秸秆培肥土壤对大孔隙流中养分淋失的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中大孔隙及优先流的存在是导致养分淋失及地下水污染的主要原因,对大孔隙及优先流的研究具有其重要的科学意义及现实意义。
     本论文通过施用作物秸秆培肥土壤,研究了土壤秸秆培肥对土壤大孔隙以及优先流中养分淋失的影响,并通过对培肥后土壤理化性状及水分运移等特性的变化的研究,探讨了引起这些影响的机理。通过研究发现,土壤秸秆培肥后,提高了土壤的保肥能力,从而减少了土壤中可被淋失养分的数量以及由优先流引起的养分淋失的数量;同时,土壤秸秆培肥改善了土壤结构,使土壤大小孔隙状况更加合理,减少大孔隙的生成并提高了土壤的保水能力。
     这些研究结果,对于采取人工方式改良土壤,控制大孔隙及优先流的产生,减少土壤中的养分流失及减轻水体污染,都具有重要的理论意义和应用价值。
Nowadays, the environmental pollution increased following the increaseing employ of fertilizer. A great deal of fertilizer inpour the water along with rain or irrigation, and result in eutrophication and groundwater pollution.
     In the leaching of fertilizer, the water and solute are not underflow uniformity. Because of the different hole’size, the underflow rate is not homology. The macropore flow move quickly, and the water flux is bigness. Research show that through the percent of soil macropore is small (about 0.32 percent), it can conduct more than 90 percent water flux. It is important to consider the effects of soil macropore. The soil macropore and macropore flow not only affect the mobilization of water and solute, but also impress the validity of precipitation and irrigation, and polluted the groundwater. So it is very important to take research on soil macropore and macropore flow, and has its theory and reality meaning to save water and reduced leaching of water and solute.
     By the field experiment and indoor simulation, the effects were investigated of the soil cornstalk fertilization on nutrient leaching in soil macorpore flow and the mechanism. The main conclusions showed as followed:
     The research was taken up on the influence of cornstalk fertilizer to soil macorpore and the nutrients leaching in macropore flow. And to offer some theory according as for manpower improve soil and control the nutrient’s leaching in micropore flow. It include three aspect of the research content: firstly, the effects of organic fertilize soil to the nutrient leaching in macropore flow. By the method of field experiment and indoor’s simulation, to investigate the changes of nutrient’s leaching in soil micropore flow and the distribution of nutrients in soil section; secondly, the effect of organic fertilize soil to soil macropore. By the taken of original soil core, combine with the digital analyze, to investigate the changes of the shape, number, perimeter of macropore; thirdly, the influence mechanism of organic fertilize to macropore and macropore flow. By the analysis of the changes of soil physic and chemical properties, to investigate the the influence mechanism of organic fertilize to macropore and macropore flow. The results show:
     (1) Soil fertilize by corn stalk can reduce the nutrient leaching in macropore flow, and decrease the leaching of nutrient, but the effect is different to different nutrient. It is more effective to positive ion and the total leaching of NH+4-N without cornstalk is 4.54 times more than corn stalk applying, and has little impact to NO3—N. The result showed that soil fertilize with corn stalk is effective in reduce nutrient leaching and decrease groundwater pollution.
     (2) Corn stalk fertilize soil can slower the macropore flow and cut down the gross of nutrient leaching. The leaching gross of corn stalk fertilize is 50 percent of the gross without corn stalk apply. It is useful in reduce the groundwater pollution.
     (3) Corn stalk fertilizer can keep more nutrient, but in the anaphase the polluted possibility increased if the rain or irrigation is enough.
     (4) The changes of different nutrients along the level heading of soil macropore show: the nutrients in soil macropore wall are the highest, and then reduced along macropore wall, the content of nutrient become steady and same with the content of soil matrix. The result approved the existence of macropore flow with high solute concentration in soil macropore.
     (5) The shapes of Black soil mostly are pores , and the fissure is few, and the fissure is fewer after organic fertilize. The mainly reason is the high content of organic and nicer structure.
     (6) Corn stalk apply reduce the soil macroporosity, but the soil porosity increased and mainly increased the capillary porosity. The macroporosity reduced 30 percent and the total porosity increased 3.68 percent, the capillary porosity increased 8 percent. The result means that corn stalk fertilize mainly increased the pores which conduct water.
     (7) With the applying of corn stalks, the macropore’s perimeter in level direction and vertical direction were reduced. It means the decrease of macropore with bigger diameter.
     (8) The perimeter of macropore increased in transverse section but the number decreased, it shows with the deeper the soil profile, not only the number macropore decreased but also mainly decreased the macropore of big diameter.
