慢性应激性抑郁大鼠胃运动变化中海马谷氨酸代谢1型受体和多巴胺D1受体的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症(depression)是一种常见的精神疾病,以食欲不振、心情压抑、兴趣丧失、精力不足、自我评价过低及体重下降、失眠、疲劳、无望感及自杀倾向等为主要表现。其广泛性、易复发性及自杀倾向严重影响着患者工作、学习和社会职能的发挥。在抑郁症复杂多源的发病机制中,应激(stress)是一个不可忽视的重要因素,因为应激环境或者应激因子通常先于抑郁症状存在;抑郁症患者的应激因素明显多于一般人群。功能性胃肠疾病(FGID)的发病机制与精神、应激因素有着紧密相联的关系,病人的性格异常、焦虑、抑郁积分明显高于正常人。中枢神经系统中,海马属于边缘前脑,是与学习、记忆和情绪行为功能密切相关的重要脑区,对情绪反应和胃肠活动都有着重要的调控作用,也是应激易累及损伤的主要靶区;同时,海马富含各种神经递质的受体,是应激激素作用的靶区,也是具有可塑性和极易受损的脑区。
     目前有研究显示,在慢性应激时,海马谷氨酸(glutamate,Glu)水平长期显著高于基础值。谷氨酸是哺乳动物中枢神经系统重要的兴奋性神经递质,参与了学习、记忆、药物依赖成瘾及神经系统退行性疾病等多种病理生理过程。在应激性脑损伤中,对于谷氨酸通过受体介导的神经毒作用,以往的研究主要集中在谷氨酸离子型受体上。随着20世纪80年代代谢型谷氨酸受体(mGluRs)的发现,mGluRs在应激性脑损伤的作用也日渐受到重视。应激过程中脑皮质内Glu含量的升高曲线与mGluR1表达合成增加趋势基本吻合,提示Glu可能通过其受体mGluR1产生的神经毒作用参与了应激源对中枢神经系统的损害作用。近年来在脑创伤的实验研究中,也开始有应用mGluR1的拮抗剂AIDA进行神经保护的研究,例如Meli等对体外培养的神经细胞、大鼠海马区脑组织造成缺氧和缺糖的损伤研究,发现mGluR1的拮抗剂AIDA能缓解损伤导致的神经细胞数目下降,而激动剂能加重神经细胞损伤。
     多巴胺(dopamine,DA)是20世纪研究的最有成效的脑内神经递质之一,也是一种重要的胃肠道神经递质。DA参与和影响脑及躯体的生理功能是广泛并且值得受到关注的,它参与调控运动功能并且参与情绪和认知能力,也可调节心血管和胃肠功能。有研究表明,DA在抑郁症的发病和治疗中也起着重要作用,抑郁症患者DA功能减退,而增高DA的浓度的药物如酪氨酸、苯丙胺则能缓解抑郁症状。多巴胺的D1受体在多巴胺改善抑郁样行为中发挥着关键性的作用,例如,选择性D1受体激动剂在无助模型和强迫游泳实验中均表现出了抗抑郁的作用,而当用SCH23390阻断D1受体后阻断了丙咪嗪的治疗作用。这说明D1受体参与了丙咪嗪的抗抑郁作用。Ossowska等研究发现,长期应激处理后的大鼠边缘系统的D1受体密度显著增加,而通过长期抗抑郁药物的治疗则可产生相反的作用。这又进一步证明了D1受体参与了抑郁症的发病机制。有研究显示,在皮质纹状体激活mGluI型受体而不是Ⅱ、Ⅲ型受体,减少多巴胺的释放是剂量依赖性的,而当阻断mGluI型受体后则没有这种效果。近期有实验研究表明,Ⅰ型代谢型谷氨酸受体直接提高了海马单胺类递质的水平:mGlul受体阻断剂AIDA增强了DA的水平。
     因此本实验提出mGlul受体拮抗剂能否起到抗抑郁样作用以及对胃活动有何影响,这些作用是否通过提高DA的水平来完成,而DA的这种作用是否通过D1受体来实现,换言之,谷氨酸通过mGlul受体引起抑郁的作用是否通过降低了DA的表达来实现,据此本实验通过建立慢性不可预见性温和应激(Chronic unpredicted mild stress,CUMS)抑郁大鼠模型,海马微量给药,观测动物行为变化且记录胃运动,探讨mGluR1与抑郁症的关系及其对胃运动的影响,揭示mGluR1与多巴胺D1受体在应激性抑郁发生中对胃活动调节中的关系,证明mGluRl的作用是否通过多巴胺的D1受体来实现。实验结果如下:
     1.CUMS处理后,与正常对照组相比,大鼠体重增长率、糖水偏好率、敞箱实验的水平得分、垂直运动得分显著降低(P<0.01),游泳不动时间显著延长(P<0.05),同时大鼠平均胃内压和胃的收缩幅值也显著降低(P<0.01)。
     2.海马微量注射Glu与CUMS引起的动物行为表现一致,与正常对照组相比,大鼠体重增长率(P<0.01)、糖水偏好率(P<0.05)、敞箱实验的垂直运动得分显著降低(P<0.01),同时海马微量注射Glu可明显降低大鼠的胃内压(P<0.01)和胃收缩幅值(P<0.05)。
     3.海马微量注射mGlul受体阻断剂AIDA可消除应激所引起的体重增长率(P<0.01)、糖水偏好率(P<0.05)、水平运动(P<0.01)、垂直运动(P<0.05)得分的减少,游泳不动时间与CUMS组相比,极显著减少(P<0.01)。对大鼠进行21d慢性不可预见性应激的同时,海马微量注射mGluRl受体的阻断剂AIDA可明显改善慢性应激引起的胃活动减弱作用,与CUMS组相比,有显著性差异(P<0.05)。
     4.海马预先注射mGlul受体阻断剂AIDA,再注射Glu,大鼠的体重增长率、糖水偏爱率、水平得分都有所增加,但差异不显著,垂直运动得分显著增加(P<0.01),游泳不动时间显著减少(P<0.01),海马微量注射AIDA+Glu组与Glu组相比较,胃内压和胃收缩幅值有所增强,但是差异不显著。
     5.慢性不可预见性温和应激21d,海马微量注射AIDA的同时注射SCH-23390(D1受体阻断剂),与AIDA+CUMS相比,体重增长率(P<0.01)、糖水偏爱率(P<0.01)、水平得分(P<0.05)、垂直运动(P>0.05)降低,游泳不动时间显著增加(P<0.01)。胃内压减小而胃收缩幅值大于AIDA+CUMS组,但无显著性差异。
     从本实验结果可以得出,CUMS应激诱发抑郁,而抑郁既有行为学表现,又有胃肠活动的显著减弱,应激引起情绪变化是胃肠功能紊乱的原因之一。海马是应激反应发生的主要神经核团,海马过量的Glu既具有产生抑郁的作用,又有抑制胃肠活动的作用,而这些作用都能被mGluR1受体阻断剂AIDA所减弱,不能完全消除,说明过量的Glu引起抑郁样行为表现部分是通过mGluR1受体实现的。当然,还有其他受体也参与了抑郁行为。在注射AIDA的同时给予SCH-23390,AIDA的抗抑郁作用有所削弱,而胃收缩反而有所加强。这表明慢性应激引起抑郁样行为变化和胃活动抑制的神经机制有所不同,过量Glu经mGluR1受体抑制DA释放可能是产生抑郁样行为的原因之一,而对胃活动的抑制似乎与DA及其D1受体关系不大。总之,情绪变化和胃运动之间的关系非常密切同时也十分复杂,对于其具体的机制还需继续深入的研究。
Depression is a common mental illness,the main performance of which is poor appetite, depressed mood, loss of interest, low energy, low self-evaluation and weight loss, insomnia, fatigue, hopelessness, and suicidal tendencies. Its universality, easy, and recurrent suicidal tendencies in patients with a serious impact on learning, work and social functions of play. In the complex mechanism of depression,the stress is an important factor can not to be ignored, because:stress factor or the stress environment often exist precedes depressive symptoms; the stress factors in patients with depression was higher than the general population. The incidence and spirit of functional gastrointestinal disorders (FGID) are closely related to stress factors, the patient's personality abnormalities, anxiety, depression, significantly higher than the normal human. In the central nervous system, the hippocampus,one part of limbic forebrain, is associated with learning, memory and emotional behavior, has an important regulatory role in emotional reactions and gastrointestinal activity, is also main target to stress injuries. At the same time, the hippocampus is rich in a variety of messenger receptor, is the target area of stress hormones and is also with the plasticity and easily damaged.
