厌氧氨氧化甲烷化反硝化耦合的机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“可持续发展”和“节能减排”是当今废水处理技术研究与开发的指导思想和重要原则。论文通过实验室EGSB和BAF废水处理反应器及其耦合的连续运行试验、序批式反应动力学试验和分子生物学测试与分析,配合进行理论论证和模型研究,对厌氧氨氧化甲烷化反硝化的动力学规律、耦合机理及影响因素,O2和或微量NO_2下氨氧化菌的氨代谢特性及其动力学,EGSB与限制氧曝气BAF耦合处理废水的技术特点,进行了深入和系统研究;以便为研究和开发集好氧氨氧化、厌氧氨氧化、甲烷化和反硝化为一体的废水生物处理新技术,在高容积负荷速率下同时去除COD和氨组分的前提下节约能源和有机碳源,提供科学依据,积累重要技术资料。论文得到如下主要研究结果:
     ①以好氧活性污泥和厌氧活性污泥接种于2个膨胀颗粒污泥床(EGSB)反应器中,进水流量为10 mL/min,回流量为180 mL/min,进水COD浓度在180 mg/L,有机负荷率(OLR)和污泥负荷率(SLR)分别为2.51 kgCOD/(m~3.d)和0.19 kgCOD/(kgMLSS.d),出水COD维持在约40 mg/L,COD去除率达80%以上。控制温度在32~35℃,pH在6.8~7.2,反应器内氧化还原电位在-340 mV以下,水力停留时间(HRT)4.2 h,上升流速4.86 m/h以及加入80 mg/L絮凝剂(硫酸铝钾),进而缩短了启动时间,促进了颗粒污泥的形成。分别经过60 d和120 d运行,反应器启动成功。试验结果表明,上升流速、絮凝剂和污泥类型对颗粒污泥的形成有明显影响;接种好氧活性污泥在低浓度COD下,合理控制负荷率仍能成功启动EGSB反应器。
     ②完成启动的EGSB反应器控制温度在32℃~35℃、pH值在7.3~8.3、氧化还原电位在-40 mV~-150 mV,水力停留时间(HRT)和上升流速与启动期相同,进水中添加亚硝酸盐和氨盐组分,经过240 d运行,逐步耦合厌氧氨氧化甲烷化反硝化。EGSB1#和EGSB2#进水有机容积负荷速率(OLR)分别为4.8 kgCOD/(m~3.d)和2.88 kgCOD/(m~3.d),污泥负荷速率(SLR)分别为0.55 kgCOD/(kgMLSS.d)和0.33 kgCOD/(kgMLSS.d),COD去除率分别达到85%和76%,氨氮去除率分别达到35%和20%,亚硝态氮去除率都达到99.9%,总氮去除率分别达到67%和59%。结果表明,pH、温度、溶解氧、氧化还原电位、亚硝酸盐和有机物COD对EGSB反应器中厌氧氨氧化甲烷化反硝化的耦合和颗粒污泥的特性有影响。
     ③用间歇式试验同时测定颗粒污泥的氨氮和亚硝态氮的消耗量,求得污泥厌氧氨氧化活性为9.84×10~(-4) mgNH+4-N/(mgMLSS.h)或者12.9×10~(-4) mgNO_2~--N/(mgMLSS.h);通过16S-rRNA的分子生物学基因序列测试,发现了一种新的厌氧氨氧化菌(anaerobic ammonium-oxidizing Planctomycete cquenviron-1)。
     ④在间歇式试验反应器中接种颗粒污泥,对厌氧氨氧化、甲烷化和反硝化动力学特性进行分别研究。求得厌氧氨氧化动力学参数:最大氨氮反应速率为6.65×10~(-3)(mg NH+4-N/(mgMLSS.h)),氨氮半饱和常数为87.1 mg/L,氨氮抑制常数为1123 mg/L;亚硝态氮半饱和常数为15.39 mg/L,亚硝态氮抑制常数为159.5 mg/L;甲烷化动力学参数:最大比基质降解速率为0.158(mgCOD/(mgVSS.h)),半饱和常数为464.27 mg/L,甲烷的产率系数为0.254 ml/mg;短程反硝化动力学参数:最大反硝化速率为0.0069 mgNO_2~--N/(mgMLSS.h),亚硝酸盐氮半饱和常数为2.26 mg/L,有机物半饱和常数为4.72 mg/L。三者耦合时厌氧氨氧化速率、甲烷化速率和反硝化速率比单独研究时均减小。
     ⑤采用间歇式试验方法,分别研究微量NO_2对厌氧氨氧化、甲烷化和反硝化的影响。微量NO_2对厌氧氨氧化具有强化作用,保持厌氧氨氧化动力学参数值不变,基于Haldane模型建立了厌氧氨氧化的NO_2强化函数,估计了强化函数中的最大强化系数( 48.79)、NO_2半饱和常数(2570 mg/m~3)、NO_2抑制常数(3.9 mg/m~3)和基础速率系数(0.0188)。微量NO_2对甲烷化和反硝化的影响可用反竞争性抑制动力学方程进行描述;甲烷化的最大比乙酸盐去除速率为0.149 mgCOD/(mgVSS·h),乙酸盐半饱和常数为396 mgCOD/L,NO_2抑制系数为231 mg/m~3;反硝化的亚硝酸盐氮最大去除速率0.006865/h,亚硝酸盐氮半饱和常数0.1 mg/L,NO_2抑制系数为1530 mg/m~3。试验中大部分的NOX出现损失。
