土地利用变化对土壤团聚体碳组分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球土壤有机碳库大约是陆地植被碳库的3倍、大气碳库的2倍,这些碳库的变化被认为是导致大气碳库和全球气候变化的主要原因。每年因土地利用变化所释放的CO_2约占全球CO_2释放量的1/4,精确估计土地利用变化对陆地生态系统碳平衡的影响是当前全球变化和全球碳循环研究的重点内容。
     本研究选择亚热带地区本底条件较为一致的细柄阿丁枫天然林、杉木人工林、木荷人工林、封育林、桔园、茶园、坡耕地为研究对象,通过研究土地利用变化对土壤团聚体有机碳组分(轻组有机碳、颗粒有机碳、微生物量碳、游离轻组有机碳、团聚体内颗粒有机碳及矿物态有机碳)的影响,揭示亚热带山地土壤碳过程对土地利用变化的响应,提高人们对土壤碳稳定机制的认识,为进一步探讨土地利用变化对土壤碳吸存的影响机理提供基础数据,也为我国亚热带山区土地利用方式的科学调整和碳汇能力的增强提供思路。
     研究结果表明,天然林转换为人工林、次生林、园地、耕地后,土壤有机碳、轻组有机碳、颗粒有机碳、微生物量碳含量都显著下降;土壤团聚体有机碳、轻组有机碳、颗粒有机碳也发生显著下降,各个粒径团聚体有机碳都有不同程度的减少,最高达99%,其中大团聚体中有机碳含量减少幅度比微团聚体大。但土壤团聚体微生物量碳在土地利用变化之后,不一定有显著变化,微生物商在本区域也未表现出一定规律性,因此,土壤团聚体轻组有机碳、颗粒有机碳可以作为指示亚热带地区土地利用变化的敏感指标,土壤团聚体微生物量碳及微生物商能否作为反映土地利用变化对土壤有机碳的影响的指标还需进一步研究。天然林转换为人工林、次生林、园地之后,土壤团聚体中各个粒径游离轻组有机碳(free LF C)、团聚体内颗粒有机碳(iPOM C)含量发生损失,iPOM比free LF损失更大,特别是粗iPOM,这表明在亚热带地区iPOM对土地利用变化的响应更为敏感,土地利用变化物理分组组分能够清楚表明土地利用与管理对土壤有机质数量与质量的影响。本研究结果还发现微团聚体中细iPOM决定土壤有机质稳定的大团聚体周转模型不适用于亚热带地区,这为进一步探讨亚热带区域土壤有机碳稳定机制奠定基础。
The soil organic carbon pool is about three times the biotic pool and twice the atmospheric pool.Any change in soil carbon pool will lead to change of atmospheric pool and climate change.About 25% of the current total anthropogenic emissions of CO_2 are estimated to be caused by land use change.It is essential to assess the impact of land use change on terrestrial carbon dynamic. It is not clear about soil processes and mechanisms of soil organic carbon stabilization,especially the effect of land use change on soil organic carbon.Herein it is need to evaluate the influence of land use on soil carbon fractions.
     The purpose of this research was to assess impact of land use on total organic soil carbon and soil carbon fractions in aggregates.Soil samples were collected from adjacent natural forest, plantation,secondary forest, agricultural land for comparison of total organic carbon,light fraction(LF) carbon,particulate organic matter(POM) carbon,microbial biomass carbon (MBC),free light fraction carbon(free LF C),intra-aggregate particulate organic matter(iPOM) carbon, mineral-associated carbon(mSOC). Understanding how these soil organic carbon fractions behave in response to changes in land use will aid in assessing sources and sinks of carbon associated with forest conversion in subtropical region of China.
     Total soil carbon, light frction carbon,particulate organic matter carbon, microbial biomass carbon in soil and soil aggregates decreased due to forest conversion,particularly in macroaggregates.LF C and POM C were sensitive to the change of land use,but MBC and MBC quotient had minimal impact on different land use.Total amounts of free LF and iPOM were significantly larger in the natural forest than in other land use practices.The results indicate that the iPOM accounted for much of the losses of soil organic carbon due to conversion.Therefore,the LF C and POM C were much more affected by forest conversion than the total aggregate organic carbon and MBC.Of the different POM fractions,losses of the iPOM due to conversion was more pronounced than free LF fraction.The observed changes in soil aggregation and SOM should provide a practical tool to complement further chemical, biological and physical soil tests to project a sustainable and productive agriculture in this environment.
引文
1.Akala V A,Lal R.Soil organic carbon pools and sequestration rates in reclaimed mine soils in Ohio[J].J.Environ.Qual.,2001,30:2098-2104.
    2.Alvarez R,Alvarez C R.Soil organic matter pools and their associations with carbon mineralization kinetics[J].Soil Sci.Soc.Am.J.,2000,64:184-189.
    3.Angers D A,Recous S,Aita C.Fate of carbon and nitrogen in water-stable aggregates during decomposition of ~(13)C~(15)N-labelled wheat straw in situ[J].Eur.J.Soil Sci.,1997,48:295-300.
    4.Ashagrie Y,Zech W,Guggenberger G,et al.Soil aggregation,and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia[J].Soil Till.Res.,2007,94:101-108.
    5.Ashagrie Y,Zech W,Guggenberger G.Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munesa,Ethiopia:soil organic C,N and S dynamics in primary particle and aggregate-size fractions[J].Agric.Ecosyst.Environ.,2005,106:89-98.
    6.Baisden W,Amundson R,Cook A C,et al.Turnover and storage of C and N in five density fractions from California annual grassland surface soils[J].Glob.Biochem Cycl.,2002,16:1117.
    7.Balesdent J,Chenu C,Balabane M.Relationship of soil organic matter dynamics to physical protection and tillage[J].Soil Till.Res..2000,53:215-230.
    8.Ball B C,Cheshire M V,Robertson E A G,et al,Carbohydrate composition in relation to structural stability,compactibility and plasticity of two soils in a long-term experiment[J].Soil Till.Res.,1996,39:143-160.
    9.Banu N A,Singh B,Copeland L.Soil microbial biomass and microbial biodiversity in some soils from New South Wales,Australia[J].Aust.J.Soil Res.,2004,42:777-782.
    10.Bauhus J,Khanna P K.The significance of microbial biomass in forest soils.In:Rastin N,Bauhus J (eds),Going underground-ecological studies in forest soils[C].Research Signpost,Trivandrum.India,1999,77-110.
    11.Beare M H,Cabrera M L,Hendrix P F,et al.Aggregate-protected and unprotected pools of organic matter in conventional and no-tillage soils[J].Soil Sci.Soc.Am.J.,1994,58:787-795.
    12.Beare M H,Hu S,Coleman D C,et al.Influences of mycelial fungi on soil aggregation and organic matter retention in conventional and no-tillage soils[J].Appl.Soil Ecol.,1997,5:211-219.
    13.Beare M H,Hendrix P F,Coleman D C.Water-stable aggregates and organic matter fractions in conventional-tillage and no-tillage soils[J].Soil Sci.Sot.Am.J.,1994,58:777-786.
    14.Besnard E,Chenu C,Balesdent J,et al.,Fate of particulate organic matter in soil aggregates during cultivation[J].Eur.J.Soil Sci.,1996,47:495-503
    15.Bettina J,Yamashita T,Ludwig B,et al.Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use[J].Geoderma,2005,128:63-79.
    16.Blanco-Canqui H,Lal R.Mechanisms of carbon sequestration in soil aggregates[J].Critical Reviews in Plant Sciences,2004,23(6):481-504.
    17.Bonde T A,Christensen B T,Cerri C C.Dynamics of soil organic matter as reflected by natural ~(13)C abundance in particle size fractions of forested and cultivated oxisols[J].Soil Biol.Biochem.,1992,24:275-277.
    18.Boone R D.Light fraction soil organic mater:origin and contribution to net nitrogen mineralization[J].Soil Biol.Biochem.,1994,26:1459-1468.
    19.Brejda J J.Soil changes following 18 years of protection from grazing in Arizona chaparral[J].The Southwestern Naturalist,1997,42:478-487.
    20.Buyanovsky G,Aslam M,Wagner G.Carbon turnover in soil physical fractions[J].Soil Sci.Soc.Am.J.,1994,58:1167-1173.
    21.Cadisch G,Imhof H,Urquiaga S,et al.Carbon turnover(δ~(13)C)and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing[J].Soil Biol.Biochem.,1996,28:1555-1567.
    22.Cambardella C A,Elliot E T.Carbon and nitrogen in aggregates from cultivated and native grassland soils[J].Soil Sci.Soc,Am.J.,1993,57:1071-1076.
    23.Cambardella C A,Elliott E T.Particulate soil organic matter changes across a grassland cultivation sequence[J].Soil Sci.Soc.Am.J.,1992,56:777-782.
    24.Camberdella C A,Elliott E T.Carbon and nitrogen dynamics of some fraction from cultivated grassland.soils[J].Soil Sci.Soc.Am.J.,1994,58:123-1301.
    25.Carter M R,Angers D A,Gregorich E G,et al.Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions[J].Can.J.Soil Sci.,2003,83:11-23.
    26.Carter M R.Soil quality for sustainable land management:Organic matter and aggregation interactions that maintain soil functions[J].Agron.J.,2002,94:38-47.
    27.Chan K Y.Consequences of changes in particulate organic carbon in vertisols under pasture and cropping.Soil Sci.Soc.Am.J.,1997,61:1376-1382.
    28.Chapman S J,Campbell C D,Puri G.Native woodland expansion:soil chemical and microbiological indicators of change[J].Soil Biol.Biochem.,2003,35:753-764.
    29.Chaussod R,Houot S,Guiraud G,et al.Size and turnover of the microbial biomass in agricultural soils:laboratory and field measurements.In:Smith,K.A.(Ed.),Nitrogen Efficiency in Agricultural Soils[M].Elsevier applied Science,London,1988,312-338.
    30. Chenu C, Plante A F. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the 'primary organo-mineral complex' [J]. Eur. J. Soil Sci., 2006, 57:596-607.
    
