神经肽FF在外周阿片镇痛调节和脊髓心血管活性方面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经肽FF (NPFF)是具有阿片调节活性的神经肽家族,其包含着两个不同前体(pro-NPFFA和]pro-NPFFB)和两个不同受体(NPFF1和NPFF2)。已有的研究表明,NPFF在痛觉、包括痛觉、心血管活性、阿片耐受和成瘾、体温、胃肠道等方面具有重要的调节作用。为了进一步揭示NPFF系统生物学功能,在此论文中探讨了NPFF及其特异性配体分别在外周阿片镇痛活性调节和脊髓水平心血管活性方面的生物活性及其作用机制。
     在痛觉研究方面,利用光热甩尾实验来评价中枢注射NPFF及其相关肽对外周吗啡所引起镇痛活性的影响。实验结果发现,i.c.v.注射NPFF (1,3和10nmol)能剂量依赖地抑制外周注射吗啡(0.12mg,i.p.)所引起的镇痛作用。同样,i.c.v.注射NPFF2和NPFF1受体的高选择性激动剂dNPA和NPVF也都能显著地减弱外周注射吗啡(0.12mg,i.p.)的镇痛活性。此外,NPFF及其相关肽的这种抗阿片镇痛的作用能被预注射NPFF受体的选择性拮抗剂RF9 (10nmol i.c.v.)所拮抗。这一研究表明中枢NPFF1和NPFF2受体的激活都能介导抗外周吗啡镇痛的活性。
     在心血管方面,利用大鼠整体血压实验检测了NPFF系统在脊髓水平对麻醉大鼠心血管活性的调节作用。研究表明鞘内注射NPFF能剂量依赖地引起大鼠平均动脉血压(MAP)和心率(HR)的增加,而且NPFF1和NPFF2受体的高选择性激动剂dNPA和NPVF在脊髓水平都产生升血压和升心率作用。NPFF及其相关肽所引起的心血管调节作用能被NPFF受体选择性拮抗剂RF9 (i.t.)所拮抗。进一步研究还发现,预注射α-肾上腺素能受体拮抗剂芬托拉明(1mg/kg i.v.)能显著地减弱NPFF所介导的升压作用,而预注射毒蕈碱能受体以及肾上腺素能受体的拮抗剂能阻遏NPFF的升心率作用。这些结果显示了鞘内注射NPFF及其相关肽所引起的升血压和升心率作用可能是由脊髓中NPFF1和NPFF2受体所共同介导的。并且,毒蕈碱能受体和肾上腺素能受体参与调节了由鞘内注射NPFF所诱导升心率作用,而α-肾上腺素能受体则在由鞘内注射NPFF所诱导升压效应中起了重要的调节作用。
Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family, including two precursors (pro-NPFFA and pro-NPFFB) and two receptors (NPFF1 and NPFF2). NPFF has been reported to play important roles in the control of pain, cardiovascular activity, opiate tolerance and addiction, body temperature and gastrointestinal function through interactions with the opioid system. In order to further explore the biological function of NPFF system, in the present study, NPFF and its selective ligands were used to investigate the regulatory effects of NPFF system on peripheral analgesia induced by opioids and the spinal cardiovascular activities.
     In the mouse tail flick test, the effects of central administration of NPFF and related peptides on analgesia induced by morphine administered at the peripheral level were studied. The result showed that intracerebroventricular (i.c.v.) injection of NPFF (1,3 and 10 nmol) dose-dependently inhibited the analgesia induced by morphine (0.12 mg, i.p.) administered at the peripheral level. Similarly, i.c.v. administration of dNPA and NPVF, two agonists highly selective for NPFF2 and NPFF1 receptors, respectively, decreased the peripheral antinociceptive effect of 0.12 mg morphine in mice. Furthermore, these anti-opioid activities of NPFF and related peptides were blocked by pretreatment with the NPFF receptors selective antagonist RF9 (10 nmol, i.c.v.). These results demonstrate that activation of central NPFF1 and NPFF2 receptors has the similar anti-opioid action on the peripheral analgesic effect of morphine.