     (9) The reason of the lessen of nutrient leaching is: the cation exchange capacity increased and can keep more nutrient; also the water holding function increased and macroporosity decreased, so the gross of underflow was reduced.
     (10) The quantity of accumulation increased with the applying of corn stalk, and the soil’s structure and pore were improved. The capillary pore increased so enhance the soil faculty of holding and harmony water, so reduce the amount of leaching nutrient in soil.
     (11) The breakthrough curve is different with the different macropore flow, and the curve was delayed more obviously when applied the organic matter. It showed the macropore decreased with the applied of organic matter, so the quantity of nutrient decreased too.
     As a whole, the application of cornstalks have obvious effects on the increase of soil nutrient holding ability, reduce the nutrient leaching, improve the soil structure and porosity, increased the water keeping ability and cut down the number of macropore. The results are important in soil improve and nutrient leaching decreased, also are practical and meaningful.
引文
[1] Luxmoore R.J. Micro-, and macroporosity of soil[J]. Soil Sci. Soc. Am. J., 1981,45:671-672
    [2] Bear J. Dynamics of fluids in poros media[M], Elsevier, N. Y., 1972
    [3] Skopp J. Comment on “micro-, meso, and macroposity of soil” [J]. Soil Sci. Soc. Am. J., 1981,45:1246-1250
    [4] Beven K., Germann P. Macropores and water flow in soils[J]. Water Resour. Res., 1982, 18(5):1311-1325
    [5] Beven K. Micro-, meso-, macroporosity and channeling flow phenomena in soils[J]. Soil Sci. Soc. Am. J., 1981,45:1245-1249
    [6] Hall D.G.M., Reeve M.J., Thomasson A.J., et al. Water retention, Porosity and density of field soils[M]. No.9. Harpenden: Soil Surv. Tech Monogr. 1977
    [7] Warner G.S., Nieber J.L., More I.D., et al. Characterizing macropores in soil by computed tomography[J]. Soil Sci. Soc. Am.J., 1989,53:653-660
    [8] Smith M.S., Thomas G.W., White R.E., et al. Transport of Escherichia cloi through intact and disturbed columns of soil[J].J. Environ. Qual. 1985:87-91
    [9] Singh P., Rameshwar K.S., Thompson M.L. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. J. Environ. Qual., 1991, 20:289-294
    [10] Vermeul V.R., Istok J.D., Flint A.L., et al. An improved method for quantifying soil macroporosity[J]. Soil Sci. Soc. Am. J., 1993,57:809-816
    [11] Bouma J., wosten J.H.M. Characterizing ponded infiltration in a dry cracked clay soil[J]. Journal of Hydrology, 1984,56:297-304
    [12] Green R.K., Askew G.P. Observations on the biological development of macropores in soils of Tomney Marsh[J]. J. Soil Sci., 1965, 16(2):342-349
    [13] 冯杰,郝振纯. 土壤大孔隙流研究中分形几何的应用进展[J].水文地质工程地质,2001,28(3):9-13
    [14] Williams A.G., Scholefield D., Dowd J.F., et al. Investigating preferential flow in a large intact soil block under pasture[J]. Soil Use and Management, 2000,16:264-269
    [15] 秦耀东,任理,王济. 土壤中大孔隙流研究进展[J]. 水科学进展.2001,11(2):203-205
    [16] Guild W.J. Earthworms and soil structure, Soil zoology (ed. Kevan), Butterworths[J]. Scientific Publications, London. 1955
    [17] Haukka J. Spatial distribution and formation of earthworm burrows[J]. Pedobiologia, 1991,37:175-278
    [18] Kevan D.K. Soil Animals[M]. H.F.&G. Wither by Ltd., London, 1962
    [19] Khnelt W. Soil Biology[M]. Faber& Faber, London. 1961.