    31. Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates.Adv. Soil Sc.i, 1992,20:1-90
    
    32. Christensen B T. Physical fractionation of soil and structural and funtional complexity in organic matter turnover [J]. Eur. J. Soil Sci., 2001, 52:345-353.
    
    33. Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: effects on soil carbon [J]. Applied Ecology, 2001,11:343-355.
    
    34. Conant R T,Six J,Paustian K. Land use effects on soil carbon fractions in the southeastern United States. II. Changes in soil carbon fractions along a forest to pasture chronosequence [J]. Biol. Fertil Soils,2004,40:194-200
    
    35. Conteh A, Blair G J, Rochester I J.Soil organic carbon fractions in a Vertisol under irrigated cotton production as affected by burning and incorporating cotton stubble[J]. Aust .J. Soil Res., 1998,36:655-667.
    
    36. Conteh A, Blair G J.The distribution and relative losses of soil organic carbon fraction in aggregate size fractions from cracking clay soils (vertisols)under cotton production[J]. Aust J. Soil Res., 1998,36:257-271.
    
    37. Dalai R C , Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. IV. Loss of organic carbon from different density fractions [J]. Aust .J. Soil Res., 1986,24:301-309.
    
    38. Dalai R C , Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. VI. Loss of total nitrogen from different particle-size and density fractions [J]. Aust. J. Soil Res., 1987,25:83-93.
    
    39. de Jonge LW , Jacobsen O H, Moldrup P. Soil water repellency: effects of water content, temperature, and particle size[J]. Soil Sci. Soc. Am. J., 1999,63:437-442.
    
    40. Degryze S, Six J, Paustian K H, et al. Soil organic carbon pool changes following land-use conversions[J]. Global Change Biol.,2004,10:l 120-1132.
    
    41. Denef K ,Six J.Contribution of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy[J].Eur. J. Soil Sci., 2006, 57:774-786.
    
    42. Detwiler R P. Land use change and the global carbon cycle: the role of tropical soils [J]. Biogeochemistry, 1986,2:321-323.
    