     In urethane-anesthetized rats, the cardiovascular responses to intrathecal (i.t.) injection of NPFF and related agonists were investigated. It is noteworthy that NPFF elicited increases in mean arterial pressure (MAP) and heart rate (HR) in a dose-dependent manner. Interestingly, NPVF and dNPA, the two highest selective agonists for NPFF1 and NPFF2 receptors, produced significant pressor and tachycardic responses at the spinal cord level. Furthermore, the cardiovascular effects induced by NPFF and related peptides were significantly antagonized by NPFF receptors selective antagonist RF9 (i.t.). Moreover, pretreatment of the rats with a-adrenoceptor antagonist phentolamine (1 mg/kg, i.v.) significantly reduced the pressor effects of NPFF. Nevertheless, pretreatment with muscarinic receptor and adrenoceptor antagonists (i.v.) could block the tachycardic effects induced by NPFF. Collectively, our results suggested that i.t. administration of NPFF and related peptides increased MAP and HR which were possibly mediated by the activation of both NPFF1 and NPFF2 receptors in the rat spinal cord. In addition, our results showed that the muscarinic receptor and adrenoceptor participated in the tachycardic response to i.t. NPFF, whileα-adrenoceptor played an important role in the regulation of pressor effect of NPFF (i.t.).
引文
1. Price, D.A., Greenberg, M.J., Structure of a molluscan cardioexcitatory neuropeptide. Science 1977.197:p.670-671.
    2. Weber E, E.C., Samuelsson SJ, Barchas JD., Novel peptide neuronal system in rat brain and pituitary. Science,1981214:p.1248-51.
    3. Dockray GJ, R.J., Shivelry J, Gayton RJ, Barnard CS., A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide.. Nature,1983.305:p.328-30.
    4. Yang, H.-Y.T., Fratta, W., Majane, E.A., Costa, E., Isolation,sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine.. Proc.Nat. Acad. Sci.,1985.82:p.7757-7761.
    5. Bonnard, E.,O. Burlet-Schiltz, B. Frances, H. Mazarguil, B. Monsarrat, J.M. Zajac, and A. Roussin, Identification of neuropeptide FF-related peptides in rodent spinal cord. Peptides,2001.22(7):p.1085-92.
    6. Bonnard, E., O. Burlet-Schiltz, B. Monsarrat, J.P. Girard, and J.M. Zajac, Identification of proNeuropeptide FFA peptides processed in neuronal and non-neuronal cells and in nervous tissue. Eur J Biochem,2003.270(20):p.4187-99.
    7. Deval, E., A. Baron, E. Lingueglia, H. Mazarguil, J.M. Zajac, and M. Lazdunski, Effects of neuropeptide SF and related peptides on acid sensing ion channel 3 and sensory neuron excitability. Neuropharmacology,2003.44(5):p.662-71.
    8. Jhamandas, K., B. Milne, M. Sutak, C. Gouarderes, J.M. Zajac, and H.Y. Yang, Facilitation of spinal morphine analgesia in normal and morphine tolerant animals by neuropeptide SF and related peptides. Peptides,2006.27(5):p.953-63.
    9. Perry, S.J., E. Yi-Kung Huang, D. Cronk, J. Bagust, R. Sharma, R.J. Walker, S. Wilson, and J.F. Burke, A human gene encoding morphine modulating peptides related to NPFF and FMRFamide. FEBS Lett,1997.409(3):p.426-30.
    10. Vilim, F.S., et al., Gene for pain modulatory neuropeptide NPFF:induction in spinal cord by noxious stimuli. Mol Pharmacol,1999.55(5):p.804-11.
    11. Liu, Q., et al., Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem,2001. 276(40):p.36961-9.
    12. Hinuma, S., Shintani, Y., Fukusumi, S., Iijima, N., Matsumoto, Y.,, M. Hosoya, Fujii, R., Watanabe, T., Kikuchi, K., Terao, Y.,, T. Yano, Yamamoto, T., Kawamata, Y, Habata, Y., Asada, M.,, C. Kitada, Kurokawa, T., Onda, H., Nishimura, O., Tanaka, M.,, and Y. Ibata, Fujino, M., New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals.. Nat.Cell Biol.,2000.2:p.703-708.
