质量可减少2.366t,底座自重减轻了45.56%,强度和刚度仍能满足要求。
     本次研究的结果可以为连续挤压机底座的设计提供参考,并且表明有限元技术可以很好地指导连续挤压机底座结构设计。
The base frame bears most of the weight of the continuous extrusion. Considering the safety factors, designers tend to select excessively the bigger safety modulus in the structure design. Now more and more continuous extrusions are produced. As a result, excessively bigger safety modulus causes the waste of the steel. At the same time causes the whole machine is too big and heavy, not easy to delivery. Therefore, it is quite necessary to optimize the continuous extrusions' base frame structure.
     In virtue of ANSYS 10.0, the finite element analysis software, the thesis has made the analysis and optimum design of the continuous extrusions' foundation structure. First, the complex 3D geometric model of the TLJ400 continuous extrusion’s base frame was established by using Pro/E, then translated into ANSYS model. And a finite element model was recreated based on ANSYS. The static analysis was completed under knowing normal loading conditions. The stress and displacement distribution are found and the new design was put forward. The result shows that the structure has higher strength and stiffness than original scheme.
     During the research, a dynamic strength test was made so that a comparison can get between simulation results and test results. If the comparison is very approach, it means that the FEM model is similar to the reality and if the comparison has great difference, it means the model should be modifying again.
     In order to realize the lightweight of foundation, the parametric model of foundation was built by using the APDL. In the process of optimization, the weight of steel structure of foundation was designated as objective function, the section sizes of major foundation section parameters as design variables, and the stress and the deformation as state variables. Finally, the strength and stiffness of the optimized model was checked to examine the reasonability of the optimal results and ensure the remarkable reduction of foundation’s weight is made on condition that the performance of the steel structure meets its requirements. The optimum results show that the mass of foundation is reduced 2.366t, which is 45.56% of foundation weight, at the same time the stiffness and intensity can meet the requirement.
     The results of this research can provide design reference of the continuous extrusions' foundation structure, which demonstrate the efficiency of the finite element method for the foundation’s structural design.
引文
[1]陈吉光,樊志新,宋宝韫.连续挤压设备的机构运动计算机模拟.机械制造.2004.(42):27-28
    [2]宋宝韫,樊志新,刘元文.应用连续挤压技术生产铜扁线.电线电缆.2001年第1期
    [3]宋宝韫,樊志新,陈吉光,刘元文,贾春博.铜、铝连续挤压技术特点及工业应用.稀有金属.第28卷第1期.2004年2月
    [4] [美]莫维尼(Saeed Moaveni).有限元分析:ANSYS理论与应用[M].欧阳宇,王崧译.北京:电子工业出版社,2003
    [5] [美]洛根((Daryl L. Logan).有限元方法基础教程[M].伍义生,吴永礼译.北京:电子工业出版,2003
    [6]马奎兴.有限元及软件ANSYS简介.水利科技与经济.第10卷第3期.2004年6月
    [7]江爱川.结构优化设计[M],北京:清华大学出版社,1986
    [8]王光远,董明耀.结构优化设计[M],北京:高等教育出版社,1987
    [9]张炳华,侯旭.土建结构优化设计(第二版)[M],上海:同济大学出版社,1998
    [10]蔡新,郭兴文,张旭明.工程结构优化设计[M],北京:中国水利水电出版,2003
    [11]钱令希.工程结构优化设计[M],北京:水利电力出版社,1983
    [12]侯叔,叶燕华.建筑结构优化的现在与展望[J],基建优化,1996 (3)
    [13] Weinert,M.;Eschenauer,H.A.A parallel decomposition algorithm in application to structural design[J],Advances in Engineering Software,June 1996
    [14] Bendsoe,Martin Philip,Generating optimal topologies in structural design using a homogenization method,Computer Methods in Applied Mechanics and Engineering, Nov.1988
    [15] G.V.雷克莱狄斯,A.拉文德兰,K.W,拉格斯迪尔,工程最优化方法与应用[M],北京:北京航空航天大学出版社,1990
    [16] Herskovits,J;Mappa,,P.;Goulart,E.;Mota Soares,C.M.Mathematical programming models and algorithms for engineering design optimization[J],Computer Methods in Applied Mechanics and Engineering.August 2005
    [17]汪树玉,刘国华,包志仁.结构优化设计的现状与进展[J],基建优化,1999
    [18]夏人伟.工程优化理论与算法[M],北京:北京航空航天大学出版社,2003
    [19]薛毅.最优化原理与方法[M],北京:北京工业大学出版社,2001
    [20] Suzuki,Shinji;Yonezawa.Satoshi.Structural optimization by goal programming,Nippon Kikai Gakkai Ronbunshu,C Hen/Transactions of the Japan Society of Mechanical Engineers,Jun,1991
    [21] S.S.雷欧,工程优化原理及应用[M],北京:北京理工大学出版社,1990
    [22]邢文训,谢金星.现代优化计算算法[M],北京:清华大学出版社,1999. 8
    [23]李芳,凌道盛.工程结构优化设计发展综述[J],工程设计学报,2002. 12
    [24] Duan,,Zhongdong,An improved optimal elemental method for updating finite element models[J], Earthquake Engineering and Engineering Vibration,June,2004
    [25]刘涛,杨凤鹏。精通ANSYS[M].北京:清华大学出版社,2002
    [26]刘洁,张和平.基于ANSYS参数化语言的机械设计结构优化设计.沈阳化工学院学报.2004 (3)
    [27]东方人华.ANSYS7.0入门与提高[M].北京:清华大学出版社,2004,7
    [28]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004
    [29]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002
    [30]龚曙光.ANSYS工程应用实例解析.北京:机械工业出版社,2003:1-10
    [31]张胜民.基于有限元软件ANSYS 7.0的结构分析[M],北京:清华大学出版社,2003
    [32] Reh,Stefan;Beley,Jean-Daniel;Mukherjee,Siddhartha;Khor, Eng Hui.Probabilistic finite element analysis using ANSYS Structural Safety[J],June.2006
    [33]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M],北京:机械工业出版社,2004
    [34]柯常忠,索海波.ANSYS优化技术在结构设计中的应用[J].煤矿机械,2005,(1):9-11
    [35]邵蓝秋.ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004
    [36]何煌深.Pro/ENGINEER野火中文版建模基础技术.北京:清华大学出版社2004
    [37]小飒工作室编.最新经典ANSYS及Workbench教程.电子工业出版社,2004
    [38]黄纯颖等.机械创新设计.北京:高等教育出版社.2000
    [39]刘鸿文.材料力学(上、下册).第三版北京:高等教育出版社.1993.5
    [40]哈尔滨工业大学教研室.理论力学(上、下册).第四版北京:高等教育出版社.1993.04
    [41]王志明,杨为清.现代设计方法在工程结构强度及刚度设计中的应用中国机械工程.1999,Vo1.10,No.8:861-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700