    43. Dixon R K, Wisniewski J. Global forest systems: an uncertain response to atmospheric pollutants and global climate change[J].Water Air Soil Pollut.,1995,85:101-110.
    44.Ellert B,Gregorich E G.Storage of carbon,nitrogen and phosphorus in cultivated and adjacent forest soils of Ontario[J].Soil Science,1996,161:587-603.
    45.Elliott E T,Palm C A,Reuss D E,et al.Organic matter contained in soil aggregates from a tropical chronosequence:Correction for sand and light fraction[J].Agric.Ecosyst.Environ.,1991,34:443-451.
    46.Elliott E T.Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J].Soil Sci.Soc.Am,J.,1986,50:627-633.
    47.Emma E.Bonino.Changes in carbon pools associated with a land-use gradient in the Dry Chaco,Argentina[J].Forest Ecol.Manag.,2006,223:183-189.
    48.Eynard A,Schumacher T E,Lindstrom M J,et al.Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts[J].Soil Till.Res.,2005,81:253-263.
    49.Follett R F,Schimel D S.The effect of tillage practices on microbial biomass dynamics[J].Soil Sci.Soc.Am.J.,1989,53:1091-1096.
    50.Franzluebbers A J,Arshad M A.Particulate organic carbon content and potential mineralization as affected by tillage and texture[J].Soil Sci.Soc.Am.J.,1997a,61:1382-1386.
    51.Franzluebbers A J,Arshad M A.Soil microbial biomass and mineralizable C of water-stable aggregates[J].Soil Sci.Soc.Am.J.,1997b,61:1090-1097.
    52.Franzluebbers A J,Stuedemann J A,Schomberg H H,et al.Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA[J].Soil Biol.Biochem.,2000,32:469-478.
    53.Franzluebbers A J,Stuedemann J A.Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA.Environmental Pollution,2002,116:S53-S62.
    54.Freixo A A,Machado P L O,Santos H P,et al.Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation in southern Brazil[J].Soil Till.Res.,2002,64:221-230.
    55.Fugen D,Frank M H.Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems[J].Soil Sci.Soc.Am.J.,2006,70:1896-1905.
    56.Galdo I D,Six J,Peressotti A,et al.Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionafion and stable C isotopes[J].Global Change Biol.,2003,9:1204-1213.
    57.Gale W J,Cambardella C A,Bailey T B.Root-derived carbon and the formation and stabilization of aggregates[J].Soil Sci.Soc.Am.J.,2000,64:201-207.
    58.Golchin A,Oades J M,Skejmstad J O,et al.Soil structure and carbon cycling[J].Aust.J.Soil Res.,1994a,32:1043-1068.
    59.Golchin A,Oades J M,Skejmstad J O,et al.Structural and dynamic properties of soil organic matter as reflected by ~(13)C natural abundance,pyrolysis mass spectrometry and solid-state ~(13)C NMR spectroscopy in density fractions of an Oxisol under forest and pasture[J].Aust.J.Soil Res.,1995,33:59-76.
    60.Golchin A,Oades J M,Skejmstad J O,et al.Study of free and occluded particulate organic matter in soils by solid-state ~(13)C CP/MAS NMR spectroscopy and scanning electron microscopy[J].Aust.J.Soil Res.,1994b,32:285-309.
    61.Grayston S J,Griffith G S,Mawdsley J L,et al.Accounting for variability in soil microbial communities of temperate upland grassland ecosystems[J].Soil Biol.Biochem.,2001,33:533-551.
    62.Greenland D J,Ford G W.Separation of partially humified organic materials from soils by ultrasonic dispersion.8th Int.Congr[J].Soil Sci.Trans,1964,3:137-146.
    63.Gregorich E G,Beare M H,McKim U F,et al.Chemical and Biological Characteristics of Physically Uncomplexed Organic Matter[J].Soil Sci.Soc.Am.J.,2006,70:975-985.
    64.Gregorich E G,Drury C F,Ellert B H,et al.Fertilisation effects on physically protected light fraction organic matter[J].Soil Sci.Soc.Am.J.,1997,61:482-484.
    65.Gregorich E G,Janzen H H.Storage of soil carbon in the light fraction and macroorganie matter.In Carter M A and Stewart A(eds).Structure and organic matter storage in agricultural soils.Lewis Publishers,Boca Raton,Florida.,1996,167-190.
    66.Gregorich E G,Monreal C M,Schnitzer M,et al.Transformation of plant residues into soil organic matter:Chemical characterization of plant tissue,isolated soil fractions and whole soils [J].Soil Science,1996,161:680-693.
    67.Groenendijk F M,Condron L M,Rijkse W C.Effects of afforestation on organic carbon,nitrogen and sulfur concentrations in New Zealand hill country soils[J].Geoderma,2002,108:91-100.
    68.Guggenberger G,Frey S D,Six J,et al.Bacterial and fungal cell-wall residues in conventional and notillage agroecosystems.Soil Sci.Soc.Am.J.,1999,63:1188-1198.
    69.Guo L B,Gifford R M.Soil carbon stocks and land use change:a meta analysis[J].Global Change Biol.,2002,8:345-360.
    70.Gupa V V S R,Germida J J.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J].Soil Biol.Biochem.,1988,20:777-786.
    71.Hassink J.The capacity of soils to preserve organic C and N by their association with clay and silt particles[J].Plant Soil,1997,191:77-87.
    72.Hayes M H B,Clapp C E.Humic substances:considerations of compositions,aspects of structure,and environmental influences[J].Soil Science,2001,166:723-737.
    73.Haynes R J,Swift R S.Stability of soil aggregates in relation to organic constituents and soil water content[J].J.Soil Sci.,1990,41:73-83.
    74.Helfrich M,Ludwig B,Buurman P,et al.Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by olid-state 13C NMR spectroscopy[J].Geoderma,2006,136:331-341.
    75.Henderson G S.Soil organic matter:a link between forest management and productivity.In:Bigham,J.M.,Bartels,J.M.(Eds.),Carbon Forms and Functions in Forest Soils[M].Soils Science Society of America,Madison,WI,1995,419-435.
    76.Hernandez- Hernandez R M,Lopez- Hernandez D.Microbial biomass,mineral nitrogen and carbon content in savanna soil aggregates under conventional and no-tillage[J].Soil Biol.Biochem.,2002,34:1563-1570.