    13. 方泉,张邦治,王锐,神经肽FF的构效关系研究.化学进展,2007.19:p.1977-1985.
    14. Hinuma, S., Habata, Y, Fujii, R., Kawamata, Y., Hosoya, M.,, S. Fukusumi, Kitada, C., Masuo, Y, Asano, T., Matsumoto, H.,, M. Sekiguchi, Kurokawa, T., Nishimura, O., Onda, H., Fujino,, and M., A prolactin-releasing peptide in the brain. Nature,1998.393:p.272-276.
    15. Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D.,, J.M. Vanderwinden, Le Poul, E., Brezillon, S., Tyldesley, R.,, N. Suarez-Huerta, Vandeput, F., Blanpain, C., Schi□mann,, and V. S.N., G., Parmentier, M., The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.. J. Biol.Chem.,2001.276: p.34631-34636.
    16. Chartrel, N., Dujardin, C., Anouar, Y, Leprince, J., Decker, A.,, S. Clerens, Do-Rego, J.C., Vandesande, F., Llorens-Cortes, C.,, and J. Costentin, Beauvillain, J.C., Vaudry, H., Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity.. Proc. Nat. Acad. Sci.,2003.100:p. 15247-15252.
    17. Osugi, T., K. Ukena, S.A. Sower, H. Kawauchi, and K. Tsutsui, Evolutionary origin and divergence of PQRFamide peptides and LPXRFamide peptides in the RFamide peptide family. Insights from novel lamprey RFamide peptides. Febs J,2006.273(8):p.1731-43.
    18. Labrouche, S., J.P. Laulin, M. Le Moal, G. Tramu, and G. Simonnet, Neuropeptide FF in the rat adrenal gland:presence, distribution and pharmacological effects. J Neuroendocrinol,1998.10(7):p.559-65.
    19. Sundblom, D.M., P. Panula, and F. Fyhrquist, Neuropeptide FF-like immunoreactivity in human plasma. Peptides,1995.16(2):p.347-50.
    20. Roumy, M. and J.M. Zajac, Neuropeptide FF, pain and analgesia. Eur J Pharmacol,1998. 345(1):p.1-11.
    21. Aarnisalo, A.A., Panula, P., Neuropeptide FF-containing efferent projections from the medial hypothalamus of rat:a Phaseolus vulgaris leucoagglutinin study. Neuroscience 1995.65:p.175-192.
    22. Kivipelto, L., E.A. Majane, H.Y. Yang, and P. Panula, Immunohistochemical distribution and partial characterization of FLFQPQRFamidelike peptides in the central nervous system of rats. J Comp Neural,1989.286(2):p.269-87.
    23. Kivipelto, L., Panula, P., Comparative distribution of neurons containing FLFQPQRFamide-like (morphine-modulating) peptide and related neuropeptides in the rat brain. Eur. J. Neurosci.,1991.3:p.175-185.
    24. Lee, C.H., K. Wasowicz, R. Brown, E.A. Majane, H.T. Yang, and P. Panula, Distribution and characterization of neuropeptide FF-like immunoreactivity in the rat nervous system with a monoclonal antibody. Eur J Neurosci,1993.5(10):p.1339-48.
    25. Majane, E.A., J. Zhu, A.A. Aarnisalo, P. Panula, and H.Y. Yang, Origin of neurohypophyseal neuropeptide-FF (FLFQPQRF-NH2). Endocrinology,1993.133(4):p. 1578-84.
    26. Panula, P., A.A. Aarnisalo, and K. Wasowicz, Neuropeptide FF, a mammalian neuropeptide with multiple functions. Prog Neurobiol,1996.48(4-5):p.461-87.
    27. Kivipelto, L. and P. Panula, Origin and distribution of neuropeptide-FF-like immunoreactivity in the spinal cord of rats. J Comp Neural,1991.307(1):p.107-19.