    [20] Loranger G., Ponge J.F., Blanchart F., et al. Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique) [J]. Biol. Fertil. Soils, 1999,27,21-26
    [21] Lavelle P. Diversity of soil fauna and ecosystem function[J]. Biol. Int. 1996,33,3-16
    [22] Lavelle P. Faunal activities and soil processes: adaptative strategies throat determine ecosystem function[J]. Adv. Ecol. Res. 1997,27:93-132
    [23] Scheu S. Analysis of the microbial nutrient status in soil microcompartments: earthworm faces from a basalt-limestone gradient[J]. Geoderma, 1993,56:575-586
    [24] Scheu S. Microbial activity and nutrient dynamics in earthworm casts(Lumbricidae) [J]. Bil. Fertile. Soils, 1987,5:230-234
    [25] Edwards W.M., Shipitalo M.J., Norton L.D. Contribution of macroporosity to infiltration into a continuous corn no-tilled watershed: implications for contaminant movement[J]. Journal of Contaminant Hydrology, 1988,3:193-205
    [26] Edwards W.M., Shipitalo M.J., Owens L.B., et al. Effect of lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields[J]. Geoderma,1990, 46:73-84
    [27] Anderson J.L., Bouma J. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon[J]. Soil Science Society of AmericaProceedings, 1973, 37:408-413
    [28] Humphreys G.S. Bioturbation, biofabrics and biomantle:and example from the Sydney Basin. In: A.J. Ringrose-Voase and G.S. Humphreys(Editors) [J]. Soil micromorphology: Studies in Managemeng and Genesis. Dev. Soil Sci., 1994,22:421-436
    [29] Mando A.R. Miedema. Termite-induced change in soil structure after mulching degraded(crusted)soil in the Sahel[J]. Applied Soil Ecology, 1997,6:241-249
    [30] Mando A. The effect of termite and mulch in the rehabilitation of crusted sahelian soils[J]. Tropical Resources Management papers, Wageningen, 1997,16:101
    [31] Lee K.E., Foster R.C. Soil fauna and soil structure[J]. Austral. J. Soil Res., 1991,6:745-775
    [32] Mando A., Stroosnijder L.L., Brussaard L. Effect of termite and mulch on infiltration into crusted soil in the Sahel[J]. Geoderma, 1996, 74:107-113
    [33] Binet F., Hallaire V., Curmi P. Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction[J]. Soil Bilo.Bilchem.,1997,29(3/4):577-252
    [34] Petrovic A.M., Siebert J.E., Rieke P.E. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Sci. Soc. Am. Jl, 1982,46:445-450
    [35] Aubertin G.M. Nature and extent of macropores in forest soils and their influence on subsurface water movement[J]. For. Serv. Res., 1971,33:192
    [36] Gaiser R.N. Root channels and roots in forest soils[J]. Soil Sci. Soc. Am. Procl, 1952,16(1):62-65
    [37] Lewis D.T. Subgroup designation of three udolls in southeastern Nebrasks[J]. Soil Sci. Soc. Am. J., 1977, 41:940-945
    [38] Parker J.C. Analysis of solute transport in column tracer studies[J]. Soil Sci. Soc. Am. J., 1984, 48:719-724
    [39] Brewer R. Fabric and Mineral Analysis of Soils[M]. New York: john Wiley. 1964.
    [40] Ou Z.Q., Jia L.Q., Jin H.Y., et al. Formation of soil macropores and preferential migration of linear alkylbenzene sulfonate (LAS) in soils[J]. Chemosphere, 1999,38(9):1985-1996
    [41] Blake G.E., Zimmerman U. Water recharge in a soil with shrinkage cracks[J]. Soil Sci. Soc. Am. Proc, 1973, 37:669-672
    [42] Smettem K.R.J., Collis N. Statistical characterization of soil biopores using a soil peel method[J]. Geoderma, 1985,36:27-36
    [43] Reeves M.J. Recharge of the English Chalk: A possible mechanism[J]. Eng Geol, 1980, 12:231-240
    [44] Zaslavsky D., Kassif G. Theoretical formulation of piping mechanism in cohesive soils[J]. Geotechnique, 1965,15(3):305-316
    [45] Hagedorn F., Maya B. The age of preferential flow paths[J]. Geoderma, 2002, 113(1-2):119-132
    [46] Southwick L.M., Willis G.H., Johnson D.C., et al. Leaching of nitrate atrazine and metribuzin from sugarcane in Southern Louisiana[J]. J Environ Qual, 1995,24:684-690
    [47] Kamu P.A., Ellsworth T.R., Boast C.W., et al. Tillage and cropping effects on preferential flow and solute transport[J]. Soil Science, 1996,161(9):549-561
    [48] Bodhinayake W., Si B.C., Noboril K. Detemination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers[J]. Soil Science Society of America Journal, 2004,3:964-970