    77.Houghton R A,Hackler J L.Emissions of carbon from forestry and land use change in tropical Asia[J].Global Change Biol.,1999,5:481-492
    78.Houghton R A,Hobbie J E,Melillo J M,et al.Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:A net release of CO2 to the atmosphere[J].Ecol.Monog.,1983,53:235-262
    79.Hu S,Coleman D C,Carroll C R,et al.Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types[J].Agric.Ecosyst.Environ.,1997,65:69-78.
    80.Huntington T G.Carbon sequestration in an aggrading forest ecosystem in the southeastern USA [J].Soil Sci.Soc.Am.J.,1995,59:1459-1467.
    81.Ingram J S I,Femandes E C M.Managing carbon sequestration in soils:concepts and terminology[J].Agric.Ecosyst.Environ.,2001,87:111-117.
    82.IPCC.Land Use,Land Use Change and Forestry.Special Report,Inter-Governmental Panel on Climate Change[C].Cambridge University Press,Cambridge,UK,2000,127-180.
    83.IPCC.In:Houghton J T,Ding Y,Nogua M,et al.(eds.).Climate Change 2001:The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of IPCC.Cambridge:Cambridge University Press,U.K.,2001.
    84.Islam K R,Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J].Agric.Ecosyst.Environ.,2000,79:9-16.
    85.Janzen H H,Campbel C A,Brandt S A,et al.Light-fraction organic mater in soils from long-term crop rotations[J].Soil Sci.Soc.Am.J.,1992,56:1799-1806.
    86.Jastrow J D,Boutton T W,Miller R M.Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J].Soil Sci.Soc.Am.J.,1996,60:801-807.
    87.Jastrow J D.Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J].Soil Biol.Biochem.,1996,28:656-676.
    88.Jener L M,Carlos C C,Jerry M M,et al.Soil carbon stocks of the Brazilian Amazon Basin[J].Soil Sci.Soc.Am.J.,1995,59:244-247.
    89.Jenkinson D S,Parry L C.The nitrogen cycle in the Broadbalk wheat experiment:a model for the turnover of nitrogen through the soil microbial biomass[J].Soil Biol.Biochem.,1989,21:535-541.
    90.Jenkinson D S,Ladd J N.Microbial biomass in soil:measurement and turnover.In Paul E A,Ladd J N(eds).Soil Biochemistry,Marcel Dekker,Inc.,New York,1981,415-471.
    91.John B,Yamashita T,Ludwig B,et al.Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use[J].Geoderma,2005,128:63-79.
    92.Johnston M H,Homan P S,Engstrom J K,et al.Changes in ecosystem carbon storage over 40years on an old field/forest landscape in east-central Minnesota[J].Forest Ecol.Manag.,83:17-26.
    93.Karolien D,Lincoln Z,Robert M B,et al.Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J].Soil Biol.Biochem.,2007,39:1165-1172.
    94.Kelliher F M,Sedcole J R,Minchin R F,et al.Soil microbial responses to repeated urea applications in three grasslands[J].Aust.J.Soil Res.,2005,43:905-913.
    95.Krull E S,Baldock J A,Skjemstad J O.Importance of mechanisms and pmcesses of the stabilization of soil organic matter for modelling carbon turnover[J].Functional Plant Biology,2003,30:207-222.
    96.Kolbl A,Kogel-Knabner I,Content and composition of freeand occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy[J]J.Plant Nutr.Soil Sci.,2004,167:45-53.
    97.Lal R.Soil carbon sequestration to mitigate climate change[J].Geoderma.2004,123:1-22
    98.Lal R.Soil processes and greenhouse effect.In:Lal R(eds.).Methods for assessment of soil degradation[C].CRC press,Boca,RATON,in the United States of America,1998,119-212.
    99.Lal,R.The potential of soil carbon sequestration in forest ecosystem to mitigate the greenhouse effect.In:Lal R(eds.),Soil Carbon Sequestration and the Greenhouse Effect.Soil Science Society of America Special Publication,2001,vol.57.Madison,WI.
    100.Le Bissonnais Y.Aggregate stability and assessment of soil erustability and erodibility:I.Theory and methodology[J].Euro.J.Soil Sc.,1996,47:425-437.
    101.Leifeld J,Kogel-Knabner I.Soil organic matter fractions as early indicators for carbon stock changes under different land-use?[J].Geoderma,2005,124:143-155.
    102.Liao J D,Boutton T W,Jastrow J D.Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland[J].Soil Biol.Biochem.,2006,38:3184-3196.
    103.Lugo A E,Sanchez A J,Brown S.Land use and organic carbon content of some subtropical soils [J].Plant and soil,1986,96:185-196.
    104.Lutzowa M V,Kogel-Knabner IEkschmitt K,et al.Stabilization of organic matter in temperate soils:mechanisms and their relevance under different soil conditions-a review.Eur.J.Soil Sci.2006,57:426-445.
    105.Lutzowa M V,Kogel-Knabner I,Ekschmitt K,et al.SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms[J].Soil Biol.Biochem.,2007,39:2183- 2207.
    106.Malhi S S,Brandt S,Gill K S.Cultivation and grassland type effects on light fraction and total organic C and N in a Dark Brown Chernozemic soil[J].Can.J.Soil Sci.,2003,83(2):145-153.
    107.Marcos D B,Juan C L.Particulate organic matter,carbohydrate,humic acid contents in soil macro- and microaggregates as affected by cultivation[J].Geoderma,2006,136:660-665.
    108.Maren O,Voroney R P,Gordon A M.Carbon sequestration in tropical and temperate agro-forestry systems:a review with examples from Costa Rica and southern Canada.Agriculture [J].Ecosystems and Environment,2004,104:359-377.
    109.Martin R C.Soil quality for sustainable land management:Organic matter and aggregation interactions that maintain soil functions[J].Agronomy Journal,2002,94:38-47.
    110.McGill W B.Review and classification of ten soil organic matter(SOM)models.In:Smith,U.J.(eds.),Evaluation of Soil Organic Matter Models[M].Springer,Berlin,1996:111-132.
    111.McLauchlan K K,Hobbie S E.Comparison of labile soil organic matter fractionation techniques [J].Soil Sci.Soc.Am.J.,2004,68:1616-1625.
    112.Mendes I C,Bandick A K,Dick R P,et al.Microbial biomass and activities in soil aggregates affected by winter cover crops[J].Soil Sci.Soc.Am.J.,1999,63:873-881.