    28. Nystedt, J.M., A.M. Brandt, J. Mandelin, F.S. Vilim, E.B. Ziff, and P. Panula, Analysis of human neuropeptide FF gene expression. J Neurochem,2002.82(6):p.1330-42.
    29. Allard, M., S. Geoffre, P. Legendre, J.D. Vincent, and G. Simonnet, Characterization of rat spinal cord receptors to FLFQPQRFamide, a mammalian morphine modulating peptide:a binding study. Brain Res,1989.500(1-2):p.169-76.
    30. Allard, M., J.M. Zajac, and G. Simonnet, Autoradiographic distribution of receptors to FLFQPQRFamide, a morphine-modulating peptide, in rat central nervous system. Neuroscience,1992.49(1):p.101-16.
    31. Allard, M., D. Jordan, J.M. Zajac, C. Ries, D. Martin, D. Monkouanga, N. Kopp, and G. Simonnet, Autoradiographic localization of receptors for neuropeptide FF, FLFQPQRFamide, in human spinal sensory system. Brain Res,1994.633(1-2):p. 127-32.
    32. Kivipelto, L. and P. Panula, Central neuronal pathways containing FLFQPQRFamide-like (morphine-modulating) peptides in the rat brain. Neuroscience, 1991.41(1):p.137-48.
    33. Bonini, J.A., et al., Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem,2000.275(50):p.39324-31.
    34. Elshourbagy, N.A., et al., Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J Biol Chem,2000.275(34):p.25965-71.
    35. Yang, H.Y. and M.J. Iadarola, Activation of spinal neuropeptide FF and the neuropeptide FF receptor 2 during inflammatory hyperalgesia in rats. Neuroscience,2003.118(1):p. 179-87.
    36. Yang, H.Y. and M.J. Iadarola, Modulatory roles of the NPFF system in pain mechanisms at the spinal level. Peptides,2006.27(5):p.943-52.
    37. Majane, E.A., P. Panula, and H.Y. Yang, Rat brain regional distribution and spinal cord neuronal pathway of FLFQPQRF-NH2, a mammalian FMRF-NH2-like peptide. Brain Res,1989.494(1):p.1-12.
    38. Iadarola, M.J., Mannes, A.J., Karai, L., Mitchell, K., O'Donnell, B., and O. Wellisch, Yang, H.-Y.T., Neuropeptide FF receptor 2 up-regulation in dorsal root ganglion and dorsal spinal cord during peripheral inflammation. Soc. Neurosci. Abstract 43,2003.437: p.5.
    39. Gicquel, S., H. Mazarguil, C. Desprat, M. Allard, J.P. Devillers, G. Simonnet, and J.M. Zajac, Structure-activity study of neuropeptide FF:contribution of N-terminal regions to affinity and activity. J Med Chem,1994.37(21):p.3477-81.
    40. Mazarguil, H., C. Gouarderes, J.A. Tafani, D. Marcus, M. Kotani, C. Mollereau, M. Roumy, and J.M. Zajac, Structure-activity relationships of neuropeptide FF:role of C-terminal regions. Peptides,2001.22(9):p.1471-8.
    41. Vyas, N., C. Mollereau, G. Cheve, and C.R. McCurdy, Structure-activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives. Peptides,2006.27(5):
    p.990-6.
    42. Quelven, I., A. Rdussin,O. Burlet-Schiltz, C. Gouarderes, J.A. Tafani, H. Mazarguil, and J.M. Zajac, Dissociation of pharmacological pro- and anti-opioid effects by neuropeptide FF analogs. Eur J Pharmacol,2002.449(1-2):p.91-8.
    43. Magnuson, D.S., A.F. Sullivan, G. Simonnet, B.P. Roques, and A.H. Dickenson, Differential interactions of cholecystokinin and FLFQPQRF-NH2 with mu and delta opioid antinociception in the rat spinal cord. Neuropeptides,1990.16(4):p.213-8.