     There are research reports indicate that under chronic stress, the hippocampus glutamic acid (glutamate, Glu) levels were significantly higher than the basis of the long-term value. Glutamate is an important excitatory neurotransmitter in mammalian central nervous system involved in learning, memory, drug addiction and nervous system rely on a variety of degenerative diseases. In the stress-induced injury, the glutamate receptor mediates neurotoxic effects by receptors, previous studies focused on ionotropic glutamate receptors. As in the 1980s of metabotropic glutamate receptors (mGluRs) found, mGluRs in the stress-induced brain injury is also increasing attention. The increase of Glu content in cerebral cortex during stress agrees with the expression of mGluRl synthesis curve, suggesting that Glu may be generated Neurotoxicity through the mGluR1 receptors involved in the damage of central nervous system produced by stressors. In the experimental study of traumatic brain injury in recent years have started to use AIDA for neuroprotective studies, Meli,etc. For example, nerve cells in vitro rat hippocampus region of brain tissue caused by hypoxia and hypoglycemia injury and found that mGluR1 antagonist AIDA can reduce the decline in the number of nerve cells caused by damage, while the agonists can aggravate nerve cell damage.
     Dopamine (DA) is one of the most effective brain neurotransmitter be studied in 20th century, DA participate and influence the physiological functions of the brain and body is an important and wide-ranging, and regulation of motor function and participation in emotional and cognitive abilities, and also can be adjusted to cardiovascular and gastrointestinal function. Some studies have shown, DA plays an important role in the pathogenesis and treatment of depression, DA dysfunction in patients with depression while increase the concentration of DA drugs such as tyrosine, amphetamine can ease symptoms of depression. DA is one of the most effective study of the brain neurotransmitter currently, is also an important neurotransmitter in the gastrointestinal tract. Dopamine D1 receptor plays a crucial role in improving depression-like behavior of dopamine,for example, the selective D1 receptor agonist in helplessness model and the forced swim test have shown the antidepressant effect, and when the D1 receptor blockade with SCH23390 showed blocking the treatment of imipramine. This indicates that D1 receptors are involved in the antidepressant effects of imipramine. Other study by Ossowska found that under long-term stress treatment, D1 receptor density increased significantly in the limbic system, while through long-term treatment with antidepressants may have the opposite effect. This is further proof of the D1 receptors involving in the pathogenesis of depression. This is further proof of the D1 receptors are involved in the pathogenesis of depression.
     Therefore, this study proposed whether mGlul receptor antagonist could display antidepressant-like effect and how to impact on gastric activity, whether these effects are accomplished through increased DA and DA in this role is achieved through the D1 receptor, in other words, whether depression caused by mGlu1 receptor is through reducing the DA to achieve. In this study, through the establishment of chronic unpredictable mild stress (CUMS) rat model of depression, hippocampus trace administration, observation of animal behavior and record changes in gastric motility, to explore the the relationship between mGluRl antagonist AIDA and depression and its impact on gastric motility, as well as reveal whether the role of AIDA in this effect through dopamine D1 receptors to achieve, as to provide the experimental basis whether involved in the regulation of indigestion due to stress-induced. The results are as follows:
     1.CUMS treatment, compared with normal control group, body weight growth rate, sugar preference rate, the level of open-field test scores, vertical motion scores significantly lower (P <0.01),swimming immobility time was significantly prolonged (P<0.05), while rats with mean intragastric pressure and gastric contraction amplitude was significantly lower (P<0.01).
     2.Hippocampal microinjection of Glu and CUMS animals caused by the same behavior, compared with normal control group, body weight growth rate (P<0.01),sugar preference rate (P <0.05),open-field test of the vertical movement scores are significantly decreased (P<0.01),while microinjection of Glu in hippocampus of rats can be significantly reduced intragastric pressure (P <0.01)and gastric contraction amplitude (P<0.05).
     3.Hippocampal microinjection of AIDA (mGlul receptor antagonist) can eliminate weight growth rate (P<0.01),sugar preference rate (P<0.05), horizontal movement (P<0.01),vertical movement (P<0.05)scores caused by stress. Swimming immobility time compared with the CUMS very significantly reduced (P<0.01).Under 21d chronic unpredictable mild stress, hippocampus microinjection of mGluR1 receptors antagonist AIDA can significantly improve the chronic stress-induced weakening of activity in the role of the stomach, compared with CUMS, there is a significant difference (P<0.05).
     4. Pre-injection of the hippocampus AIDA (mGlul receptor antagonist) re-injection of Glu, rat body weight growth rate, sugar preference rate, the level of rates have increased, but the difference was not significant, vertical motion score increased significantly (P<0.01),swimming immobility time significantly reduced (P<0.01),hippocampal microinjection of AIDA+Glu group compared with the Glu group, intragastric pressure and gastric contraction amplitude was enhanced, but no significant difference.