    113.Miller M,Dick R P.Dynamics of soil C and microbial biomass on whole soil aggregates in two cropping systems differing in C-input[J].Appl.Soil Ecol.,1995,2:253-261.
    114.Monreal C M,Schulten H R.Kodama H.Age,turnover and molecular diversity of soil organic matter in aggregates of a Gleysol[J].Can.J.Soil Sci.,1997,77:379-388.
    115.Moran K K,Six J,Horwath W R,et al.Role of mineral-nitrogen in residue decomposition and stable soil organic matter formation[J].Soil Sci.Soc.Am.J.,2005,69:1730-1736.
    116.Motavalli P P,Discekici H,Kuhn J.The impact of land clearing and agricultural practices on soil organic C fractions and CO_2 efflux in the Northern Guam aquifer[J].Agriculture Ecosystems and Environment,2000,79:17-27.
    117.Murty D,Kirsehbaum M F,Memurtrie R E,et al.Does conversion of forest to agricultural land change soil carbon and nitrogen?[J].Global Change Biol,2002,8:105-123.
    118.Natalia H,Nicholas B.Comerford.Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes[J].Geoderma,2005,129:268-278.
    119.Neil C,Melillo J M,Seudler P A,et al.Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amanzon[J].Ecological Applications,1997,7:1216-1225.
    120.Neufeldt H,Resck D V S,Ayarza M A.Texture and land use effects on soil organic matter in Cerrado Oxisols,central Brazil[J].Geoderma,2002,107:151-164.
    121.Nye P H,Greenland D J.Soil under shifting cultivation.Technical Communication,Common wealth Bureau of Soils[J].Harpenden,1960,51:73-126.
    122.Oades J M,Waters A G.Aggregate hierarchy in soils[J].Aust.J.Soil Res.,1991,29:815-828.
    123.Oades J M.Soil organic matter and structural stability:mechanisms and implications for management[J].Plant and Soil,1984,76:319-337.
    124.Orrts K,Bossuyt H,Labreuche J,et al.Carbon and nitrogen stocks in relation to organic matter fractions,aggregation and pore size distribution in no-tillage and conventional tillage in northern France[J].Eur.J.Soil Sci.,2007,58:248-259.
    125.Paul K I,Polglase P G,Nyakuengama J G,et al.Change in soil carbon following afforestation[J].Forest Ecol.Manag.,2002,16:241-257
    126.Plante A F,Conant R T,Stewart C E,et al.Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions[J].Soil Sci.Soc.Am.J.,2006,70:287-296.
    127.Post W M,Kwon K C.Soil carbon sequestration and landuse change:processes and potential[J].Global Change Biol,2000,6:317-328.
    128.Puget P,Angers D A,Chenu C.Nature of carbobhydrates associated with water-stable aggregate of two cultivated soils[J].Soil Biol.Biochem.,1999,31(1):55-63.
    129.Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].Eur.J.Soil Sci.,2000,51:595-605.
    130.Puget P,Chenu C,Balesdent J.Total and young organic matter distributions in aggregates of silty cultivated soils[J].Eur.J.Soil Sci.,1995,46:449-459.
    131.Ramankutty N,Foley J A.Estimating historical changes in global land cover:croplands from 1700-1992[J].Global Biogeochem.Cycles,1999,13:997-1027.
    132.Robles M D,Burke I C.Soil organic matter recovery on conservation reserve program fields in Southeastern Wyoming[J].Soil Sci.Soc.Am.J.,1998,62:725-730.
    133.Russell A E,Cambardella C A,Ewel J J,et al.Species,rotation,and life-form diversity effects on soil carbon in experimental tropical ecosystems[J].Ecol.Appl.,2004,14:47-60.
    134.Sainju U M,Terrill T H,Gelaye S,et al.Soil aggregation and carbon and nitrogen pools under rhizoma peanut and perennial weeds[J].Soil Sci.Soc.Am.J.,2003,67:146-155.
    135.Sainju U M.Carbon and nitrogen pools in soil aggregates separated by dry and wet sieving methods[J].Soil Science,2006,171(12):937-949.
    136.Sarah M W,Paul V D.The impact of land use on soil carbon in Miombo Woodlands of Malawi[J].Forest Ecol.Manag.,2004,203:345-360.
    137.Schutter M E.and Dick R P.Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil[J].Soil Sci.Soc.Am.J.,2002,66:142-153.
    138.Scott N A,Tate K R,Ross D J,et al.Processes influences soil carbon storage following afforestation of pasture with Pinus radiate at different stocking densities in New Zealand[J].Aust.J.Soil Res.,2006,44:85-96.
    139.Seech A G,Beauchamp E G.Denitrification in soil aggregates of different sizes[J].Soil Sci.Soc.Am.J.,1988,52:1616-1621.
    140.Shaver T M,Peterson G A,Sherrod L A.Cropping intensification in dryland systems improves soil physical properties:regression relations[J].Geoderma,2003,116:149-164.
    141.Shrestha M,Singh B R,Sitaula B K,et al.Bajracharya.Soil Aggregate-and particle-associated organic carbon under different land uses in Nepal[J].Soil Sci.Soc.Am.J.,2007,71:1194-1203.
    142.Six J,Bossuyt H,Degryze S,et al.A history of research on the link between(micro)aggregates,soil biota,and soil organic matter dynamics[J].Soil Till.Res.,2004,79:7-31.
    143.Six J,Conant R T,Paul E A,et al.Stabilization mechanisms of soil organic matter:implications for C-saturation of soils[J].Plant and Soil,2002a,241:155-176.
    144.Six J,Callewaert P,Lenders S,et al.Measuring and Understanding Carbon Storage in A fforested Soils by Physical Fractionation[J].Soil Sci.Soc.Am.J.,2002b,66:1981-1987.
    145.Six J,Elliott E T,Paustian K.Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J].Soil Biol Biochem.,2000a,32:2099-2103
    146.Six J,Elliott E T,Paustian K,et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J].Soil Sci.Soc.Am..J.,1998,62:1367-1377.
    147.Six J,Elliott E T,Paustian K.Soil structure and soil organic matter:II.A normalized stability index and the effect of mineralogy[J].Soil Sci.Soc.Am.J.,2000b,64:1042-1049..
    148. Six J, Elliott ET, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems [J]. Soil Sci. Soc. Am J., 1999,63:1350-1358.
    