    44. Roumy, M. and J. Zajac, Neuropeptide FF selectively attenuates the effects of nociceptin on acutely dissociated neurons of the rat dorsal raphe nucleus. Brain Res,1999.845(2):p. 208-14.
    45. Gelot, A., H. Mazarguil, P. Dupuy, B. Frances, C. Gouarderes, M. Roumy, and J.M. Zajac, Biochemical, cellular and pharmacological activities of a human neuropeptide FF-related peptide. Eur J Pharmacol,1998.354(2-3):p.167-72.
    46. Roumy, M., C. Gouarderes, H. Mazarguil, and J.M. Zajac, Are neuropeptides FF and SF neurotransmitters in the rat? Biochem Biophys Res Commun,2000.275(3):p.821-4.
    47. Roumy, M., M. Gamier, and J.M. Zajac, Neuropeptide FF receptors 1 and 2 exert an anti-opioid activity in acutely dissociated rat dorsal raphe and periventricular hypothalamic neurones. Neurosci Lett,2003.348(3):p.159-62.
    48. Dupouy, V. and J.M. Zajac, Neuropeptide FF receptors control morphine-induced analgesia in the parafascicular nucleus and the dorsal raphe nucleus. Eur J Pharmacol, 1997.330(2-3):p.129-37.
    49. Roumy, M., C. Lorenzo, S. Mazeres, S. Bouchet, J.M. Zajac, and C. Mollereau, Physical association between neuropeptide FF and micro-opioid receptors as a possible molecular basis for anti-opioid activity. J Biol Chem,2007.282(11):p.8332-42.
    50. Anko, M.L. and P. Panula, Functional modulation of human delta opioid receptor by neuropeptide FF. BMC Neurosci,2005.6:p.21.
    51. Demichel, P., J.C. Rodriguez, J. Roquebert, and G Simonnet, NPFF, a FMRF-NH2-like peptide, blocks opiate effects on ileum contractions. Peptides,1993.14(5):p.1005-9.
    52. Takeuchi, T., A. Fujita, M. Roumy, J.M. Zajac, and F. Hata, Effect of 1DMe, a neuropeptide FF analog, on acetylcholine release from myenteric plexus of guinea pig
    ileum. Jpn J Pharmacol,2001.86(4):p.417-22.
    53. Miller, K.K. and C.R. Lupica, Neuropeptide FF inhibition of morphine effects in the rat hippocampus. Brain Res,1997.750(1-2):p.81-6.
    54. Kavaliers, M. and D. Innes, Sex differences in the effects of neuropeptide FF and IgG from neuropeptide FF on morphine-and stress-induced analgesia. Peptides,1992.13(3): p.603-7.
    55. Kavaliers M, Y.H., IgG from Antiserum against endogenous mammalian FMRF-NH2-related peptides augments morphine- and stress-induced analgesia in mice. Peptides,1989.10:p.741-5.
    56. Kavaliers M, I.D., Sex differences in the effects of neuropeptide FF and IgG from neuropeptide FF on morphine- and stress-induced analgesia.. Peptides,1992.13:p. 603-07.
    57. Gouarderes, C., M. Sutak, J.M. Zajac, and K. Jhamandas, Antinociceptive effects of intrathecally administered F8Famide and FMRFamide in the rat. Eur J Pharmacol,1993. 237(1):p.73-81.
    58. Panula, P., E. Kalso, M. Nieminen, V.K. Kontinen, A. Brandt, and A. Pertovaara, Neuropeptide FF and modulation of pain. Brain Res,1999.848(1-2):p.191-6.
    59. Kontinen, V.K., A.A. Aarnisalo, J.J. Idanpaan-Heikkila, P. Panula, and E. Kalso, Neuropeptide FF in the rat spinal cord during carrageenan inflammation. Peptides,1997. 18(2):p.287-92.
    60. Nystedt, J.M., K. Lemberg, M. Lintunen, K. Mustonen, R. Holma, V.K. Kontinen, E. Kalso, and P. Panula, Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiol Dis,2004. 16(1):p.254-62.