     5.Chronic unpredictable mild stress-21d at the same time, the hippocampus, microinjection of SCH-23390 (D1 receptor antagonist) while injection of AIDA, as compared with the AIDA+CUMS group, weight growth rate (P<0.01),sugar preference rate (P<0.01),horizontal movement (P<0.05), vertical movement (P<0.05) reduced, immobility time in swimming increased significantly (P<0.01). Intragastric pressure and gastric contraction amplitude were higher than AIDA+CUMS group, but not significantly
     The experimental results can be drawn from this, CUMS induces depression, and depression performs both behavioral and gastrointestinal activity reduced, stress-induced mood change is one of the causes in gastrointestinal disorders. Hippocampus is a major stress reaction nerve nucleus, excessive Glu in hippocampus has both created the role of depression and inhibit gastrointestinal motility. These effects can be weakened by mGluR1 receptor antagonist AIDA and can not be eliminated completely explain depression-like behavior caused by excessive Glu is some kind achieved through the mGluRl receptor. Of course, there are other receptors are also involved in depression behavior. AIDA injection at the same time giving SCH-23390, results showed that, the antidepressant effect of AIDA has been weakened. But gastric contraction has been enhanced. This indicates that neural mechanisms of chronic stress-induced depression-like changes in behavior and gastric inhibitory activities are different. Excessive Glu release by mGluR1 receptors to inhibit DA produces depression-like behavior may be one of the reasons. The inhibition of gastric activity has little to do wit the DA and the D1 receptor. In short, the relationship between the mood changes and gastric motility is very closely and complexity, the specific mechanism needs to be continue in-depth studied.
引文
[1]Greden, J.F..The burden of recurrent depression:causes, consequences,and future prospects[J].Clin. Psychiatry,2001,62:5-9.
    [2]Mathers,C.,Stevenson, C..The Burden of Disease and Inquiry in Australia [N]. Australian Institute of Health and Welfare, Canberra,1999.
    [3]Lopez,A.D.,Mathers,C.D.,Ezzati,M.,Jamison,D.,Maurray, C.J.L..Measuring the global burden of disease and risk factors,1990-2001.Global Burden of Diseases and Risk Factors, ed. Oxford University Press, New York,2006:1-13.
    [4]Murray, C.J.L.,Lopez, A.D..Alternative projections of mortality and disability by cause 1990-2020:Global Burden of Disease Study, Lancet,1997,349:1498-1504.
    [5]Commonwealth Department of Health and Aged Care,1999a. National Health Priority Areas Report:Mental Health,1998,Canberra.
    [6]Mental Health:a report of the Surgeon General.US Department of Health and Human Services,Rockville.US Department of Health and Human Services,1999.
    [7]The Centre for Economic Performance's Mental Health Policy Group,2006. The depression report:a newdeal for depression and anxiety disorders.The London school of economics and political science, London.
    [8]赵幸福,徐一峰.生活事件和抑郁症[J].上海精神医学,1995,7:209
    [9]Solomon DA,Keller MB,Leon AC,et al.Multiple recurrences of major depressive disorder[J].Am J Psychiatry,2000,157(2):229-233.
    [10]Nemeroff, C.B.The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions.Mol Psychiatry,1996,1:336-342.
    [11]Swaab, D.F.,Bao, A.M.,Lucassen, P.J.The stress system in the human brain in depression and neurodegeneration. Ageing Res.Rev,2005,4:141-194.
    [12]Clark, P.M.Programming of the hypothalamo-pituitary-adrenal axis and the fetal origins of adult disease hypothesis.Eur. J.Pediatr,1998,157(Suppl 1),S7-S10.
    [13]Clark, P.M.,Hindmarsh, P.C.,Shiell,A.W.,Law, C.M.,Honour, J.W.,Barker, D.J.Size at birth and adrenocortical function in childhood.Clin. Endocrinol. (Oxf.),1996,45:721-726.
    [14]Tarullo,A.R.,Gunnar, M.R. Child maltreatment and the developing HPA axis. Horm.Behav,2006,50:632-639.
    [15]Kendler, K.S.,Karkowski, L.M.,Prescott, C.A.,Causal relationship between stressful life events and the onset of major depression. Am.J.Psychiatry,1999,156: 837-841.
    [16]Paykel, E.S.Stress and affective disorders in humans.Semin. Clin. Neuropsychiatry, 2001,6:4-11.
    [17]Scott,L.V.,Dinan,T.GVasopressin and the regulation of hypothalamic-pituitary-adrenal axis function:implications for the pathophysiology of depression. Life Sci,1998,62:1985-1998.
    [18]Krishnan,K.R.,Doraiswamy, P.M.,Lurie, S.N.,Figiel, G.S.,Husain, M.M.,Boyko, O.B.,Ellinwood Jr.,E.H.,Nemeroff, C.B.Pituitary size in depression[J].Clin. Endocrinol.Metab,1991b,72:256-259.
    [19]O'Brien, J.T.,Ames, D.,Schweitzer, I.,Colman, P.,Desmond, P.,Tress,B-Clinical andmagnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease.Br. J. Psychiatry, 1996,168:679-687.
    [20]Rubin, R.T.,Phillips, J.J.,McCracken, J.T.,Sadow, T.F. Adrenal gland volume in major depression:relationship to basal and stimulated pituitary-adrenal cortical axis function. Biol.Psychiatry,1996,40:89-97.
    [21]Modell, S.,Yassouridis, A.,Huber, J.,Holsboer, F.Corticosteroid receptor function is decreased in depressed patients.Neuroendocrinology,1997,65:216-222.
    [22]Maes, M.,Lin, A., Bonaccorso, S.,van Hunsel,F.,Van Gastel,A.,Delmeire, L., Biondi,M.,Bosmans, E.,Kenis, G,Scharpe, S.Increased 24-hour urinary cortisol excretion in patients with post-traumatic stress disorder and patients with major depression, but not in patients with fibromyalgia. Acta Psychiatr. Scand,1998,98:328-335.
    [23]Weber, B.,Lewicka, S.,Deuschle, M.,Colla, M.,Vecsei, P.,Heuser. Increased diurnal plasma concentrations of cortisone in depressed patients[J].Clin. Endocrinol. Metab,2000,85,1133-1136.
    [24]Holsboer, F.The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology,2000,23:477-501.
    [25]Belanoff, J.K.,Rothschild, A.J.,Cassidy, F.,DeBattista, C.,Baulieu, E.E.,Schold, C.,Schatzberg, A.F. An open label trial of C-1073 (mifepristone) for psychoticmajor depression. Biol.Psychiatry,2002,52:386-392.
    [26]Santarelli L,Saxe M, Gross C,et al.Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants [J].Science,2003,301 (5634):805-809.
    [27]Maes MH.The serotonin hypothesis of major depression. In:Bloom FE, Kupfer DJ, editors.Psychopharmacology:the fourth generation of progress.New York:Raven Press,1995,p:933-44.