    [49] Williams A.G., Dowd J.F., et al. Preferential flow variability in a well-structured soil[J]. Soil Science Society of America Journal, 2003,67:1272-1281
    [50] Ehlers W., Kopke U., Hesse F., et al. Penetration resistance and root growth of oats intilled and untilled loose soil[J]. Soil Tillage Res. 1983, 3(2):261-275
    [51] Edwards W.M., Norton L.D., Redmond C.E. Characterizing macropores that affect infiltration into nontilled soil[J]. Soil Sci. Soc. Am. J., 1988, 52(2):483-487
    [52] Logsdon S.D., Allmaras R.R., Wu L., et al. Macroporosity and its relation to saturated hydraulic conductivity under different tillage practices[J]. Soil Sci. soc. Am. J., 1990, 54(4):1096-1101
    [53] Ehler W. Observation on earthworm channels and infiltration on tilled and untilled loess soil[J]. Soil Scil, 1975,119:242-249
    [54] Omoti U., Wild A. Use of fluorescent dyes to mark the pathways of solute movement through soils under leaching condition field experiment[J]. Soil Sci, 1979,128:98-104
    [55] Bouma J., Wosten J.H.M. Flow patterns during extended saturated flow in two undaturated swelling clay soils with different macrostructures[J]. Soil Sci. Soc. Am. J., 1979, 43:16-22
    [56] Hewitt J.S., Dexter A.R. Effects of tillages and stubble management on the structure of a swelling soil[J]. J. Soil Sci, 1980,31(2):203
    [57] Wilkins D.E., Buchele W.F., Lovely W.G. A technique to index soil pores and aggregates larger than 20 um[J]. Soil sci. Soc. Am. J, 1977, 41:139-170
    [58] Bouma J. influence of soil macroporosity in environmental quality[J]. Adcanced in agronomy, 1991, 46:1-37
    [59] Kung, K.J.S. Preferential flow in sandy vados zone 1. Field observation[J]. Geoderma, 1990a, 46:51-58
    [60] Kung, K.J.S. Preferential flow in sandy vados zone 2. Mechanism and implication[J]. Geoderma 1990b 46:59-71
    [61] Ghodrati M., Jury W.A. A field study using dyes to characterize preferential flow of water[J]. Soil Sci. Soc. Am. J., 1990,54:1558-1563
    [62] Jury W.A., Wilford R.G. Walter H.G., Soil Physics[M]. JOHN WILEY&SONS, INC, 1991
    [63] Flury Markus., Hannes Fluhler. Susceptibility of soils to preferential flow of water: A field study[J]. Water Resour. Res., 1994,30:1945-1954
    [64] 程竹华. 田间土壤的优势流与农业化学物质迁移的特征研究[D]. 中国科学院南京土壤研究所硕士论文,1998 年 7 月
    [65] Vanomen L.W., Dekker W.L., Duksma R., et al. A new technique for evaluating the presence of preferential flow paths in nonstructured soil[J]. Soil Sci. Soc. Am. J., 1988,52:1192-1193
    [66] Bouma J.L., Dekker W. A case study on infiltration into dry clay soil: I. Morphological observations[J]. Geoderma,1978, 20:27-40
    [67] Bullock P., Thomasson A.J. Rothamsted studies of soil structure. II. Measurement and characterization of macroporosity by image analysis and comparison with data from water retention measurements[J]. J. Soil Sci., 1979, 30:391-414
    [68] Logsdon S.D. Flow mechanisms through continuous and buried macropores[J]. Soil Sci. 1995,160(4):237-242
    [69] Cassel D.K., Kruegar T.H., Schroer F.W., et al. Solute movement through disturbed and undisturbed soil cores[J]. Soil Sci. Soc, 1974,38:36-40
    [70] Bouldin J.D., Freeland R.S., Yoder R.E, et al. Nonintrusive mapping of preferential water flow paths in West Tennessee using ground penetrating radar[C]. Proceedings of the Seventh TN Water Resources Symposium, 1997.
    [71] Freeland R.S., Yoder R.E., Ammons D.T. Observing preferential flow paths beneath West Tennessee’s loess terrains using ground penetrating rada[C]r. Tennessee Agri Science, 1997
    [72] Dexter A.R. Advances in characterization of soil structure[J]. Soil Tillage Res., 1988, 11:199-238
    [73] Arnseth R.W., Turner R.S. Sequential extraction of Fe, Mn, Al, and Si in soils from two contrasting watersheds[J]. Soil Sci. Soc. Am. J., 1988, 52:1801-1807
    [74] Czapar G.F., Horton R., Fawcett R.S. Herbicide and trcer movement in soil columns containing an artificial macropore[J]. J. Environ. Qual., 1992, 21:110-115
    [75] Luxmoore R.J., Jardine P. M., Wilson G.V., et al. Physical and chemical controls ofpreferred path flow through a forested hillslope[J]. Geoderma, 1990,46:139-154
    [76] Moore I.D., Burch G.J., Wallbrink P. J. Preferential flow and hydraulic conductivity of forest soils[J]. Soil Sci. Soc. Am. J., 1986, 50:876-881