    61. Wei, H., P. Panula, and A. Pertovaara, A differential modulation ofallodynia, hyper algesia and nociception by neuropeptide FF in the periaqueductal gray of neuropathic rats: interactions with morphine and naloxone. Neuroscience,1998.86(1):p.311-9.
    62. Pertovaara, A., M.M. Hamalainen, T. Kauppila, and P. Panula, Carrageenan-induced changes in spinal nociception and its modulation by the brain stem. Neuroreport,1998. 9(2):p.351-5.
    63. Rothman, R.B., A review of the role of anti-opioid peptides in morphine tolerance and dependence. Synapse,1992.12(2):p.129-38.
    64. Lake, J.R., M.V. Hammond, R.C. Shaddox, L.M. Hunsicker, H.Y. Yang, and D.H. Malin, IgG from neuropeptide FF antiserum reverses morphine tolerance in the rat. Neurosci Lett,1991.132(1):p.29-32.
    65. Malin, D.H., J.R. Lake, M.V. Hammond, D.E. Fowler, R.B. Rogillio, S.L. Brown, J.L. Sims, B.M. Leecraft, and H.Y. Yang, FMRF-NH2-like mammalian octapeptide:possible role in opiate dependence and abstinence. Peptides,1990.11(5):p.969-72.
    66. Tan, P.P., J.C. Chen, J.Y. Li, K.W. Liang, C.H. Wong, and E.Y. Huang, Modulation of naloxone-precipitated morphine withdrawal syndromes in rats by neuropeptide FF analogs. Peptides,1999.20(10):p.1211-7.
    67. Rothman, R.B., L.S. Brady, H. Xu, and J.B. Long, Chronic intracerebroventricular infusion of the antiopioid peptide, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2 (NPFF), downregulates mu opioid binding sites in rat brain. Peptides,1993.14(6):p.1271-7.
    68. Gelot, A., B. Frances, A. Roussin, J.P. Latapie, and J.M. Zajac, Anti-opioid efficacy of neuropeptide FF in morphine-tolerant mice. Brain Res,1998.808(2):p.166-73.
    69. Gelot, A., B. Frances, S. Gicquel, and J.M. Zajac, Antisense oligonucleotides to human SQA-neuropeptide FF decrease morphine tolerance and dependence in mice. Eur J Pharmacol,1998.358(3):p.203-6.
    70. Huang, E.Y, J.Y. Li, C.H. Wong, P.P. Tan, and J.C. Chen, Dansyl-PQRamide, a possible neuropeptide FF receptor antagonist, induces conditioned place preference. Peptides, 2002.23(3):p.489-96.
    71. Marchand, S., A. Betourne, V. Marty, S. Daumas, H. Halley, J.M. Lassalle, J.M. Zajac, and B. Frances, A neuropeptide FF agonist blocks the acquisition of conditioned place preference to morphine in C57Bl/6J mice. Peptides,2006.27(5):p.964-72.
    72. Kotlinska, J., A. Pachuta, T. Dylag, and J. Silberring, Neuropeptide FF (NPFF) reduces the expression of morphine- but not of ethanol-induced conditioned place preference in rats. Peptides,2007.28(11):p.2235-42.
    73. Jhamandas, J.H. and D. MacTavish, Central administration of neuropeptide FF causes activation of oxytocin paraventricular hypothalamic neurones that project to the brainstem. J Neuroendocrinol,2003.15(1):p.24-32.
    74. Roth, B.L., J. Disimone, E.A. Majane, and H.Y. Yang, Elevation of arterial pressure in rats by two new vertebrate peptides FLFQPQRF-NH2 and AGEGLSSPFWSLAAPQRF-NH2 which are immunoreactive to FMRF-NH2 antiserum. Neuropeptides,1987.10(1):p.37-42.
    75. Allard, M., S. Labrouche, A. Nosjean, and R. Laguzzi, Mechanisms underlying the cardiovascular responses to peripheral administration of NPFF in the rat. J Pharmacol Exp Ther,1995.274(1):p.577-83.
