一维液晶光子晶体滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信技术的发展,密集波分复用(DWDM)逐渐成为光传输系统中的关键的技术。为适应DWDM的全面发展,减少通信中的光电转换环节,人们开始研究实用化的全光通信网络,而可调谐滤波器是全光通信中不可缺少的器件。因此对可调谐滤波器的要求也越来越高一要求具有稳定精确的波长,并且体积小,易于集成和低损耗等特性。
     光子晶体具有结构简单、可靠性好、便于集成和控制性强等优点,并且当光子晶体原有的周期性受到破坏时,可以在禁带中引入一个缺陷态,与缺陷态频率对应的光子将被局域在缺陷的位置,这为制作可调谐光滤波器提供了技术基础。目前,通过在光子晶体中引入缺陷来实现对光信号的滤波技术越来越引起人们的关注。液晶是一种各向异性光学材料,其电控双折射特性使液晶的双折射率对外界参量(电磁场、温度、压力)变化很敏感,基于这些特性,以液晶作为光子晶体缺陷的可调谐滤波器,具有成本低、功耗低、调谐范围大、调谐精度高、重复性能好,可实时控制等优点。因此,对液晶光子晶体滤波器的研究有着重要的意义。
     向列相液晶较胆甾相和近晶相液晶来说,比较容易获得而且其应用技术也比较成熟,具有较大的介电各向异性和折射率,极易受外界作用的电场、磁场和温度的影响,因此是很好的滤波器调谐材料。Fink等人从理论和实验上指出一维光子晶体可能具有全方位的三维禁带结构,一维光子晶体材料可能制备出由二、三维光子晶体材料制作的器件,即一维光子晶体较二维、三维光子晶体在结构上更为简单,并且易于引入缺陷。因此,本文主要研究的是以向列相液晶为缺陷的一维光子晶体滤波器的滤波特性。
     在理论方面,运用传输矩阵法给出了液晶光子晶体滤波器的透过率公式,并通过Matlab软件数值模拟了液晶光子晶体滤波器的滤波特性并对其进行分析:当液晶缺陷层的厚度逐渐增加时,透射峰的位置随着缺陷层厚度呈线性增加;随着液晶缺陷层电压的增加,透射峰的波长发生蓝移。
     在实验方面,制备了液晶光子晶体滤波器,其有效面积为5mm×5mm,并分别用分光光度计和综合测试仪对其透射谱和响应时间进行测试,得到了液晶缺陷层在不同电压下的透射谱和液晶的响应时间。当该滤波器的电压范围在0V~10V内时,透射峰的相对透过率变化在37%-55%之间,禁带宽度近400nm,调谐范围约50nm,透射峰的半高宽为18nm。器件的上升时间为1.5ms,下降时间为6.5ms。
     除此之外,由于液晶分子具有双折射特性,所以传统液晶光子晶体滤波器的使用不可避免的伴随着偏振片的使用,即偏振片配合液晶的取向方向使用。在一些非偏振光的应用中,偏振片的使用会使得光能量减少。本文给出了非偏振光下的透射谱,详细分析了器件的偏振敏感特性,提出并设计了一种偏振非敏感型液晶光子晶体。双液晶缺陷层的设计起到了对偏振光相互补偿的作用,使得禁带中原本两个透射峰并为了一个透射峰,加强了光强度,增强了滤波性能。
With the development of optical fiber communication, Dense Wavelength Division Multiplex (DWDM) has gradually become a key technology in optical transmission system. In order to adapt to the overall development of DWDM and cut down the photoelectric devices in communication system, now researchers are researching the practical application of all-optical communication networks and the tunable optical filter is indispensable. Therefore, higher requirements are expected in tunable filter-some characteristics such as stable and precise wavelength, small bulk, easily integrated and low power and so on.