    [77] Biggar J.W., Nielsen D.R. Irrigation of agricultural lands[J]. American Society of Agronomy, Madison. 1967:254-274
    [78] Bouma J., Jongerius A., Boersma O., et al. The function of different typis of macropores during saturated flow through four swelling soil horizons[J]. Soil Sci. Soc. Am. J., 1977, 41:945-950
    [79] Anderson S.H., Gantzer C.J., Boone J.M., et al. Rapid nondestructive bulk density and soil –determination by computed tomography[J]. Soil Sci. Soc. Am,j., 1988,52:35-40
    [80] Radulovich R., Solorzano E., Sollins P. Soil Macropore size distribution from water breakthrough curves[J]. Soil Sci. Soc. Am. J., 1989,53:556-559
    [81] Smettem K.R.J., Trudgill S.T. An evaluation of some fluorescent and non-fluorescent dyes in the identification of water transmission routes in soil[J]. J. Soil Sci. 1983, 34:45-56
    [82] Watson K.W., Luxmoore R.J. Estimating macroporosity in a forested watershed by use of a tension infiltrometer[J]. Soil Sci. Soc. Am. J., 1986, 50:578-582
    [83] Perroux K.M. White I. Designs for disc permeameters[J]. Soil Sci. Soc. Am. J., 1988, 52:1205-1215
    [84] Edwards W.M., Shipitalo M.J., Owens L.B., et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Environ. Qual. 1993,22:453-457
    [85] Lachnicht S.L., Parmelee R.W., Mccartney D., et al. Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: Implications for infiltration and nutrient transport[J]. Soil Biol. Biocheml, 1997, 29(3/4):493-498
    [86] Peyton R.L., Gantzer C.J., Stephen H., et al. Fractal dimension to describe soil macropore structure using x-ray computed tomography[J]. Water Resources Research, 1994,30(3):691-700
    [87] Moradi A., Abbaspour K.C., Afyuni M. Modelling field-scale cadmium transport below the root zone of a sewage sludge amended soil in an arid region in Central Iran[J]. Journal of Contaminant Hydrology,2005,79:187-206
    [88] 刘伟. 中国主要类型土壤大孔隙特征的研究[D]. 中国科学院沈阳应用生态研究所博士学位论文. 2001
    [89] Perret J., Prasher S.O., Kantzas A., et al. Preferential solute flow in intact soil columns measured by SPECT scanning[J]. Soil Science Soceity of America Journal, 2000,64:469-477
    [90] Bouma J. Dekker L.W. A case study on infiltration into dry clay soil: I. Morphological observations[J]. Geoderma. 1987,20:27~40
    [91] Bouma J. Soil morphology and preferential flow along macropores[J]. Agric. Wat. Managel. 1981,3:235-250
    [92] Priebe D.L., Blackmer A.M. Preferential movement of Oxygen-18-labeled water and nitrogen-15-labeled urea through macropores[J]. J. Environ. Qual,1989,21:110-115
    [93] Ehlers W. Observations on earthworm channels and infiltration on tilled and untilled loess soil[J]. Soil Sci.,1975,119(2):242~249
    [94] Singh P., Kanwar R.S. preferential solute transport through macropores in large undisturbed saturated soil column[J]. Environ. Qual.1991,20:295~300
    [95] Vogel H.J. Morphological determination of pore connectivity as function of pore size using serial sections[J]. European Journal of Soil Science, 1997, 48:365~377
    [96] Zeng Y., Gantzer C.J., Payton R.L., ea al. Fractal dimension and lacunarity determined with X-ray computed tomography[J]. Soil Sci. Soc. Am. J. 1996,(60):1718-1724
    [97] 李德成, Velde B., Delerue J.F. 利用土壤切片和数字图像方法研究土壤孔隙的垂直空间变异性[J]. 土壤与环境,2000,9(2):135-138
    [98] 曹红霞,康绍忠,武海霞. 同一质地(重壤土)土壤水分特征曲线的研究[J]. 西北农林科技大学学报(自然科学版),2002,30(1):9-112
    [99] 李 小 刚 . 影 响 土 壤 水 分 特 征 曲 线 的 因 素 [J]. 甘 肃 农 业 大 学 学报,1994,29(3):273-278
    [100] Sochtig W., Larink O. Effect of soil compaction on activity and biomass of endogeic lumbricids in arable soils[J]. Soil Biology & Biochemistry, 1992,24:1595-1599
    [101] Pizl V. Succession of earthworm populations in abandoned fields[J]. Soil Biology & Biochemistry, 1992,24:1623-1628
    [102] Bostrom U. The effect of soil compaction on earthworms(Lumbricidae) in a heavy clay soil[J]. Swedish Journal of Agricultural Research, 1986,16:137-141
    [103] Lubomir L., Pavel D., Miloslav S., et al. The fate of cadmium in field soils of the Danubian lowland[J]. Soil & Tillage Research, 2006,(85):154-165
    [104] Gish T.J, Gimenez D., Rawls W.J. Impact of roots on ground water quality[J]. Plant and Soil, 1998,200:47-54
    [105] Mitchellar A.R., Ellsworthtr T.R., Meek B.D. Effect of root systems on preferential flow in swelling soil[J]. Commun Sci Pl Anal, 1995,26:432-438.