    [28]Meltzer H.Serotonergic dysfunction in depression[J].Br J Psychiatry Suppl 1989:25-31.
    [29]Nemeroff CB. The neurobiology of depression. Sci Am,1998,278:42-92.
    [30]SlatteryDA, Desrayaud S,Cryan JF.GABABreceptor antagonist-mediated antidepressant-like behavior is serotonin-dependent[J].Pharmacol Exp Ther,2005,312:290-6.
    [31]Gronli J,Fiske E,Murison R,et al.Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats.A microdialysis study in an animal model of depression [J].Behav Brain Res,2007,181(1):42-51.
    [32]Lopez JF, Vazquez DM, Chalmers DT,Watson SJ. Regulation of 5-HT receptors and the hypothalamic-pituitary-adrenal axis. Implications for the neurobiology of suicide.Ann NY Acad Sci,1997,836:106-34.
    [33]Sheline YI, Gado MH, Kraemer HC.Untreated depression and hippocampal volume loss.Am J Psychiatry,2003,160:1516-8.
    [34]Duman RS. Depression:a case of neuronal life and death? Biol Psychiatry,2004,56:140-5
    [35]Sapolsky RM.Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.Arch Gen Psychiatry,2000,57:925-35.
    [36]Gronli J, Bramham C,Murison R, Kanhema T, Fiske E, Bjorvatn B,et al.Chronic mild stress inhibitsBDNFprotein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav, 2006,85(4):842-9.
    [37]Jayatissa MN,Bisgaard C, Tingstrom A, Papp M, Wiborg O.Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology,2006,31:2395-404.
    [38]Jaako-Movits K, Zharkovsky A.Impaired fear memory and decreased hippocampal neurogenesis following olfactory bulbectomy in rats. Eur J Neurosci,2005,22:2871-8.
    [39]Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS,et al. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury:a systems, network and cellular evaluation.Neuroscience, 2005,133:1-15.
    [40]Bartesaghi R. Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig. Hippocampus,2004,14:482-98.
    [41]Blier P, De Montigny C.Current advances and trends in the treatment of depression. Trends Pharmacol Sci,1994,15:220-6.
    [42]Dale N, Kandel ER, Schacher S. Serotonin produces long-term changes in the excitability of Aplysia sensory neurons in culture that depend on new protein synthesis. J Neurosci,1987,7:2232-8.
    [43]Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin:news from mouse molecular genetics.Nat Rev Neurosci,2003,4:1002-12.
    [44]Sheline, Y.I.,Gado, M.H.,Kraemer, H.C.Untreated depression and hippocampal volume loss.Am[J].Psychiatry,2003,160:1516-1518.
    [45]Vermetten, E.,Vythilingam, M.,Southwick, S.M.,Charney, D.S.,Bremner, J.D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol.Psychiatry,2003,54: 693-702.
    [46]van der Hart, M.G.,Czeh, B.,de Biurrun, G,Michaelis, T.,Watanabe, T.,Natt, O., Frahm,J.,Fuchs, E. Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites,cytogenesis in the dentate gyrus and hippocampal volume.Mol.Psychiatry,2002,7:933-941.
    [47]Fuchs, E.,Czeh, B.,Flugge, G. Examining novel concepts of the pathophysiology of depression in the chronic psychosocial stress paradigm in tree shrews.Behav. Pharmaco,2004,15:315-325.
    [48]Jayatissa, M.N.,Bisgaard, C.,Tingstrom, A.,Papp, M.,Wiborg, O.,Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression.Neuropsychopharmacology,2006,31:2395-2404.
    [49]Bremner, J.D.,Narayan,M.,Anderson, E.R., Staib, L.H.,Miller, H.L.,Charney, D.S.Hippocampal volume reduction in major depression.Am[J].Psychiatry, 2000,157:115-118.
    [50]Sheline, Y.I.,Gado, M.H.,Kraemer, H.C.Untreated depression and hippocampal volume loss.Am.J.Psychiatry,2003,160:1516-1518.
    [51]李云峰,罗质璞.抑郁症:神经元损伤与神经元再生障碍[J].药学学报,2004,39(11):949-953.
    [52]李云峰,罗质璞.丁螺环酮对皮质酮所致PC12细胞损伤的保护作用[J].中国药理学与毒理学杂志,2001,15(5):333-336.
    [53]SAPOLSKY RM.The possibility of neurotoxicity in the hippocampus in major depression:a p rimer on neuron death[J].B iol Psychiatry,2000,48 (8):755-765.
    [54]V INET J, CARRA S,BLOM JM, et al.Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKa and CaMKKb mRNA levels in the hippocampus of transgenicmice expressing antisense RNA against the glucocorticoid recep tor [J].N europharm acology,2004,47(7):1062-1069.
    [55]黄文超,李云峰,罗质璞.单胺递质对皮质酮所致的PC12细胞损伤的保护作用[J].中国药理学通报,2003,19(1):103-106.
    [56]屈娅,冯正直.下丘脑-垂体-肾上腺轴在抑郁症发病中的作用[J].局解手术学杂志,2004,13(1):57-60.
    [57]何舒,林渝峰,李霞.抑郁症的发病机制研究进展[J].四川生理科学杂志,2006,28(3):126-128.
    [58]Bunney, W.E.,Davis, J.M.Norepinephrine in depressive reactions.Arch Gen Psychiatry,1965,13:483-494.
    [59]Janne, G,Eldbjorg, F.,Robert, M.,Bjorn, B.,Eli,S.,Reidun, U.,et al.Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats: A microdialysis study in an animal model of depression. Behavioural Brain Research,2007,181:42-51.
    [60]JI H.K.,SUN Y. K.,Seok, Y. L.,Choon, G. J.Antidepressant-like effects of Albizzia julibrissin in mice:Involvement of the 5-HT1A receptor system. Pharmacology, Biochemistry and Behavior,2007,87:41-47.
    [61]Mann, J. J.. Currier, D., Quiroz, J. Basic Neurochemistry:Molecular, Cellular and Medical Aspects(7th ed.),San Diego, CA,2005.
    [62]Arango,V.,Ernsberger, P.,Marzuk, P.M.,CHEN J.S.,Tierney, H.,Stanley, M. Autoradiographic demonstration of increased serotonin 5-HT2 and beta-adrenergic receptor binding sites in the brain of suicide victims.Arch Gen Psychiatry,1990,47: 1038-1047.
    [63]Banerjee, S.P.,Kung, L.S.,Riggi,S.J.,Chanda, S.K.Development of betaadrenergic receptor subsensitivity by antidepressants.Nature,1977,268: 455-456.
    [64]Fishman, P.H.,Finberg, J.P. Effect of the tricyclic antidepressant desipramine on beta-adrenergic receptors in cultured rat glioma C6 cells.Neurochem,1987, 49:282-289.