    149. Six J, Paustian K, Elliott E T, et al.Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci. Soc. Am. J., 2000c, 64: 681-689.
    
    150. Skjemstad J O, Dalai R C, Barron P F. Spectroscopic investigations of cultivation effects on organic matter of Vertisols [J]. Soil Sci. Soc. Am. J., 1986,50:354-359.
    
    151. Skjemstad, J O, Le Feuvre, R P, Prebble R E,. Turnover of soil organic matter under pasture as determined by 13C natural abundance[J].Aust. J. Soil Res.,1990,28:267-276.
    
    152. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments [J]. Geoderma, 1997, 81: 153-225.
    
    153. Sollins P, Homann P, Caldwell B A. Stabilization and destabilization of soil organic matter: mechanisms and controls [J]. Geoderma,1996,74:65-105.
    
    154. Spycher G, Sollins P, Rose S. Carbon and nitrogen in the light fraction of a forest soil vertical distribution and seasonal patterns [J]. Soil Science, 1983,135(2):79-87.
    
    155. Sleutel S , De Neve S,Nemeth T, et al..Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. Europ. J. Agronomy,2006,25:280-288.
    
    156. Su Y Z. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China [J]. Soil Till. Res.,2007,92:181-189
    
    157. Tan Z, Lai R, Owens L,et al. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice[J].Soil Till. Res. ,2007,92:53-59.
    