     Photonic crystal has the advantages of simple structure, high reliability and control, easy integration. When the original periodicity of photonic crystal is damaged, a defect state can be introduced to the band gap, and the photons which are corresponding to the frequency of defect state will be localized in the defect location. This provides a technical foundation for making tunable optical filters. At present, introducing defects into photonic crystals to achieve light signals filtering technique attracts more and more attention. Liquid crystal(LC) is a kind of anisotropic optical material, whose electric-control birefringence makes the birefringence of liquid crystal be very sensitive to the changes of external parameters(electromagnetic field, temperature and pressure), based on these characteristics, the photonic crystal tunable filter infilled with liquid crystal as defects has the advantages of low cost, low power, wide tunable range, high tunable precision, high repeatability and real-time control and so on. Thus, it has important significance to study on the photonic crystal filter infilled with liquid crystal.Compared with cholesteric liquid crystal and smectic liquid crystal, nematic liquid crystal is easier to be obtained and its application is relatively mature. It has a larger dielectric anisotropy and refractive index, and is easier influenced by external electric field, magnetic field and temperature, therefore, it is a very good tunable material for filter. Fink has been proposed both in theoretical and experimental that one-dimension photonic crystal has omnidirectional three-dimensional band gap structure, and 1D photonic crystal material is possible to prepare the device which is prepared by 2D and 3D photonic crystal, it is that 1D photonic crystal is more simply in structure and easier to introduce defects than 2D and 3D photonic crystal. Thus, this paper is mainly about the filtering properties of 1D photonic crystal filter which is infiltrated with nematic liquid crystal as defect.
     In theory, we give out the transmittance formula of liquid crystal photonic crystal filter by transfer matrix method,and simulate the filtering characteristics of the filter with Matlab software and carries out an analysis of the characteristics: The location of transmission peaks increase as the liquid crystal defect layer thickness increases linearly; The wavelength of transmission peaks show blue shift as the voltage of LC defect layer increases.
     In experiment, we prepared liquid crystal photonic crystal filter whose effective area is 5mmx5mm, we also tested its transmission spectrum and response time by spectrophotometer and integrated testing instrument. When the voltage of the filter is between OV to 10V, the change of relative transmission of transmission peaks is between 37% to 55%, the band gap is nearly 400nm, the tuning range is about 50nm, FWHM(full width at half maximum) of the transmission peak is 18nm.The rising time of the device is 1.5ms,and dropping time is 6.5ms.
     In addition, as LC molecule has birefringent characteristics, the application of traditional LC devices inevitably combines with the polarizer, which accompanies with the orientation of LC. Polarizer will lead to light energy reduce in some application of non-polarized light, even in the system of polarized light. In this paper we also give out the transmission spectrum under non-polarized light, analyze the polarized sensitive characteristics of the device detailedly, propose and design a polarized non-sensitive liquid crystal photonic crystal filter. The design of double liquid crystal defect layers compensates the polarized light reciprocally, makes the original two transmission peaks in the band gap incorporate to one transmission peak, which enhances the light intensity and filter performance.