    76. Laguzzi, R., A. Nosjean, H. Mazarguil, and M. Allard, Cardiovascular effects induced by the stimulation of neuropeptide FF receptors in the dorsal vagal complex:an autoradiographic and pharmacological study in the rat. Brain Res,1996.711(1-2):p. 193-202.
    77. Prokai, L., A.D. Zharikova, A. Juhasz, and K. Prokai-Tatrai, Cardiovascular effects of neuropeptide FF antagonists. Peptides,2006.27(5):p.1015-9.
    78. Ma, L., D. MacTavish, F. Simonin, J.J. Bourguignon, T. Watanabe, and J.H. Jhamandas, Prolactin-releasing peptide effects in the rat brain are mediated through the Neuropeptide FF receptor. Eur J Neurosci,2009.30(8):p.1585-93.
    79. Desprat, C. and J.M. Zajac, Hypothermic effects of neuropeptide FF analogues in mice. Pharmacol Biochem Behav,1997.58(2):p.559-63.
    80. Frances, B., H. Lahlou, and J.M. Zajac, Cholera and pertussis toxins inhibit differently hypothermic and anti-opioid effects of neuropeptide FF. Regul Pept,2001.98(1-2):p. 13-8.
    81. Roussin, A., F. Serre, C. Gouarderes, H. Mazarguil, M. Roumy, C. Mollereau, and J.M. Zajac, Anti-analgesia of a selective NPFF2 agonist depends on opioid activity. Biochem Biophys Res Commun,2005.336(1):p.197-203.
    82. Quelven, I., A. Roussin, and J.M. Zajac, Comparison of pharmacological activities of Neuropeptide FF1 and Neuropeptide FF2 receptor agonists. Eur J Pharmacol,2005. 508(1-3):p.107-14.
    83. Fang, Q., Y.Q. Wang, F. He, J. Guo, J. Guo, Q. Chen, and R. Wang, Inhibition of neuropeptide FF (NPFF)-induced hypothermia and anti-morphine analgesia by RF9, a
    new selective NPFF receptors antagonist. Regul Pept,2008.147(1-3):p.45-51.
    84. Wang, Y.Q., J. Guo, S.B. Wang, Q. Fang, F. He, and R. Wang, Neuropeptide FF receptors antagonist, RF9, attenuates opioid-evoked hypothermia in mice. Peptides,2008.29(7):p. 1183-90.
    85. Raffa, R.B. and H.I. Jacoby, A-18-famide and F-8-famide, endogenous mammalian equivalents of the molluscan neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2), inhibit colonic bead expulsion time in mice. Peptides,1989.10(4):p.873-5.
    86. Gicquel S, F.J., Bueno L, Zajac JM., Effects of F8Famide analogs on intestinal transit in mice. Peptides,1993.14:p.749-53.
    87. Decker, B., B. Vadokas, U. Kutschenreuter, K. Golenhofen, K. Voigt, G.P. McGregor, and K. Mandrek, Action of FMRFamide-like peptides on porcine gastrointestinal motility in vitro. Peptides,1997.18(10):p.1531-7.
    88. Fang, Q., J. Guo, M. Chang, L.X. Chen, Q. Chen, and R. Wang, Neuropeptide FF receptors exert contractile activity via inhibition of nitric oxide release in the mouse distal colon. Peptides,2005.26(5):p.791-7.
    89. Sunter, D., A.K. Hewson, S. Lynam, and S.L. Dickson, Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci Lett,2001.313(3):p.145-8.
    90. Cline, M.A., W. Nandar, and J.O. Rogers, Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides,2007.41(6):p. 433-9.
    91. Nicklous, D.M. and K.J. Simansky, Neuropeptide FF exerts pro- and anti-opioid actions in the parabrachial nucleus to modulate food intake. Am J Physiol Regul Integr Comp Physiol,2003.285(5):p. R1046-54.
    92. Kavaliers, M. and D.D. Colwell, Neuropeptide FF (FLQPQRFamide) and IgG from neuropeptide FF antiserum affect spatial learning in mice. Neurosci Lett,1993.157(1):p. 75-8.