    158. Theng B K G.Tate P S,Moris N,et al.Constituents of organic matter in temperate and tropical soils.ln:Coleman D C,Oades J M(eds),Dynamics of soil organic matter in tropical ecosystems. Niftal Project,University of Hawaii at Manoa, 1989,5-32.
    
    159. Tiessen H , Stewart J W.Particle-size fractions and their use in studies of soil organic matter. II.Cultivation effects on organic matter composition in size fractions[J]. Soil Sci. Soc. Am. J., 1983,47:509-514.
    
    160. Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science, 1982,33:141-163.
    
    161. Tisdall J M, Oades J M. The effect of crop rotation on aggregation in a red-brown earth [J]. Aust.J. Soil Res., 1980,18:423-433.
    
    162. Trumbore S E.Davidson E A,de Camargo P B,et al.Belowground cycling of carbon in forests and pastures of Eastern Amazonia[J].Global Biogeochemical Cycles,1995,9:515-528.
    163.Unger P W.Aggregate and organic carbon concentration interrelationships of a Torrertic paleustoll[J].Soil Till.Res.,1997,42:95-113.
    164.Vance E D,Brookes P C,Jenkinson D S.Microbial biomass measurements in forest soils:determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils[J].Soil Biol.Biochem.,1987,19:689-696.
    165.Vanlauwe B,Aihou K,Aman S.Nitrogen and phosphorus uptake by maize as affected by particulate organic matter quality,soil characteristics,and land-use history for soils from west African Moist Savanna Zone[J].Biol.Fertil.Soils,2000,30:440-449.
    166.Veldkamp E.Organic carbon turnover in three tropical soils under pasture after deforestation [J].Soil Sci.Soc.Am.J.1994,58:175-180.
    167.von Lutzow M,Kogel-Knabnera I,Ekschmitt K,et al.SOM fractionation methods:Relevance to functional pools and to stabilization mechanisms[J].Soil Biol Biochem.,2007,39:2183-2207.
    168.Walker S M,Desanker P V.The impact of land use on soil carbon in Miombo Wood lands of Malawi[J].Forest Ecol.Manag.,2004,203:345-360
    169.Wander,M M.Soil organic matter fractions and their relevance to soil function..In F.Magdoff and R.R.Weil(eds.)Soil organic matter in sustainable agriculture.CRC Press,Boca Raton,FL.2004,67-102.
    170.Wardle D A.A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J].Biological Reviews,1992,67:321-358.
    171.Water A G,Oades J M.Organic matter in water stable aggregates.In Wilson WS(eds.)Advances in Soil Organic Matter Research:the Impacts on Agriculture and the Environment[M].The Royal Society of Chemistry,Melksham,Wiltshire,U.K.,1991,163-174.
    172.Watson R T,Zinyowera M C,Moss R H.Climate Change 1995:Impacts,Adaptations and Mitigation of Climate Change:Scientific-Technical Analyses.IPCC,Working Group 2,Cambridge University Press,Cambridge,UK..,1995.
    173.Whalen J K,Bottomley P J,Myrold D D.Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil[J].Soil Biol Biochem.,2000,32(1):1345-1352.
    174.Yamashita T,Flessa H,John B,et al.Organic matter in density fractions of water-stable aggregates in silty soils:effect of land use[J].Soil Biol Biochem.,2006,38:3222- 3234.
    175.Yang X M,Wander M M.Temporal changes in dry aggregate size and stability:tillage and crop effects on a silty loam Mollisol in Illinois.Soil Till.Res.,1998,49:173-183.
    176.Zech W,Senesi N,Guggenberger G,et al.Factors controlling humification and mineralization of soil organic matter in the tropics[J].Geoderma,1997,79:117-161.
    177.Zhang B,Horn R.Mechanisms of aggregates stabilization in Ultisols from subtropical China [J].Geoderma,2001,99:123-145.
    178.Zhang J B,Song C C,Yang W Y.Tillage effects on soil carbon fractions in the Sanjiang Plain,Northeast China[J].Soil Till.Res.,2007,93(1):102-108.
    179.Zhang J B,Song C C,Yang W Y.Land use effects on the distribution of labile organic carbon fractions through soil profiles[J].Soil Sci.So.c Am..J.,2006,70:660-667.
    180.Zotarelli L,Alves B J R,Urquiaga S,et al.Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols[J].Soil and Tillage Rearch,2007,95:196-206.
    181.Zotarelli L,Alves B J R,Urquiaga S,et al.Impact of tillage and crop rotation on aggregate-associated carbon in two Oxisols[J].Soil Sci Soc Am.J.,2005,69:482-491.
    182.陈国潮,何振立,黄昌勇.红壤微生物生物量C周转及其研究[J].土壤学报,2002,39(2):152-160.
    183.樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持研究,2003,10(1):85-87.
    184.方华军,杨学明,张晓平,等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J].生态学报,2006,26(9):2847-2854.
    185.李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报.2004,15(8):1334-1338.