引文
[1]吴凤修.光波分复用技术.光纤通讯.1999:9-12页
    [2]张卫.光波分复用技术及其应用.山西电子技术.2002:29-31页
    [3]王德兵.基于法布里-珀罗腔结构的光学可调谐滤波器研究.浙江大学硕士学位论文.2006:1-4页
    [4]于海霞.基于复周期结构光子晶体波长可调谐滤波器的设计与性能分析.吉林大学硕士学士学位论文.2006:1-10页
    [5]Liew D C, Smith S. A tunable filter with collinear acoustooptical TE-TM mode conversion in a GaAs-AlAs multiquantum-well waveguide. Journal of Quantum Electronics.1999,35(5):820-826P
    [6]池永江.WDM网络中偏振无关声光可调谐滤波器的研究.浙江工业大学硕士学位论文.2006:1-6页
    [7]桑伟.声光可调谐滤波器的理论分析和实验研究.天津大学硕士学位论文.2004:11-15页
    [8]刘维,崔建民,田亚光,崔芳,孙雨南.通信用声光可调谐滤波器.北京理工大学.光学技术.2004:394-397页
    [9]刘晓明,张敏明,刘德明.基于法布里-珀罗滤波片的宽光谱可调谐滤波器.光学与光电技术.华中科技大学.2006:55-57页
    [10]Madsen C. K., Walker J. A., Goossen K W. et al. A tunable dispersion compensating MEMS all-pass filter. IEEE Photon. Tech. Lett.2000,12: 651-653P
    [11]Toyoda S, Ooba N, Kitoh T, Kurihara T, Maruno T. Wide tuning ramge and low operating power AWG-based thermo-optic wayelength tunable filter using polymer waveguides. Electronics Letters,2001,37(18):1130-1132 P
    [12]宋明,谢芳,冯其波.可调谐光滤波器的研究进展.光学仪器.2006:81-85页
    3] Liang T K, Tsang H K, Shu C. All-optical time-division demultiplexing with simultaneous regeneration in gain-switched distributed feedback lasers. Optics Communications.2003,226(1-6):227-231P
    L4] Chawki M J, Auffret R, Coquil E L, et al.Two-electrode DFB laser filter used as a wide tunable narrow-band FM receiver:tuning analysis, characteristics and experimental FSK-WDM system. Lightwave Technology. 1992,10(10):1388-1397P
    15] K O Hill, B Malo, F Bilodeua et al. Varibale-spectral-response optical waveguide bargg grating filters of optical singal processing. Opt. Lett.1995, 20:1438-1440P
    16]Patriek H J, Williams G M, Kesrey A D et al. Hybrid fiber bragg grating/long perid fiber grating sensor for srtain/temperature discrimination. IEEE. Photo. Tech.Lett.1996:1223-1225P
    [17]Wooten E L, Stone R L, Miles E W, Bradley E M. Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers. Journa of Lightwave Technology.1996,14(11):2530-2536P
    [18]Yablonvitch E. Inhibited spontaneous emission in solid state physics and electronics. Phys Rev Lett.1987,58 (20):2059-2062P
    [19]John S. Strong localization of photons in certain disordered dielectric super-lattices. Phy Rev Lett.1987,58(23):2486-2489P
    [20]Joannopoulos J D, Villeneuve P, Fan S. Photonic crystals:putting a new twist on light. Nature.1997,386:143-149P
    [21]冯端,金国钧.凝聚态物理学(上卷).高等教育出版社.2003:163页
    [22]王艳平,朱永政,陈洪波,曹艳玲,池元斌.光子晶体及其自组装制备.光电子技术与信息.吉林大学.2006:5-9页
    [23]刘碧蕊.可用于光通信的一维光子晶体特性的研究.西安电子科技大学2007:2-13页
    [24]Wada M, Doi Y, Moue K, et al. Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs. Electronics Lett.1994:1444-1446P
    [25]Zakhidov A A, Baughman R H, Lqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science.1998: 897-901P
    [26]Jian Li, Yangwu, Jun Fu, et al. Reversibly strain-tunable elastomeric photonic crystals. Chemical Physics Letters.2004,390:285-289P
    [27]Fleming J G, Lin S Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95μm. Opt.Lett.1999:49-51P
    [28]Lin S Y, Fleming J G, Hetherington D L, et al. A three dimensional photonic crystal operating at infrared wavelengths. Nature.1998:251-253P
    [29]Yablonovitch E, Gm Itter T J, Leung K M. Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Phys Rev Lett.1991, 67:2295-2298P
    [30]Yablonovitch E, Leung K M. Hope for photonic bandgap. Nature.1991,351: 278-278P
    [31]McCall S L, Platzman P M. Microwave propagation in two-dimensional dielectric lattices. Phys. Rev. Lett.1991, (67):2017P
    [32]Krauss T, Song Y P, Thoms S, et al. Fabrieation of 2-D photonic bandgap structures in GaAs/AlGaAs. Electronics Lett.1994:1444-1446P
    [33]Cassagne D, Jouanin C, Bertho D. Hexagonal photonic-band-gap structures. Phys. Rev. B.1996, (53):7134P