    [65]Toole JM,Sekula LK,Rubin RT.Pituitary-adrenal cortical axis measures as predictors of sustained remission in major depression[J].Biol Psychiatry, 1997,42:85-89.
    [66]刘健.抑郁症和阿尔采木氏病的HPA轴功[J].国外医学·精神病学分册,1997,24(2):119.
    [67]李强,尚翠侠,马现仓,等.抑郁症患者的性激素分析[J].中国神经精神疾病杂志,1999,25(5):271.
    [68]邹晓波,林志雄,林举达,等.更年期抑郁症患者血清雌二醇的测定及临床意义[J].广东医学院学报,2000,18(14):374.
    [69]Rubinow DR, Schmidt PJ, Roca CA. Estrogen-serotonin interac-tions:Implications for affective regulation[J].Biol Psychiatry,1998,44(5):799.
    [70]Li W,Li QJ, An SC,Preventive effect of estrogen on depression-like behavior induced by chronic restraint stress.Neurosci Bull,2010,26(2):140-146
    [71]Horsten M, Wamala SP, Vingerhoets A, et al.Depressive symptoms and support and lipid profile in healthy niddle-aged women[J].Psychosom Med,1997,59(5): 521.
    [72]赵汉清,崔庶,端义扬,等.低血清胆固醇与女性抑郁症的自杀行为[J].中国神经精神疾病杂志,2000,26(2):78.
    [73]Aubert A, Vega C,Dantzer R, et al.Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat.Brain, Behavior, and Immunity, 1995,9(2):129-148
    [74]Yirmiya R, Weidenfeld J, Pollak Y, et al.Cytokines,"depression due to a general medical condition," and antidepressant drugs.Advances in Experimental Medicine and Biology,1999,461:283-316
    [75]Maes M. Evidence for an immune response in major depression:a review and hypothesis.Progress in Neuro-Psychopharmacology & Biological psychiatry,1995, 19(1):11-38
    [76]张黎明,李云峰,宫泽辉.神经元再生:抑郁症治疗的新策略[J].生理科学进展,2005,36(2):109-112.
    [77]Thomas W,Miller.应激性生活事件对健康的影响.国外医学.精神病学分册,1989,24(3):163-166
    [78]赵幸福,徐一峰.生活事件与抑郁症.上海精神医学,1995,新7(3):209-211.
    [79]侯艳宁,江平,吴红海,张昊.谷氨酸和γ2氨基丁酸对原代培养星形胶质细胞神经甾体合成释放的影响[J].中国药理学通报,2007,23(9):1227-30
    [80]Peng H Y,Du J R. NR2B antagonists and diseases[J].Chin Pharmacol Bull,2007, 23(4):433-436.
    [81]Fundytus ME.Glutamate receptors and nociception:implications for the drug treatment of pain.CNS Drugs,2001,15:29-58.
    [82]Skolnik P.,Layer R.T.,Popik P.,Nowak G,Paul I.A.,Trullas R.:Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for pharmacotherapy of depression. Pharmacopsychiatry,1996,29: 23-26.
    [83]Papp M, Moryl E.:New evidence for the antidepressant activity of MK-801,a non-competitive antagonist of NMDA receptors[J].Pol. J.Pharmacol,1993, 45,549-553.
    [84]Papp M.,Moryl. E.:Antidepressant activity of noncompetitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression[J].Eur.J. Pharmacol.,1994,263,1-7.
    [85]Ferrero,A.J.,Cereseto,M.,Reines, A.,Bonavita, C.D.,Sifonios, L.L.,Rubio, M.C.,Wikinski, S.I.Chronic treatment with fluoxetine decreases seizure threshold in naive but not in rats exposed to the learned helplessness paradigm:correlation with the hippocampal glutamate release. Progr.Neuro-Psychopharmacol.Biol. Psychiatry, 2005,29:678-686.
    [86]Sen, S.,Sanacora, G.Major depression:emerging therapeutics.Mount Sinai J. Med,2008,75:204-225.
    [87]Zarate Jr.,C.A.,Du, J.,Quiroz, J.,Gray, N.A.,Denicoff, K.D.,Singh, J.,Charney, D.S.,Manji,H.K. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders:role of the glutamatergic system. Ann.NY Acad. Sci,2003,1003:273-291.
    [88]Calabrese, J.R.,Bowden, C.L.,Sachs, G.S.,Ascher, J.A.,Monaghan, E.,Rudd, G.D. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression[J]. Lamictal Study Group. J.Clin.Psychiatry,1999,60: 79-88.
    [89]Zarate Jr.,C.A.,Payne, J.L.,Quiroz, J.,Sporn, J.,Denicoff, K.K.,Luckenbaugh, D.,Charney, D.S.,Manji, H.K.An open-label trial of riluzole in patients with treatment-resistant major depression. Am.J.Psychiatry,2004,161:171-174.
    [90]Zarate Jr.,C.A.,Quiroz, J.A.,Singh, J.B.,Denicoff, K.D.,De, J.G.,Luckenbaugh, D.A.,Charney, D.S.,Manji, H.K. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol.Psychiatry,2005,57:430-432.
    [91]Paul,I.A.,Skolnick, P.Glutamate and depression:clinical and preclinical studies. Ann. NY Acad. Sci,2003,1003:250-272.
    [92]Berman, R.M.,Cappiello, A.,Anand, A.,Oren, D.A.,Heninger, G.R.,Charney, D.S.,Krystal, J.H. Antidepressant effects of ketamine in depressed patients.Biol. Psychiatry,2000,47:351-354.
    [93]Sanacora, G,Rothman, D.L.,Mason, G,Krystal, J.H.Clinical studies implementing glutamate neurotransmission in mood disorders. Ann.NY Acad. Sci, 2003,1003:292-308.
    [94]Zarate Jr.,C.A.,Singh, J.B.,Quiroz, J.A.,De, J.G.,Denicoff, K.K.,Luckenbaugh, D.A.,Manji, H.K.,Charney, D.S.A double-blind, placebo-controlled study of memantine in the treatment of major depression[J].Am. J. Psychiatry,2006b,163:153-155.
    [95]Zarate Jr.,C.A.,Singh, J.B.,Carlson, P.J.,Brutsche, N.E.,Ameli, R.,Luckenbaugh, D.A.,Charney, D.S.,Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.Arch. Gen. Psychiatry, 2006a,63:856-864.
    [96]Gould, T.D.,O'Donnell,K.C.,Dow, E.R.,Du, J.,Chen, G,Manji, H.K.Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology, 2008,54:577-587.
    [97]Maeng, S.,Zarate Jr.,C.A.The role of glutamate in mood disorders:results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr. Psychiatry Rep,2007,9:467-474.