    [106] Angersda C. Plant-induced changes in soil structure: processes and feedbacks[J]. Biogeochemistry, 1998,42:55-72.
    [107] Leaney F.W., Smenttem K.R.J., Chittleborough D.J. Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride[J]. Journal of hydroloty, 1993,147:83-103
    [108] Smettem K.R.J., Chittleborough D.J., Richards B.G., el at. Influence of macropores on runoff generation from a hillslope soil with a contrasting textural class[J]. Journal of Hydrology, 1991, 122:235-252
    [109] Espeby B. Tracing the origin of natural waters in a glacial till slope duringsnowmelt[J]. Journal of Hydrology, 1990,118:107-127
    [110] Everts C.J., Kanwar R.S. Interpreting tension-infiltrometer data for quantifying soil macropores. Some practical considerations[J]. Transactions of the ASAE,1993,36:423-428
    [111] Iqbal M.Z., Krothe Noel C. Transport of bromide and other inorganic ions by infiltrating storm water beneath a farmland plot[J]. Ground Water,1996,34:972-978
    [112] Villholth K.G., Jensen K.H., Fredericia J. Flow and transport processes in a macroporous subsurface-drained glacial till soil. I: Field investigations[J]. Journal of Hydroloty, 1998,207:98-120
    [113] Manon J., Bernd L. Horizontal and vertical water and solute fluxes in paddy rice fields[J]. Soil & Tillage Research, 2007,94:133-141
    [114] zhou X., Lin H.S., White E.A. Surface soin hydraulic properties in four soil series under different land use and their temporal changes[J]. Catena,2007,34:223-230
    [115] Christen K., Jesus C. On the relationship between indicators of geostatistical, flow and transport connectivity[J]. Advances in Water Resources,2005,28:405-421
    [116] Anna S., Urszula K., Jerzy L., et al. Macro-porosity and leaching of atrazine in tilled and orchard loamy soils[J]. Chemosphere,2007,201:20-29
    [117] Osunbitan J.A., Oyedele D.J., Adekalu K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria[J]. Soil & Tillage Research,2005,82:57-64
    [118] Ulrike D., Guoyin C., Sabine G., et al. Influence of a heavy rainfall event on the leaching of [14C] isoproturon and its degradation products in outdoor lysimeters[J]. Environmental Pollution, 2006,144:695-702
    [119] Karathanasis A.D., Johnson D.M.C. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids[J]. Science of the Total Environment, 2006,254:157-169
    [120] Paul K., Paul A., Blackwell A., et al. A lysimeter experiment to investigate theleaching f veterinary antibiotics through a clay soil and comparison with field data[J]. Environmental Pollution, 2005,134:333-341
    [121] 朱 红 霞 , 姚 贤 良 . 有 机 物 料 在 稻 作 制 的 物 理 作 用 [J]. 土 壤 学报,1993,30(2):137-145
    [122] Dou S., Tan S.W., Xu X.C., et al. Effect of organic manure application on physical properties and humus characteristics of paddy soil[J]. Pedosphere, 1994,(2):211-219
    [123] Hendriekx J.M.H., Dekker L.W., Boersm A.O.H. Unstable wetting fronts in water-repellent field soils[J]. Journal of Environmental Quality,1993,22:109-118
    [124] Martin S., Bernd H. A risk index for characterizing flow pattern in soils using dye tracer distributions[J]. Journal of Contaminant Hydrology,2005,79:25-44
    [125] Vepraskas M.J. Predicting contaminant transport along quartz veins above the water table in a mica-schist saprolite[J]. Geoderma,2005,126:47-57
    [126] Weiler M., Naef F. Simulating surface and subsurface initiation of macropore flow[J]. Journal of Hydrology, 2003,273(1):139-154
    [127] Kasteel R., Garnier P., Vachier P., et al. Dye tracer infiltration in the plough layer after straw incorporation[J]. Geoderma,2007,137:360-369
    [128] Wang Z., Lu J.H., Wu L.S., et al. Visualizing preferential flow paths using ammonium carbonate and a pH indicator[J]. Soil Science Society of America Journal, 2002,66:347-351
    [129] Lipsius K., Mooney S.J. Using image analysis of tracer staining to examine the infiltration patterns in a water repellent contaminated sandy soil[J]. Geoderma,2006,136:865-875
    [130] Stefan S., Helmut R., Ingrid O., et al. Assessment of soil structural differentiation around earthworm burrows by means of X-ray computed tomography and scanning electron microscopy[J]. Geoderma,2007,137:378-387
    [131] Anna-Kaisa R., Bjorn K. Use of stabile isotopes and tracers to detect preferentialflow patterns in a peatland treating municipal wastewater[J]. Journal of Hydrology,2007,347:418-429
    [132] Sacha J.M., Catherine M. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography[J]. catena,2007:1-8
    [133] 李伟莉,金昌杰,王安志等. 长白山北坡两种类型森林土壤的大孔隙特征[J]. 应用生态学报,2007,18(6):1213-1218.