     ⑥采用间歇式试验方法,研究微量NO_2对厌氧氨氧化甲烷化反硝化三者耦合的影响。保持厌氧氨氧化动力学参数值不变,基于Haldane模型建立了厌氧氨氧化的NO_2强化函数,估计了强化函数中的最大强化系数(30.55)、NO_2半饱和常数(1960 mg/m~3)、NO_2抑制常数(8.2 mg/m~3)和基础速率系数(0.0314)。微量NO_2对三者耦合时甲烷化和反硝化的影响可用反竞争性抑制动力学方程进行描述;甲烷化的最大比乙酸盐去除速率为0.15 mgCOD/(mgVSS·h),乙酸盐半饱和常数为395 mgCOD/L,NO_2抑制系数为623 mg/m~3;反硝化的亚硝酸盐氮最大去除速率0.00685/h,亚硝酸盐氮半饱和常数0.214 mg/L,NO_2抑制系数为22400 mg/m~3。试验中大部分的NOX气体物质出现损失。三者耦合时甲烷化和反硝化受到NO_2的抑制作用明显低于独立试验;当NO_2小于50 ppm时,三者耦合时厌氧氨氧化速率比独立实验时小;在当NO_2大于50 ppm时,三者耦合时厌氧氨氧化速率与独立实验时大。
     ⑦采用SBR反应器,pH值控制在7.8~8.2,DO控制在0.8 mg/L~1.0 mg/L,温度控制在30±2℃。初始NH_4~+-N浓度为50 mg/L,待稳定后逐渐增加进水氨氮浓度至250 mg/L,每次增加幅度50 mg/L,MPN计数结果显示,经120 d富集,好氧氨氧化菌的浓度提高了300倍。间歇式试验结果表明,pH值、DO浓度和温度对好氧氨氧化菌的富集有显著影响。在富集过程中,控制pH值、DO浓度和温度是关键因素,游离氨和HNO_2进行适当控制,以保证抑制亚硝酸盐氧化菌而不抑制好氧氨氧化菌。
     ⑧采用批式呼吸法测得好氧氨氧化菌产率系数为0.2119 mg COD/mg NH4+-NOD(或者0.7268 mg COD/mg NH4+-N)氨氧化菌最大氨氮降解速率为0.1 mg NOD/(mg COD.h)(或者0.0292 mg N/(mg COD.h))。在间歇式试验中加入24μM NaN3抑制NO_2~--N氧化,建立氨氧化反应动力学方程,得到氨氮半饱和系数为18.38 mg NOD/L(或者5.36 mg NH4+-N/L),DO半饱和系数为0.494 mg/L。
     ⑨采用批式试验,在无分子氧条件下,确定了好氧氨氧化菌的NO_2型氨氧化动力学方程,得到了最大氨氧化速率( q NO_2,max=0.144 mgNOD/(mgCOD·h))、二氧化氮半饱和常数(K NO_2=0.821μmol/L )和二氧化氮抑制性常数( K I =1.721μmol/L)。在微量NO_2气体中添加2%O2氧气后,氨氧化速率明显提高,最大氨氧化速率发生在2%O2和50 ppm NO_2的条件下,达到0.198 mgNOD/(mgCOD·h)。在21%O2和微量NO_2条件下,氨氧化速率继续大幅度提高;在21%O2和100 ppmNO_2时氨氧化速率达到0.477 mgNOD/(mgCOD·h),比无NO_2空气曝气条件下氨氧化速率高3倍。提出了NO_2表观强化氨氧化函数的概念,建立了在O2和微量NO_2混合气体下的氨氧化动力学方程,利用2%O2和微量NO_2条件下的实验结果验证了动力学方程,讨论了NO_2强化氨氧化的机理。
     ⑩进行充填陶瓷滤料的曝气生物滤池去除COD和氨氧化试验。进水氨氮为50mg/L左右、COD为100 mg/L左右和回流比为200%时,经过20多天的运行,出水氨氮小于0.1mg/L、COD小于30mg/L、亚硝态氮为45.55 mg/L和硝态氮为4.18 mg/L;过大和过小的回流比对BAF的运行性能都是不利的。
     ⑾将EGSB与BAF耦合,实现了好氧氨氧化、厌氧氨氧化、甲烷化和反硝化的集成。当进水流量为13 mL/min,进水氨氮浓度为50 mg/L、COD浓度为500 mg/L,外回流比为200%时,系统的总氮去除率达到80.6%,出水COD浓度保持在40 mg/L以下,出水氨氮1 mg/L、亚硝态氮4.3 mg/L和硝态氮2.56 mg/L。系统的COD去除负荷速率:1.7122 (kg/m~3.d),氮去除负荷速率为:0.1363(kg/m~3.d);氨氮去除负荷速率为:0.1632 (kg/m~3.d);节约曝气量0.2405 (kg O2/m~3.d)和碳源0.1775 (kg COD /m~3.d),回收甲烷554.94(L/m~3.d)。