    [34]Sun H, Song J, Xu Y, et al. Growth and Property Characterizations of Photonic Crystal Structures Consisting of Colloidal Miroparticles. Opt Soc Am.2000,17(3):476-480P
    [35]Chigrin D N, Lavrinenko A V, Yarotsky D A, et al. Observation of Total Omnidirectional Reflection from a One-Dimensional Dielectric Lattice. Appl. Phys. A.1998:25P
    [36]Fink Y, Winn J N, Fan S, et al. A dielectric omnidirectional reflector. Science. 1998,282:1679-1682P
    [37]郭强,谢康,张雅蕊.光子晶体带隙结构的数值计算.电子科技大学学报.2008:58-61页
    [38]Zhang Z, Satpathy S. Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. Phys. Rev. Lett.1990: 2650-2653P
    [39]Villeneuve P R, Fan S, Joannopoulos J D. Microcavities in photonic crystals: mode symmetry, tenability, and coupling efficiency. Phy. Rev. B.1996, 54(11):7837-7842P
    [40]Ho K M, Chan C T. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett.1990:3152-3155P
    [41]Bierwirth K, Schulz N, and Amdt F. Finite-difference analysis of rectangular dielectric waveguide structure. IEEE Trans. Microwave Theory Tech.1986: 1104-1114P
    [42]Qiu M, Azizi K, Karlsson A, et al. Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals. Phys. Rev. B.2001:1-5P
    [43]葛德彪.电磁波时域有限差分方法.西安电子科技大学出版社.2002:3-25页
    [44]Fang Y D, Shen Y G, Lin G H. Photo wave propagation in one dimension random photonic crystal. Laser Technology.2004:153-155P
    [45]Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent partially coherent, and incoherent interference. Appl. Opt.2002,41:3978-3987P
    [46]Leung K M and Qiu Y. Multiple-scattering calculation of the two-dimendional photonic band structure. Phy.Rev.1997
    [47]Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves. Phys. Rev. B.1999:16635-16642P
    [48]Leung K M. Defect modes in photonic band structures:a Green's function approach using vector Wannier functions. Opt. Soc. Am. B.1993:303-306P
    [49]唐晋发,顾培夫编.薄膜光学与技术.北京机械工业出版社.1989:13-23页
    [50]赵建林.高等光学.国防工业出版社.2002:35-57页
    [51]肖三水.光子晶体计算方法和设计的研究.浙江大学博士论文.2004:16-32页
    [52]梅洛勤,陈宇,张辉,吴约才,储德林.用传输矩阵法(TMM)研究光子晶体的带结构和传输特性.安徽广播电视大学学报.2007:119-121页
    [53]何修军,谢康,向安平,蒋孟衡.一维光子晶体的带隙研究.电子科技大学.激光技术.2008:904-905页
    [54]李新火.液晶可调谐一维光子晶体滤波器研究.西北工业大学硕士论文.2007:5-50页
    [55]黄子强.液晶显示原理.2007:39-42页,107-113页
    [56]施善定,黄嘉华,李秀娥.液晶与显示应用.华东化工学院出版社.1993:1-233页
    [57]谈漫琪,丁学泉译.液晶知识.科学普及出版社.1984:15-17页,28-30页.
    [58]立花太郎等.液晶知识.科学普及出版社.1984:15页
    [59]李昌立,孙晶,蔡红星等.胆甾相液晶的光学特性.液晶与显示.2002:193-199页
    [60]左左木昭夫等著,赵静安等译.液晶电子学基础和应用.科学出社.1985:11-22页
    [61]范志新.液晶器件工艺基础.北京:北京邮电大学出版社.2000:1-363页
    [62]Soutar C, Lu K. Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell. Opt.Eng.1994,33(8):2704-2712P
    [63]Kanghua Lu and B.E.A.Saleh. Theory and design of the liquid crystal TV as an optical spatial Phase modulator. Opt. Eng.1990,29(3):240-246P
    [64]Neto L G, Roberge D and Sheng Y. Full-range continuous complex modulation by the use of two Coupled-mode liquid-crystal televisions. Appl. Opt.1996,35(23):4567-4576P
    [65]Xu Wang, Daniel Wilson, Richard muller et al. Liquid crystal blazed-grating beam deflector. App. Opt.2000,39(35):6545-6555P
    [66]Kurt Busch and Sajeev John. Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum, Phys. Rev. Lett.1999,83(5): 967-970P
    [67]Remenyuk A D, Astrova E V, Vitman R F, Perova T S, Tolmachev V A. Alignment of liquid crystal E7 in composite photonic crystals based on single crystal silicon. Proc. of SPIE.2005,5825:400-407P
    [68]Vladimir Tolmachev, Tatiana Perova, Ekaterina Astrova, Jyulia Pilyugina, Alan Moore and Kevin Berwick. Optical characteristics of ordinary and tunable 1D Si photonic crystals in the mid-infrared range. Proc. of SPIE.2005, 5825:85-94P
    [69]Young Ki Ha, Yang Y C, Kim J E, Park H Y, Kee C S, Lim H and Lee J C. Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals. Appl. Phys. Lett.2001,79(1):15-17P
    [70]Ozaki M, Shimoda Y, Kasano M et al. Adv. Mater.2002,14 (7):514P