    [134] 陈风琴,石辉. 缙云山常绿阔叶林土壤大孔隙与入渗性能关系初探[J].西南师范大学学报:自然科学版,2005,30(2):350-353
    [135] 吴华山,陈效民,陈粲. 利用 CT 扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报,2007,21(2):175-178
    [136] 吴华山,陈效民,沃飞等. 太湖地区水稻土的硝态氮穿透曲线及影响因素[J]. 土壤通报,2006,37(6):1131-1133
    [137] 陈效民,黄德安,吴华山. 太湖地区主要水稻土的大孔隙特征及其影响因素研究[J].土壤学报,2006,43(3):509-512
    [138] 区自清, 贾良清, 金海燕等. 大孔隙及优势流对污染物在土壤中迁移的作用[J]. 土壤学报, 1999,36(3):341-347
    [139] Edwards W M., Shipitalo M.J., Dick W.A., et al. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil[J]. Soil Science Society of America Journal,1992,56:52-58
    [140] Andreini M.S., Steenhuis T.S. Preferential paths of flow under conventional and conservation tillage[J]. Geoderma, 1990,46:85-102
    [141] Meyer-Windel S., Lennartz B., Widmoser P. Bromide and herbicide transport under steady-state and transient flow conditions[J]. European Journal of Soil Science,1999,50:23-33
    [142] 汪景宽,于树,李丛等. 不同肥力土壤各级微团聚体中主要营养元素含量的变化[J]. 水土保持学报,2007,21(6):122-125
    [143] Langner H.W., Gaber H.M., Wraith J.M., et al. Preferential flow through intact soil cores effect of matric head[J]. Soil Science Society of America Journal,1999,63:1591-1598
    [144] Li Y.M., Ghodrati M. Preferential transport of solute through soil columns containing constructed macropores[J]. Soil Science Society of America Journal, 1992,56:52-58
    [145] Ghodrati M., Chendorain M., Chang Y.J. Characterization of macropore flow mechanisms in soil by means of a split macropore column[J]. Soil Science Society of America Journal,1999,63:1093-1101
    [146] Beven K., Germann P. Water flow in soil macropore II. A combined flow model[J]. J. Soil Sci. 1981,32,15-29
    [147] Jarvis S.C. Progress in studies of nitrate leaching from grassland soils[J]. Soil Use and Management, 2000, 16:152-156.
    [148] Goulding K.W.T., Poulton P.R., Webster C.P., et al. Nitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weather[J]. Soil Use and Management, 2000, 16:244-250.
    [149] Ohrstrom P., Person M., Albergel J., et al. Field-scale variation of preferential flow as indicated from dye coverage[J]. Journal of Hydrology, 2002, 257:164-173.
    [150] Karunatilake U.P, Van E.H.M. Rainfall and tillage effects on soil structure after alfalfa conversion to maize on a clay loam soil in New York[J]. Soil & Tillage Research, 2002, 67:135-146.
    [151] Cameira M.R., Fernando R.M., Pereira L.S. Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal[J]. Soil & Tillage Research, 2003, 70:131-140
    [152] Allaire S.E., Gupta S.C., Nieber J., et al. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions[J]. Journal of Contaminant Hydrology, 2002, 58:299-321.
    [153] Morgun N.M., Wilding L.P., Mcinnes K.J. Soil structural interfaces in some Texas Vertisols and their impact on solute transport[J]. Catena, 2003, 54:477-493.
    [154] 倪余文,区自清,应佩峰. 土壤优先水流及溶质优先迁移的研究[J]. 应用生态学报,2001,12(1):103-107
    [155] Pierret A., Capowiez Y., Belzunces L., et al. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma, 2002, 106:247-271.
    [156] 冯杰,郝振纯. CT 扫描确定土壤大孔隙分布[J]. 水科学进展,2002,13(5):611-617.
    [157] 李德成,李忠佩, Velde B, 等. 不同利用年限的红壤水稻土孔隙结构差异的图像分析[J]. 土壤,2002,3:134-137.
    [158] Herrmann K.H., Pohlmeier A., Gembris D., et al. Three-dimensional imaging of pore water diffusion and motion in porous media by nuclear magnetic resonance imaging[J]. Journal of Hydrology, 2002, 267:244-257.