“Sustainable development”and“energy saving and emission reduction”are the guiding thought and important principle for the study and development of wastewater treatment technique, nowadays. The following contents were studyed by integrating of EGSB reactor technique and BAF reactor technique, batch experiment, molecule biology determination, theoretic argumentation and the research of model: the kinetic characteristics, mechanism and influencing factors of anaerobic ammonium oxidation, methanogenesis and denitrification; ammonia oxidation characteristics and kinetics of ammonia oxidizer mixed culture under the conditions of O2 and trace NO_2 mixed gasses; the characteristics of integration with EGSB reactor technique and BAF reactor technique for wastewater treatment. It provided important and scientific data conveniently for developing this technique with integration of the aerobic ammonium oxidation, anaerobic ammonium oxidation, methanogensis and denitrification, which could be of capability to save energy and organic substances requirements under the conditions of simultaneous removal of COD and ammonium at high loadings. The results were given as follows:
     ①Granular sludge was formed in two EGSB reactors inoculated with aerobic activated sludge and anaerobic activated sludge after the start-up operation of 120d and 60d,respectively. The effluent COD concentration about 40 mg/L and COD removal efficiency up to 80% were obtained with the influent flux 10 mL/min, inner recycle flux 180 mL/min, COD concentration 180 mg/L, the organic loading rate up to 1.728 kgCOD/(m~3.d) and the sludge loading rate 0.19 kgCOD/(kgMLSS.d). The temperature was controlled between 32℃and 35℃, pH at 6.8~7.2, redox potential below -340mV, HRT 4.2h, the up-velocity 4.86m/h and the flocculant (aluminium potassium sulfate) 80mg/L. The formation of the granular sludge was accelerated. Results demonstrated that up-velocity,flocculant and the type of sludge affected the formation of granular sludge.The start-up of the reactor which was inoculated with aerobic sludge was succeeded if the loading rate was controlled rationally in low strength COD.