    [71]Za Wis, Toirski Z J, Jaskorzynska B. Electrically tunable filter based on directional coupler with 1D photonic crystal arm infiltrated with smetic liquid crystal. Proc 2004 Transparent Optical Networks International Conference. 2004:127-130P
    [72]Ryotaro Ozaki, Tatsunosuke Matsui, Masanori Ozaki, and Katsumi Yoshino. Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal. Appl. Phys. Lett.2003, 82(21):3593-3595P
    [73]Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino. Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer. Appl. Phys. Lett.2004,84(11):1844-1846P
    [74]Brett Maune, Marko Loncar. Liquid crystal electric tuning of a photonic crystal laser. Invited Paper.2004:26-67P
    [75]Yuhua Huang, Ying Zhou, and Shin-Tson Wu. Spatially tunable laser emission in dye-doped photonic liquid crystals. College of Optics and Photonics. Appl. Phys. Lett. American Institute of Physics.2006:011107-2P
    [76]Tatsunosuke Matsui, Masanori Ozaki, and Katsumi Yoshino. Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix. Phys. Rev. E.2004,69(6):061715
    [77]Ryotaro Ozaki, Yuko Matsuhisa, Hiroyuki Yoshida, Katsumi Yoshino and Masanori Ozaki. Optical properties and electric field enhancement in cholesteric liquid crystal containing different periodicities. J. Appl. Phys. 2006,100(2):023102
    [78]Tsung Hsien Lin, Yi Jan Chen, Chun Hui Wu, and Andy Y, Fuha G, Liu J H and Yang P C. Cholesteric liquid crystal laser with wide tuning capability, Appl. Phys. Lett.2005,86 (16):161120
    [79]Schuller Ch, Klopf F, Reithmaier J P, Kamp M, and Forchel A. Tunable photonic crystals fabricated in Ⅲ-Ⅴ semiconductor slab waveguides using infiltrated liquid crystals. Appl. Phys. Lett.2003,82(17):2767-2769P
    [80]Brett Maune, Marko Lonear, Jeremy Witzens, Michael Hochberg, Thomas Baehr-Jones, Demetri Psaltis, Axel Scherer and Yueming Qiu. Liquid-crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett.2004,85(3): 360-362P
    [81]David M, Pustai, Dennis W. Techniques for tuning two-dimensional photonic crystal devices. Proc. SPIE.2003,5213:49262
    [82]Katsumi Yoshino, Yuki Shimoda, Yoshiaki Kawagishi, Keizo Nakayama, and Masanori Ozaki. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett.1999,75(7):932-934P
    [83]Kang D, Maclennan J E, Clark N A, Zakhidov A A, and Baughman R H. Electro-optic behaviour of liquid crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. Phys. Rev. Lett.2001,86(18):4052-4054P
    [84]Fang Du, Yan-Qing Lu, and Shin-Tson Wu. Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett.2004,85:2181-2183P
    [85]Katarzyna Nowecka, Piotr Lesiak, Tomasz R. Wolinski, and Roman Dabrowski. Warsaw University of Technology. Influence of temperature and electric field on polarization properties inphotonic liquid crystal fibers. Proc. of SPIE Vol.6608 66080J:1-7P
    [86]于海霞,何晓东,谢东华,佟传平,冯金顺.一维光子晶体波长可调谐滤波器.光通信技术.2006:1页,46-48页
    [87]刘丹东,陈光德,李普选,孙中禹.缺陷态透射率可调的三缺陷层的一维光子晶体.光子学报.2006,35(2):286-288页
    [88]钱祥忠.向列相液晶缺陷光子晶体可调谐滤波器的研究.温州师范学院物理与电子信息学.传感技术学报.2006:50-52页
    [89]殷建玲,黄旭光,刘颂豪,胡社军.液晶调制的光子晶体可控偏光片和光开关.物理学报.2006,55(10):5268-5276页
    [90]张素蓉,钱祥忠,王学雷,黄芬.温度对光子晶体滤波特性影响的研究.温州师范大学学报.2005:31-35页
    [91]于海霞,何晓东,谢东华,佟传平,冯金顺.吉林大学通信工程学.光通讯技术.一维光子晶体波长可调谐滤波器.2005:46-48页
    [92]王东栋,王永生,张希清,何志群.北方交通大学.可调光子晶体研究进展.前沿进展.物理.2003:757-761页
    [93]Patel J S and Lee S D. Electrically tunable and polarization insensitive Fabry-Perot etalon with a liquid-crystalfilm. Appl. Phys. Lett.1991,58(22): 2491-2493P
    [94]Hirabayashi K, Ohiso Y, and Kurokawa T. Polarization-independent tunable wavelength selective filter using aliquid crystal. IEEE Trans. Photon. Tech. Lett.1991,3:1091-1093P
    [95]Hirabayashi K and Kurokawa T. A tunable polarization-independent liquid-crystal fabry-perot interferometer filter. IEEE Photon. Technol. Lett. 1992,4:740-742P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700