    [98]Lee, Y., Gaskins,D.,Anand, A.,Shekhar, A. Glia mechanisms in mood regulation:a novel model of mood disorders.Psychopharmacology,2007,191:55-65.
    [99]Henrich-Noack, P.,Reymann, K.G.(1S,3R)-ACPD,a metabotropic glutamate receptor agonist, enhance damage after global ischemia. European Journal of Pharmacology,1999,365:55-58.
    [100]Opitz, T.,Reymann, K.G.(1S,3R)-ACPD protects synaptic transmission from hypoxia in hippocampal slices.Neuropharmacology,1993,32:103-104.
    [101]Maiese, K.,Swiriduk, M.,TenBroeke, M.Cellular mechanisms of protection by metabotropic glutamate receptors during anoxia and nitric oxide toxicity. Journal of Neurochemistry,1996,66:2419-2428.
    [102]Chiamulera, C.,Albertini, P.,Valerio,E.,Reggiani, A.Activation of metabotropic receptors has neuroprotective effect in a rodent model of focal ischemia. European Journal of Pharmacology,1992,216:335-336.
    [103]Opitz, T.,Richter, P.,Reymann, K.G.,The metabotropic glutamate receptor antagonist-a-methyl-4-carboxyphenylglycine protects hippocampal CA1 neurons of the rat from in vitro hypoxia:hypoglycemia. Neuropharmacology,1994,33:715-717.
    [104]Opitz, T.,Richter, P.,Carter, A.J.,Kozikowski,A.P.,Shinozaki,H.,Reymann, K.GMetabotropic glutamate receptor subtypes differentially influence neuronal recovery from in vitro hypoxia:hypoglycemia in rat hippocampal slices. Neuroscience,1995,68:989-1001.
    [105]Domenico E. Pellegrini-Giampietro et al.Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death:time-course and mechanisms.Neuropharmacology,1999,38:1607-1619.
    [106]Contractor, A.,Gereau IV, R.W.,Green, T.,Heinemann, S.F.Direct effects of metabotropic glutamate receptor compounds on native and recombinant N-methyl-D-aspartate receptors.Proceedings of the National Academy of Science USA,1998,95:8969-8974.
    [107]Palucha, A.,Pilc,A.On the role ofmetabotropic glutamate receptors in the mechanisms of action of antidepressants.Polish Journal of Pharmacology, 2002,54:581-586.
    [108]I.Smolders et al.Direct enhancement of hippocampal dopamine or serotonin levels as a pharmacodynamic measure of combined antidepressanteanticonvulsant action. Neuropharmacology,2008,54:1017-1028
    [109]Jackson DM,Westlind2Danielsson A. Dopamine receptors:molecular biology, biochemistry and behavioural aspects[J].Pharmacol Ther,1994,64(2):291-370
    [110]Q. Huang, D. Zhou, K.Chase, J.F. Gusella, N. Aronin, M. DiFiglia,Immuno-histochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre-and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc. Natl.Acad. Sci.U.S.A,1992,89:11988-11992.
    [111]C.Missale, S.R. Nash, S.W. Robinson, M.Jaber, M.G. Caron.Dopamine receptors: from structure to function.Physiol.Rev,1998,78:189-225.
    [112]S.R. Sesack, C.Aoki,V.M. Pickel.Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets[J]. Neurosci,1994,14:88-106.
    [113]C.R. Gerfen, G.J. Wilson, The Basal Ganglia, in:L.W. Swanson, A.Bjo" rklund, T. Ho kfelt (Eds.).Integrated systems of the CNS:Part III.Handbook of chemical neuroanatomy.vol.12,Elsevier, Amsterdam,1996, pp.371-468.
    [114]K.K. Yung, J.P.Bolam, A.D.Smith, S.M. Hersch, B.J.Ciliax, A.I.Levey. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat:light and electron microscopy.Neuroscience,1995,65:709-730.
    [115]E. Ince, B.J.Ciliax, A.I. Levey. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons.Synapse,1997,27:357-366.
    [116]C.Le Moine, B.Bloch.D1 and D2 dopamine receptor gene expression in the rat striatum:sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum [J].Comp. Neurol,1995,355:418-426.
    [117]C.Le Moine, B.Bloch. Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens:comparison with the D1 and D2 dopamine receptors.Neuroscience,1996,73:131-143.
    [118]X.Y. Lu, M.B. Ghasemzadeh, P.W. Kalivas. Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens.Neuroscience,1998,82:767-780.
    [119]G.S.Robertson, M.Jian.D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.Neuroscience,1995,64:1019-1034.
    [120]Smiley J F,AI Levey,BJ Ciliax,et al. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex:predominant and extrasynaptic localization in dendritic spines [J].Proc Natl Acad Sci USA,1994,91(12):5720-5724
    [121]P. Sokoloff, B.Giros, M.P. Martres, M.L.Bouthenet, J.C. Schwartz.Molecular cloning and characterization of a novel dopamine receptor (D3)as a target for neuroleptics.Nature,1990,347:146-151.
    [122]J.Diaz, D.Levesque, N. Griffon, C.H.Lammers, M.P. Martres, P.Sokoloff, J.C. Schwartz.Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in nucleus accumbens.Eur. J. Neurosci,1994,6:1384-1387.
    [123]J.Diaz, D.Levesque, C.H.Lammers, N.Griffon, M.P. Martres, J.C.Schwartz, P. Sokoloff.Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience,1995,65:731-745.
    [124]B.Landwehrmeyer, G. Mengod, J.M.Palacios.Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur. J. Neurosci,1993,5:145-153.
    [125]B. Landwehrmeyer, G. Mengod, J.M.Palacios.Dopamine D3 receptor mRNA and binding sites in human brain.Brain Res.Mol.Brain Res,1993,18:187-192.
    [126]D.Levesque,M.P. Martres, J.Diaz, N.Griffon, C.H.Lammers, P.Sokoloff, J.C. Schwartz.A paradoxical regulation of the dopamine D3 receptor expression suggets the involvement of an anterograde factor from dopamine neurons.Proc.Natl.Acad. Sci.U. S.A,1995,92:1719-1723.
    [127]A.Rivera, B.Cuellar, F.J. Giron, D.K.Grandy, A.de la Calle, R.Moratalla. Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J. Neurochem,2002,80:219-229.
    [128]A.A.Alcantara, V. Chen,B.E. Herring, J.M. Mendenhall,M.L.Berlanga. Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res,2003,986:22-29.
    [129]T. Aosaki, K. Kiuchi, Y.Kawaguchi.Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J.Neurosci,1998,18:5180-5190.
    [130]C.Bergson, L. Mrzljiak, J.F. Smiley, M. Pappy, R. Levenson, P.S.Goldman-Rakic, Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain, J. Neurosci,1995,15:7821-7836.
    [131]Z.U. Khan, A. Gutierrez, R. Martin, A. Penafiel, A. Rivera, A. de la Calle, Dopamine D5 receptors of rat and human brain, Neuroscience,2000,100:689-699.