     ②Anaerobic ammonium oxidation, methanogensis and denitrification were integrated after 240 d with adding nitrite and ammonium in EGSB reactor. The pH was controlled between 7.5 and 8.3, redox potential at -40 mV~-150 mV and temperature at 32℃~35℃in the reactor;HRT and the up-velocity were controlled as same as start-up. The organic loading rate (OLR) was 4.8 kgCOD/(m~3.d) and 2.88 kgCOD/(m~3.d), the sludge loading rate (SLR) was 0.55 kgCOD/(kgMLSS.d) and 0.33 kgCOD/(kgMLSS.d), COD removal efficiency was 85% and 76%, the ammonium nitrogen removal efficiency was 35% and 20%,the nitrite nitrogen was both 99.9% and the total nitrogen was 67% and 59% in EGSB1# and EGSB2#, respectively. Results demonstrated that pH, temperature, DO, redox potential, nitrite and COD affected the integration of anaerobic ammonium oxidation bacteria, Methanogenesis bacteria and denitrification bacteria and the characteristic of granular sludge in EGSB reactor.
     ③The anaerobic ammonium oxidation activity about 9.84×10~(-4) mg NH_4~+-N/(mgMLSS.h) or 12.9×10~(-4) mgNO_~2-N/(mgMLSS.h) was obtained by measuring the simultaneous consumption of ammonium and nitrite under anoxic conditions. A new anammox bacterial species, denominated as anaerobic ammonium-oxidizing Planctomycete cquenviron-1, was discovered by 16S-rRNA based molecule biology determination.
     ④The kinetic characteristics of anaerobic ammonium oxidation,methanogenesis and denitrification inoculated with the granular sludge from EGSB reactor, in which anaerobic ammonium oxidation, methanogenesis and denitrification were integrated, were investigated by batch experiment,respectively. The kinetic parameters of anaerobic ammonium oxidation were determined, where the maximum anaerobic ammonium oxidation rate was 6.65×10~(-3) mg NH+4-N/(mgMLSS.h), the half saturate coefficient of ammonium nitrogen and nitrite nitrogen were 87.1 mg/L and 15.39 mg/L,respectively;inhibition coefficient of ammonium nitrogen and nitrite nitrogen were 1123 mg/L and 159.5 mg/L,respectively.The kinetic parameters of methanogenesis were determined, where the maximum specific degradation rate, half saturation constant and yield coefficient were 0.158 mgCOD/(mgVSS·h), 464 mgCOD/L and 0.254 mL CH4/mgCOD respectively. The kinetic parameters of denitrification were determined, where the maximum denitrification rate, half saturation constant of NO-2-N and COD were 0.0069 mg NO_2~--N/(mgMLSS.h), 2.26 mg NO_2~--N/L and 4.72 mgCOD/L respectively.The rates of anaerobic ammonium oxidation, methanogenesis and denitrification in coupling experiments of them all decreased.