    93. Lecron, J.C., M. Minault, M. Allard, P. Goube de Laforest, J. Gombert, and G. Simonnet, Modulation of human lymphocyte proliferation by FLFQPQRFamide, a FMRFamide-like peptide with anti-opiate properties. J Neuroimmunol,1992.38(1-2):p.1-8.
    94. Huang, E.Y., J.Y. Li, P.P. Tan, C.H. Wong, and J.C. Chen, The cardiovascular effects of PFRFamide and PFR(Tic)amide, a possible agonist and antagonist of neuropeptide FF (NPFF). Peptides,2000.21(2):p.205-10.
    95. Jhamandas, J.H. and D. Mactavish, Central administration of neuropeptide FF (NPFF) causes increased neuronal activation and up-regulation of NPFF gene expression in the rat brainstem. J Comp Neurol,2002.447(3):p.300-7.
    96. Harrison, L.M., Kastin, A.J., Zadina, J.E., Opiate tolerance and dependence:receptors, G-proteins, and antiopiates. Peptides 1998.19:p.1603-1630.
    97. Gouarderes, C., H. Mazarguil, C. Mollereau, N. Chartrel, J. Leprince, H. Vaudry, and J.M. Zajac, Functional differences between NPFF1 and NPFF2 receptor coupling:high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology,2007.52(2):p.376-86.
    98. Mollereau, C., et al., Pharmacological characterization of human NPFF(1) and NPFF(2) receptors expressed in CHO cells by using NPY Y(1) receptor antagonists. Eur J Pharmacol,2002.451(3):p.245-56.
    99. Simonin, F., et al., RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci U S A,2006.103(2):p.466-71.
    100. Yang, H.Y., T. Tao, and M.J. Iadarola, Modulatory role of neuropeptide FF system in nociception and opiate analgesia. Neuropeptides,2008.42(1):p.1-18.
    101. Haley, T.J. and W.G. McCormick, Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother,1957.12(1):p. 12-5.
    102. Yaksh, T.L. and T.A. Rudy, Chronic catheterization of the spinal subarachnoid space. Physiol Behav,1976.17(6):p.1031-6.
    103. Mollereau, C., M. Roumy, and J.M. Zajac, Opioid-modulating peptides:mechanisms of action. Curr Top Med Chem,2005.5(3):p.341-55.
    104. Laurent P, B.J., Valverde O, Ledent C, de Kerchove d'Exaerde A, Schiffmann SN, Maldonado R, Vassart G, Parmentier M., The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10.. Nat Neurosci,2005.8:p.1735-41.
    105. Gouarderes, C., I. Quelven, C. Mollereau, H. Mazarguil, S.Q. Rice, and J.M. Zajac, Quantitative autoradiographic distribution of NPFF1 neuropeptide FF receptor in the rat brain and comparison with NPFF2 receptor by using [125I]YVP and [125I]EYF as selective radioligands. Neuroscience,2002.115(2):p.349-61.
    106. Mollereau, C., H. Mazarguil, J.M. Zajac, and M. Roumy, Neuropeptide FF (NPFF) analogs functionally antagonize opioid activities in NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells. Mol Pharmacol,2005.67(3):p.965-75.
    107. Kersante, F., C. Mollereau, J.M. Zajac, and M. Roumy, Anti-opioid activities of NPFF1 receptors in a SH-SY5Y model. Peptides,2006.27(5):p.980-9.
    108. Rebeyrolles, S., J.M. Zajac, and M. Roumy, Neuropeptide FF reverses the effect of mu-opioid on Ca2+ channels in rat spinal ganglion neurones. Neuroreport,1996.7(18): p.2979-81.
    109. Allard, M., D.T. Theodosis, P. Rousselot, M.C. Lombard, and G Simonnet, Characterization and localization of a putative morphine-modulating peptide, FLFQPQRFamide, in the rat spinal cord:biochemical and immunocytochemical studies. Neuroscience,1991.40(1):p.81-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700