    [132]C.Le Moine, F. Tison, B.Bloch, D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum, Neurosci.Lett,1990,117:248-252.
    [133]A.J.MacLennan, N. Lee, S.R. Vincent, D.W. Walker, D2 dopamine receptor mRNA distribution in cholinergic and somatostatinergic cells of the rat caudate-putamen and nucleus accumbens,Neurosci.Lett,1994,180:214-218.
    [134]A. Pisani,P. Bonsi,D.Centonze,P. Calabresi,G. Bernardi,Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons, J. Neurosci,2000,20:RC69.
    [135]Z. Yan, D.J.Surmeier, D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron,1997,19:1115-1126.
    [136]Z. Yan, W.J.Song, J.Surmeier, D2 dopamine receptors reduce Ntype Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway,J.Neurophysiol,1997,77:1003-1015.
    [137]C.Cepeda, R.S.Hurst, K.L. Altemus, J. Flores-Hernandez, C.R.Calvert, E.S. Jokel, D.K. Grandy, M.J.Low, M. Rubinstein, M.A.Ariano, M.S.Levine, Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J. Neurophysiol,2001,85:659-670.
    [138]M.A. Berger, M.C.Defagot, M.J. Villar, M.C.Antonelli,D4 dopamine and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain.Neurochem. Res,2001,26:345-352.
    [139]Starr, M.S.The role of dopamine in epilepsy. Synapse,1996,22:159-194.
    [140]Jobe, P.C.,Dailey, J.W.,Wernicke, J.F.A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders.Critical Reviews in Neurobiology,1999,13:317-356.
    [141]E healy,p Mckeon. Dopaminergic sensitivity and prediction of antidepressant response[J].J psychopharmacol,2000,14(2):152-156
    [142]D'Aquila, P.S.,Collu, M.,Pani, L.,Gessa, G.L.,Serra, G. Antidepressant-like effect of selective dopamine DA-1 receptor agonists in the behavioural despair animal model of depression. European Journal of Pharmacology,1994,262 (1-2):107-111.
    [143]Gambarana, C.,Ghiglieri,O.,Tagliamonte, A.,D'Alessandro, N.,de Montis, M.G., Crucial role of DA-1 dopamine receptors in mediating the antidepressant effect of imipramine. Pharmacology Biochemistry and Behavior,1995a,50 (2):147-151.
    [144]Takamori, K.,Yoshida, S.,Okuyama, S.Repeated treatment with imipramine, fluvoxamine and tranylcypromine decreases the number of escape failures by activating dopaminergic systems in.a rat learned helplessness test. Life Sciences, 2001,69(16):1919-1926.
    [145]Ossowska G, Nowa G, Kata R,et al.Brain monoamine receptors in a chronic unpredictable stress model in rats. J Neural Transm,2001,108:3.11~319
    [146]JAY TM,ROCHER C,HOTTE M,et al.Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress:importance for psychiatric diseases[J].Neurotox Res,2004,6(3):233-244
    [147]Brunswick DJ, Amsterdam JD, Mozley PD,et al.Greater availability of brain dopamine transporters in major dep ression shown by[99mTc]TRODAT21 SPECT imaging[J].Am J Psychiatry,2003,160(10):1836-1841
    [148]GianML,Vincenzo M,Filippo D.Increased sensitivity to antidepressants of D3 dopamine receptor-deficientmice in the forced swim test(FST) [J].European Neuropsychopharmacology,2008,18(4):271-7
    [149]H.Zhang, D.Sulzer, Glutamate spillover in the striatum depresses dopaminergic transmission by activating group I metabotropic glutamate receptors[J]. Neurosci,2003,23:10585-10592.。
    [150]叶任高.内科学[M].第5版.北京:人民出版社,2001:440.
    [151]Thompson W G,Longstreth G F,Drossman D A.Functional bowel disorders and functional abdominal pain[J].Gut,1999,45(suppl 2):43-47
    [152]史峰,唐振怿.抗抑郁药在功能性胃肠综合征的应用[J].国外医学消化分册,1996,16:31
    [153]Levy RL, Olden KW, Naliboff BD, et al.Psychosocial aspects of the functional gastrointestinal disorders.Gastroenterology,2006,130:1447-58.
    [154]Van Oudenhove L,Demyttenaere K, Tack J,et al.Central nervous system involvement in functional gastrointestinal disorders.Best Pract Res Clin Gastroenterol,2004,18:663-80.
    [155]Talley NJ.Association of anxiety neuroticism and depression with dyspepsia of unknown causes:A case-control study. Gast roenterology,1986,90:886
    [156]Locke GR 3rd,Weaver AL,Melton LJ 3rd,Talley NJ.Psychosocial factors are linked to functional gastrointestinal disorders:a population based nested case-control study. AmJ Gastroenterol,2004,99 (2):350-357.
    [157]Dunlop SP,Jenkins D,Neal KR,et al.Relative importance of enterochromaffin cell hyperplasia,anxiety,and depression in postinfectious IBS.Gastroent,2003,125:1651-1659.
    [158]Gwee KA,Leong YL,Graham C,et al.The role of psychological and biological factors in postinfective gut dysfunction. Gut,1999,44:400-406
    [159]Hochstrasser B,Angst J.The Zurich Study:XXII. Epidemiology of gastrointestinal complaints and comorbidity with anxiety and depression. Eur.Arch Psychiatry Clin Neurosci,1996,246:261-272
    [160]Barbara G. Mucosal barrier defects in irritable bowel syndrome. Who left the door open?[J].Am J Gastroenterol,2006,101 (6):1295-1298
    [161]陈正言.误诊为功能性消化不良的抑郁症12例分析.中国心理卫生杂志,1998,12:309
    [162]Richelson E. Treatment of acute depression. Psychiat ry Clin North A m, 1993,16:461-478
    [163]吴晓宁,孙剑,何晓红.功能性消化不良病人的痛觉阈值测定.中国行为医学科学,1996,51:193-194
    [164]陈嘉,董文心。抗抑郁药物对海马神经元保护作用的研究进展[J].中国新药杂志,2008,17(6):441-445
    [165]Chang L, Munakata J, Mayer EA, Schmulson MJ, Johnson TD,Bernstein CN, et al.Perceptual responses in patients with inflammatory and functional bowel disease. Gut,2000,47(4):497-505.
    [166]Murray CD,Flynn J, Ratcliffe L, Jacyna MR, Kamm MA, Emmanuel AV. Effect of acute physical and psychological stress on gut autonomic innervation in irritable bowel syndrome.Gastroenterology,2004,127(6):1695-703.
    [167]Levy RL, Cain KC,Jarrett M, Heitkemper MM.The relationship between daily life stress and gastrointestinal symptoms in women with irritable bowel syndrome.J Behav Med,1997,20(2):177-193.