     ⑤The effect of trace NO_2 on anaerobic ammonium oxidation, methanogenesis and denitrification was investigated by batch experiment. Trace NO_2 apparently enhanced the anaerobic ammonium oxidation, the kinetic parameters of anaerobic ammonium oxidation were kept invariable, the function for NO_2 apparently to enhance ammonium oxidation was suggested using the Haldane based model. The parameters were estimated, where the half saturate coefficient of NO_2 was 2570 mg/m~3, inhibition coefficient of NO_2 was 3.9 mg/m~3, the maximum enhanced rate coefficient was 48.79, the basic rate coefficient was 0.0188.The methanogenesis and denitrification kinetics could be described using uncompetitive inhibition model. The maximum NaAc removal rate, NaAc half saturation constant and NO_2 inhibition coefficient in methanogenesis were 0.149 mgCOD/mgVSS·h, 396 mgCOD/L and 231 mg NO_2/ m~3,respectively. The maximum nitrite removal rate, half saturation constant of NO_2~--N and NO_2 inhibition coefficient in denitrification were 0.006865/h, 0.1 mg NO_2~--N/L and 1530 mg NO_2/m~3,respectively. The most of NOX in the experiment was lost.
     ⑥The effect of trace NO_2 on integrating anaerobic ammonium oxidation, methanogenesis and denitrification was investigated by batch experiment. The kinetic parameters of anaerobic ammonium oxidation were kept invariable, the function for NO_2 apparently to enhance ammonium oxidation was suggested using the Haldane based model. The parameters were estimated, where the half saturate coefficient of NO_2 was 1960 mg/m~3, inhibition coefficient of NO_2 was 8.2 mg/m~3, the maximum enhanced rate coefficient was 30.55, the basic rate coefficient was 0.0314 . The methanogenesis and denitrification kinetics the integration system could be described using uncompetitive inhibition model. The maximum NaAc removal rate, NaAc half saturation constant and NO_2 inhibition coefficient in methanogenesis were 0.15 mgCOD/mgVSS·h, 395 mgCOD/L and 623 mg NO_2/m~3 ,respectively. The maximum nitrite removal rate, half saturation constant of NO_2~--N and NO_2 inhibition coefficient in denitrification were 0.00685 /h, 0.214 mg NO_2~--N /L and 22400 mg NO_2/m~3,respectively. Most of the NOX in the experiment was lost.The rates of methanogenesis and denitrification in the coupling experiments of them were decreased. When NO_2 was lower than 50 ppm, the rate of anaerobic ammonium oxidation in the coupling experiments of them was smaller than it in the separate experiment, but larger when NO_2 was higher than 50 ppm.
     ⑦The mixed ammonium oxidizer culture was enriched from normal activated sludge in SBR reactor, in which the pH was controlled between 7.8 and 8.2 ,DO between 0.8 and 1.0 mg/L and temperature at 30±2℃. The experimentation was carried out through synthetic wastewater,in which the initial NH_4~+-N was 50 mg/L and was increased up to 250 mg/L gradually by the step of 50 mg/L.The MPN test was run every 15 days to characterize the enrichment of ammonium oxidizer.The concentration of the ammonium oxidizer culture increased by 300 times after the cultivation for 120 days. The results of batch experiment indicated that pH, DO and temperature had significant influence on the enrichment of aerobic ammonia oxidation bacteria. During the enrichment cultivation, pH, DO and temperature were the key factors, FA and nitrous acid could be properly controlled to inhibit the growth of nitrite oxidation bacteria, but not the ammonia oxidation bacteria.
     ⑧The biomass yield coefficient of 0.2119 mg COD produced/mg NH4+-NOD (or 0.7268 mg COD/mg NH_4~+-N)and the maximum specific ammonium nitrogen consumption rate of 0.1 mg NOD/(mg COD.h)(or 0.0292 mg N/(mg COD.h)) for autotrophic aerobic ammonia oxidation bacteria were obtained from batch respirometry. The kinetics of aerobic ammonia oxidation was established by adding 24μM NaN3 to the sequence batch reactor. The kinetic parameters were determined, where the half saturate coefficient of NH4+-N was 18.38 mg NOD/L (or 5.36 mg NH_4~+-N/L) and the half saturate coefficient of DO was 0.494 mg/L.