    186.李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-428.
    187.李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004.41(6):912-917.
    188.李恋卿,潘根兴,龚伟,等.太湖地区几种水稻土的有机碳储存及其分布特性[J].科学通报,2000,16(6):421-432.
    189.李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化[J].土壤通报,2000,31(5):193-195.
    190.李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):121-125.
    191.李阳兵,杨霞,宋晓利.岩溶生态系统土壤非保护性有机碳含量研究[J].农业环境科学学报.2006,25(2):402-406.
    192.李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):61-67,133.
    193.刘满强,胡峰,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642- 2650.
    194.刘守龙,苏以荣,黄道友,等.微生物商对亚热带地区土地利用及施肥制度的响应[J].中国农业科学,2006,39(7):1411-1418.
    195.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:13-16.
    196.马效国,樊丽琴,陆妮,等.不同土地利用方式对苜蓿茬地土壤微生物生物量碳、氮的影响[J].草业科学,2005,22(10):13-17.
    197.聂道平,徐德应,王兵.全球碳循环与森林关系的研究-问题与进展[J].世界林业研究.1997,5:33-40.
    198.潘根兴,李恋卿,张旭辉.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    199.彭佩钦,吴金水,黄道友,等.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J].生态学报,2006,26(17):2261-2267.
    200.彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183。
    201.森林土壤分析方法[M].北京:中国标准出版社,2000:68-73.
    202.史军,刘纪远,高志强.等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
    203.史奕.鲁彩艳,郑靖,等.不同施肥与耕作处理对黑土POM-C的影响研究[J].生态学杂志,2002,21(6):71-73.
    204.苏永中.黑河中游边缘绿洲农田退耕还草的土壤碳、氮固存效应[J].环境科学.2006.27(7):1312-1318.
    205.孙天聪,李世清,邵明安.长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J].中国农业科学,2005,38(9):1841-1848.
    206.谭文峰,朱志锋,刘凡,等.江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点[J].自然资源学报,2006,21(6):973-980.
    207.唐玉姝,魏朝富,颜廷梅.等.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157-163.
    208.王春燕,黄丽,谭文峰,等.几种侵蚀红壤中有机质和团聚体的关系[J].水土保持学报.2007,21(3):52-56.
    209.王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-75.
    210.王晓凌,李凤民.苜蓿草地与苜蓿-作物轮作系统土壤微生物量与土壤轻组碳氮研究[J].水土保持学报,2006,20(4):132-142.
    211.王晓龙,胡锋,李辉信,等.红壤小流域不同土地利用方式对土壤微生物量碳氮的影响[J].农业环境科学学报,2006,25(1):143-147.
    212.王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    213.王芸,韩宾,史忠强,等.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报,2006,20(4):120-122,142.
    214.魏朝富,陈世正,谢得体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995,32(2):159-166.
    215.文倩,赵小蓉,陈焕伟,等.半干旱地区不同土壤团聚体中微生物量碳的分布特征[J].中国农业科学,2004,37(10):1504-1509.
    216.吴建国,徐德应.土地利用变化对土壤有机碳的影响-理论、方法和实践[M].北京:中国林业出版社.2004.
    217.吴建国.张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    218.吴建国.张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J],植物生态学报,2004,28(5):657-664.
    219.吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学,2003,5(9):65-71,77.
    220.吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    221.武天云,Jeff J S,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    222.武天云,Jeff J S,李凤民,等.耕作对黄土高原和北美大草原三种典型农业土壤有机碳的影响[J].应用生态学报,2003,14(12):2213-2218.
    223.徐江兵,李成亮,何园球,等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682.
    224.杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志,2005,24(8):887-892.
    225.杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    226.杨坤,陈佳广,关连珠,等.不同利用方式下棕壤及其各级微团聚体中微生物量碳、氮的变化[J].中国农学通报,2006,22(1):185-187.
    227.杨玉盛,刘艳丽,陈光水,等.格氏栲天然林与人工林土壤非保护性有机C含量及分配[J].生态学报,2004,24(1):1-8.
    228.姚贤良,许绣云,于德芬,不同利用方式下红壤结构的形成[J].土壤学报,1990,27(1):25-33.
    229.尹云锋,蔡祖聪,钦绳武.长期施肥条件下潮土不同组分有机质的动态研究[J].应用生态学报,2005,16(5):875-878.
    230.于建光.李辉信,胡锋,等.施用秸秆及接种蚯蚓对土壤颗粒有机碳及矿物结合有机碳的影响[J].生态环境,2006,15(3):606-610.
    231.宇万太,沈善敏,张璐,等.黑土开垦后水稳性团聚体与土壤养分的关系[J].应用生态学报,2004,15(12):2287-2291.
    232.展争艳,李小刚,张德罡,等.利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响[J].土壤学报,2005,42(5):777-782.
    233.张履勤,章明奎.林地与农地转换过程中红壤有机碳、氮和磷库的演变[J].浙江林学院学报,2006a,23(1):75-79。
    234.张履勤,章明奎.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J].土壤通报,2006b,37(4):662-665.
    235.张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,2001,20(2):16-19.
    236.张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报,2006,17(11):2029-2032.
    237.章明奎,何振立,陈国潮.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报.1997.34(4):359-366.
    238.章明奎.砂质土壤不同粒径颗粒中有机碳、养分和重金属状况[J].土壤学报,2006,7(4):584-591.
    239.赵丽娟,韩晓增,王守宇,等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力变化Ⅳ.有机碳组分的变化[J].应用生态学报,2006,17(5):817-821.
    240.赵世伟.苏静,吴金水,等,子午岭植被恢复过程中土壤团聚体有机碳含量的变化[J].水土保持学报,2006,20(3):121-125.
    241.周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J].植物营养与肥料学报,2006,12(6):765-771.
    242.周卫军,曾希柏,张杨珠,等.施肥措施对不同母质发育的稻田生态系统土壤微生物量碳、氮的影响[J].应用生态学报,2007.18(5):1043-1048.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700