    [168]Lembo T, Fullerton S,Diehl D,Raeen H, Munakata J,Naliboff B,et al.Symptom duration in patients with irritable bowel syndrome.Am J Gastroenterol, 1996,91(5):898-905.
    [169]Whitehead WE, Palsson OS.Is rectal pain sensitivity a biological marker for irritable bowel syndrome:psychological influences on pain perception. Gastroenterology,1998,115(5):1263-71.
    [170]Kellow JE, Langeluddecke PM, Eckersley GM, Jones MP, Tennant CC.Effects of acute psychologic stress on small-intestinal motility in health and the irritable bowel syndrome. Scand J Gastroenterol,1992,27(1):53-8.
    [171]Ehlert U, Nater UM, Bohmelt A. High and low unstimulated salivary cortisol levels correspond to different symptoms of functional gastrointestinal disorders. J Psychosom Res,2005,59(1):7-10.
    [172]Gschossmann JM, Buenger L, Adam B, Liebregts T, Saller B,Mann K, et al. Diurnal variation of abdominal motor responses to colorectal distension and plasma cortisol levels in rats.Neurogastroenterol Motil,2001,13(6):585-9.
    [173]Colon AL, Madrigal JL, Menchen LA, Moro MA, Lizasoain I,Lorenzo P, et al. Stress increases susceptibility to oxidative/nitrosative mucosal damage in an experimental model of colitis in rats;Dig Dis Sci,2004,49(10):1713-21.
    []74]杨小建,焦建华.功能性胃肠疾病的心理分析和抗抑郁治疗的临床研究.海南医学,2007,18(4):150-151
    [175]Willner P. Validity, reliability and utility of the chronic mild stress model of depression:a 10-year review and evaluation. Psychopharmacology (Berl), 1997,134:319-29.
    [176]Willner P, Moreau JL, Nielsen CK, Papp M, Sluzewska A. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav,1996,60:129-34.
    [177]Willner P, Towell A, Sampson D, Sophokleous S,Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology,1987,93:358-64.
    [178]Pothion S,Bizot JC, Trovero F, Belzung C.Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress.Behav Brain Res,2004,155:135-46.
    [179]R.J.Katz.Animal model of depression:Pharmacological sensitivity of a hedonic deficit[J].Pharmacol Biochem.Behav.,1982,16:965-968
    [180]Matthews K.,Forbes N.,Reid I.C.Sucrose consumption as an hedonic measure following chronic unpredictable mild stress [J].Physiol.Behav,1995,57:241-248
    [181]American Psychiatric Association. DSM-III Diagnostic and statistical manual of psychiatric disorders,1994,4
    [182]Mccarthy MM, Felzenber E, Robbins A, et al.Infusion of diazepam and all opregnanolone into the midbrain central gray facilitate open-field behavior and sexual receptivity in female rats [J].Horm Behavior,1995,29:279-295
    [183]A. Blokland,C.Lieben,N.E.Deutz. Anxiogenic and depressive-like effects, but no n cognitive eficits, after repeated moderate tryp tophan depletion in the ratl[J].Psychopharmacol,2002,16:39-49.
    [184]Porsolt RD,Lepichon M, Jalfre M, et al.Dpression:A new animal model sensitive to antidepressant treatment [J].Nature,1977,226(5604):730-732
    [185]Cunha GMA, Bezerra PJP, Saldanha MDD,et al. Pentoxifylline Improves Learning and Memory in Glutamate-Lesioned Rats[J].Pharmacology Biochemistry and Behavior,2000,66(4):687-694.
    [186]慈蕾,安书成.眶额叶区多巴胺对胃运动的影响及其机制研究.陕西师范大学学报(自然科学版),2007,35(1):99-102
    [187]Reybould H E. Reflex decreases in intragastric pressure inresponse to intragastric pressure in response tocholecystokinin in rats [J].American Journal of Physiology-Gastrointestinal and Liver Physiology,1987,253 (22):165-170
    [188]柯美云,张艳丽.重视心理因素与功能性胃肠疾病关系的研究.诊断学理论与实践,2006,5(1):1-2
    [189]Richelson E. Treatment of acute depression. Psychiat ry Clin North A m,1993; 16:461-478
    [190]严进,王春安,陈宜张,等.应激对大鼠行为和部分脑区谷氨酸含量的影响[J]心理学报,1995,27:422
    [191]Feyissa, A.M.,Chandran, A.,Stockmeier, C.A.,Karolewicz, B.Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog. Neuropsychopharmacol.Biol.Psychiatry,2008.
    [192]Hashimoto, K.,Sawa,A.,Iyo,M.Increased levels of glutamate in brains from patients with mood disorders.Biol.Psychiatry,2007,62:1310-1316
    [193]Tokarski,K.,Bobula, B.,Wabno, J.,Hess, G. Repeated administration of imipramine attenuates glutamatergic transmission in rat frontal cortex. Neuroscience,2008,153:789-795
    [194]Prikhozhan, A.V.,Kovalev, G. I.,& Raevskii,K. S.Effects of antidepressive agents on glutamatergic autoregulatory presynaptic mechanism in the rat cerebral cortex].Bull Eksp Biol Med,1990,110:624-626.
    [195]Golembiowska, K.,& Dziubina, A.Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex.Pol J Pharmacol,2000,52:441-448.
    [196]Bonanno, G., Giambelli,R.,Raiteri,L., Tiraboschi,E.,Zappettini, S.,Musazzi, L.,et al.Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus.J Neurosci,2005,25:3270-3279.
    [197]王明华,安书成.海马Glu与抑郁症的关系及其对胃运动的影响[J].中国应用生理学杂志,2009,25(2):196-200
    [198]吴丽丽,严灿,徐志伟.代谢型谷氨酸受体与应激损伤.中国药理学通报,2004,20:125-128
    [199]Lyeth BG, Gong QZ,Shields S.et al.Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats.Exp Neuro,2001,169:191-199
    [200]Klodzinska, A.,Tatarczynska, E.,Stachowicz, K.,& Chojnacka-Wojcik, E.The anxiolytic-like activity of AIDA(1-aminoindan-1,5-dicarboxylic acid), an mGLu 1 receptor antagonist. J Physiol Pharmacol,2004b,55:113-126
    [201]Naylor P, Stewart CA, Wright SR, Pearson RC,Reid IC:Repeated ECS induces GluRl mRNA but not NMDAR1A-G mRNA in the rat hippocampus.Brain Res Mol Brain Res,1996,35(12):349-353
    [202]A. Blokland, C.Lieben,N.E.Deutz. Anxiogenic and depressive-like effects, but noncognitive eficits, after repeated moderate tryptophan depletion in the ratl[J].Psychopharmacol,2002,16:39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700