     ⑨The kinetics of the NO_2-dependent ammonia oxidation was developed for ammonia oxidizer mixed culture when there was no molecular oxygen in the batch tests. The kinetic parameters were determined, where the half saturate coefficient of NO_2 was 0.821μmol/L, inhibition coefficient of NO_2 concentration was 1.721μmol/L, the maximum ammonium oxidation rate was 0.144 mgNOD/(mgCOD·h). After adding 2%O_2 to trace NO_2, the ammonium oxidation rates increased obviously. The maximum ammonium oxidation rate, 0.198 mgNOD/(mgCOD·h) occurred under the condition of the mixed gasses containing 2%O_2 and 50 ppm NO_2. Under the condition of mixed gasses containing 21%O_2 and trace NO_2, the ammonium oxidation rates further increased greatly. The maximum ammonium oxidation rate, 0.477 mgNOD/(mgCOD·h) occurred under the condition of 21%O_2 and 100 ppm NO_2 in the mixed gas, which is 3 times higher than the general aerobic ammonium oxidation rate. The function for NO_2 apparently to enhance ammonium oxidation was suggested. The kinetic models of ammonium oxidation under the conditions of O_2 and trace NO_2 mixed gasses was developed. The model was validated by the results of ammonium oxidation experiments under the conditions of the mixed gasses containing 2%O_2 and trace NO_2. The mechanism for NO_2 to enhance ammonium oxidation under the conditions of O_2 and trace NO_2 mixed gasses was discussed.
     ⑩COD removal and aerobic ammonium oxidation were performed in BAF reactor filled with expanded clay.After the start-up operation of 20d, the effluent COD concentration below 30 mg/L ,ammonium nitrogen below 0.1 mg/L ,nitrite nitrogen 45.55 mg/L and nitrate nitrogen 4.18 mg/L were obtained with the influent ammonium nitrogen concentration about 50 mg/L, COD concentration about 100 mg/L and inner recycle ratio 200% in BAF reactor. Bigger or smaller inner recycle ratio was unsuitable for running of BAF reactor.
     ⑾The aerobic ammonium oxidation,anaerobic ammonium oxidation, methanogensis and denitrification were coupled in the integration of EGSB reactor technique and BAF reactor technique. The removal efficiency of total nitrogen was 80.6% and COD concentration was below 40 mg/L, ammonium nitrogen below 1 mg/L, nitrite nitrogen 4.3 mg/L, nitrate nitrogen 2.56 mg/L in the effluent under the performance conditions of influent flux 13 mL/min,ammonium nitrogen concentration 50 mg/L , COD concentration 500 mg/L and outer recycle ratio 200%. Because of application for EGSB-BAF system, the removal rate of total COD, total nitrogen and total ammonium nitrogen were 1.7122 (kg/m~3.d), 0.1363 (kg/m~3.d) and 0.1632 (kg/m~3.d) ,respectively; it can saved 0.2405 (kg O_2/m~3.d) and 0.1775 (kg COD /m~3.d), received 554.94(L CH4 /m~3.d).
引文
[1] Verstraete W,Vandevivere P.Broader and newer application of anaerobic digestion[J]. Crit Rev Env Sci Tec, 1999, 28:151-173.
    [2] Kato M,Field JA and Lettinga G.The anaerobic treatment of low strength wastewater in UASB and EGSB reactor[J]. Water Science and Technology,1997,36(6-7):375-382.
    [3] Villaverde S. Recent developments on biological nutrient removal processes for wastewater treatment. Reviews in Environmental Science and Bio/Technology,2004,3: 171-183.
    [4] Broda E. Two kinds of lithotorophs missing in nature[J]. Z Allg Microbiologie ,1977,17:491-493.
    [5] Jetten M S M, Strous M, Van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiol Rev,1999,22:421-437.