    [159] Malone R.W., Logsdon S., Shipitalo M.J., et al. Tillage effect on macroporosity and herbicide transport in percolate[J]. Geoderma, 2003,116:191-215.
    [160] Chen C.C., Roseberg R.J., Selker J.S. Using microsprinkler irrigation to reduce leaching in a shrink/swell clay soil[J]. Agricultural Water Management, 2002, 54:159-171.
    [161] Hundal H.S. Phosphorus sorption characteristics of flooded soil amended with green manures[J]. Tropical agriculture,1988,65(2):185-187
    [162] 劳家柽. 土壤农化分析手册[M]. 北京:农业出版社, 1988.
    [163] 刘方春,聂俊华,刘春生,等. 不同施肥措施对土壤硝态氮垂直分布的特征影响[J]. 土壤通报,2005,36(1):50-53.
    [164] 张卫国,牛少莉,宋爱君. HA 有机-无机复混肥中氮磷钾释放效果的测定[J]. 河北科技师范学院学报,2005,19(2):5-8.
    [165] Hodgkinson R.A., Chambers B.J., Withers P.J.A., et al. Phosphorus losses to surface waters following organic manure applications to a drained clay soil[J]. AgriculturalWater Management, 2002, 57:155-173.
    [166] 宋玉芳,任丽萍,许华夏. 不同施肥条件下旱田养分淋溶规律试验研究[J]. 生态学杂志,2001,20(6):20-24.
    [167] 熊国华,林咸永,章永松,等. 施用有机肥对蔬菜保护地土壤环境质量影响的研究进展[J]. 科技通报,2005,21(1):84-90.
    [168] Edwards W.M., Vander P.P.R., Ehlers W. A numerical study of the effects of noncapillary-sized pores upon infiltration[J]. Soil Sci. Soc. Am. J., 1979,43:851-856
    [169] Germann P.F., Beven K. Water flow in soil macropores. I An experimental approach[J]. J. Soil Sci., 1981,32:1-13
    [170] Germann P.F, Beven K. Kinematic wave approximation to infiltration into soils with sorbing macropores[J]. Water Resour. Res., 1985,21:990-996
    [171] Lee K.E. Earthworms: Their ecology and relationships with soils and land use[J]. Academic Press, Sydney, Australis, 1985
    [172] 陆安祥,赵云龙,王纪华等. 不同土地利用类型下氮磷在土壤剖面中的分布特征[J]. 生态学报,2007,27(9):3923-3929
    [173] 章明奎,王丽平. 旱耕地土壤磷垂直迁移机理的研究[J]. 农业环境科学学报,2007,26(1):282-285
    [174] 谢迎新,赵旭,熊正琴等. 污水灌溉对稻田土壤氮磷淋失动态变化的影响[J]. 水土保持学报,2007,21(4):43-46
    [175] 刘兆辉,江丽华,张文君等. 氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究[J]. 农业环境科学学报,2006,25(增刊):537-542
    [176] 鲁如坤,时正元,赖庆旺. 红壤长期施肥养分的下移特征[J]. 土壤,2000,1:27-29
    [177] 沈思渊. 地统计学在土壤空间变异研究中的应用及其展望[J].土壤学进展.1989,17(3):11-25
    [178] 关连珠,张伯泉,颜丽. 有机肥料配施化肥对土壤有机质组分及生物活性影响的研究[J]. 土壤通报,1990,21(4):180-184
    [179] 石辉,陈凤琴,刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报,2005,25(3):507-512
    [180] 员学峰,汪有科,吴普特等. 聚丙烯酰胺减少土壤养分的淋溶损失研究[J]. 农业环境科学学报, 2005,24(5):929-934
    [181] 杜建军,苟春林,崔英德等. 保水剂对氮肥挥发和氮磷钾养分淋失的影响[J]. 农业环境科学学报,2007,26(4):1296-1301
    [182] 李宗新,董树亭,王空军等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J]. Chinese Journal of Applied Ecology, Jan 2008,19(1):65-70
    [183] 冯杰,于纪玉. 利用 CT 扫描技术确定土壤大孔隙分形维数[J]. 灌溉排水学报,2005,24(4):26-28
    [184] 时忠杰,王彦辉,熊伟. 六盘山典型植被类型土壤中石砾对大孔隙形成的影响[J]. 山地学报,2007,25(5)541-547
    [185] 时忠杰,王彦辉,徐丽宏等. 六盘山典型植被下土壤大孔隙特征[J]. 应用生态学报,2007,18(12):2675-2680
    [186] 吴景贵,陈丽荣,王明辉等. 玉米植株残体腐解过程的化学分析[J]. 吉林农业大学学报 2000,22(3):61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700