    [6] Strous M, Kuenen J G, Jetten M S M. Key Physiology of Anaerobic Ammonium Oxidation[J]. Applied and Enviromental Microbiology ,1999 , 65(7) :3 248 - 3 250.
    [7] Egli K, Fanger U, Alvarezz P J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium rich leachate[J]. Arch Microbiol,2001,175:198-207.
    [8] Schmid M C, Walsh K, Webb R, et al. Candidatus “Scalindua brodae”, sp.nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Syst Appl Microbiol,2003,26:529-538.
    [9] Kartala B, Rattray Jayne, van Niftrika LA,et al.Candidatus ‘‘Anammoxoglobus propionicus’’ a new propionate oxidizingspecies of anaerobic ammonium oxidizing bacteria [J]. Systematic and Applied Microbiology, 2007,30: 39-49.
    [10] Van Niftrik L A, Fuerst J A, Sinninghe Damste J S, et al. The anammoxosome: an intracytoplasmix compartment in anammox bacteria[J]. FEMS Microbiology Letters,2004, 233:7-13.
    [11] Dapena-Mora A,Campos J L,Mosquera-Corral A, et al. Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J]. J Biotechnol 2004,110: 159-170.
    [12] Van de Graaf A A, De Bruijn P, Robertson LA, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor[J]. Microbiology,1997,143(7):2 415-2 421.
    [13] Khin T, Annachhatre A P. Novel microbial nitrogen removal processes[J]. Biotechnology Advances,2004,22:519-532.
    [14] 郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,2(17):193-198.
    [15] Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a more sustainable municipal wastewater treatment system[J]. Water Sci Technol,1997,35:171-80.
    [16] 冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J]微生物学通报,2001,28(4):88-91.
    [17] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas lift reactor[J]. FEMS Microbiol Lett,2003,218:339-344.
    [18] Hao X, Heijinen J J ,Van Loosdrecht M C M, et al. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research,2002,36:4 839-4 849.
    [19] Zhang Daijun. The integration of methanogensis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor[J]. J of Environ Sci,2003,15 (3):423-432.
    [20] 沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].中国环境科学出版社,2000.
    [21] Bock E,Koops HP .Oxidation of inorganic nitrogen compounds as energy source[M].New York :Springer-Verag,1991:414-430.
    [22] Waston SW, Bock E.Bergey’s manual of systematic bacteriology[M].Baltiore:Williams and Wilkins,1989:1808-1834.
    [23] Hyman MR, Arp DJ.14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J].The J Bioll chem,1992,267(3):1524-1535.
    [24] 郑平,冯孝善.硝化作用的生化原理[ J].微生物学通报,1999,26(3):215-217.
    [25] Hooper AB, Vannelli T, Bergmann DJ,et al. Enzymology of oxidation of ammonia to nitrite by bacteria[J],Antonie van Leeuwenhoek , 1997,71:59-67.
    [26] US Department of Energy Joint Genome Institute. http://www.jgi.doe.gov/tempweb /JGI_microbial/ html/index.html,2001-4.
    [27] Philips S,Laanbroek HJ, Verstraete W. Origin ,causes and effects of increased nitrite concentrations in aquatic environments[J].Rev Environ Sci Biotechnol, 2002,1:115-141.
    [28] Ye RW , Thomas SM.Microbial nitrogen cycles:physiology,genomics and applications[J].Curr Opin Microbiol ,2001,4:307-312.
    [29] Schulthess RV, Kuhni M, Gujer W. Release of nitric and nitrous oxide from denitrifying activated sludge[J]. Wat Res, 1995,29(1):215-226.
    [30] Ren T, Roy R, Knowles R. Production and consumption of nitric oxide by three methanotrophic bacteria[J]. Appl Environ Microbiol, 2000,9:3891-3897.
    [31] Schmidt I, Bock E, Jetten MSM. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene[J]. Microbiol,2001,147:2247-2253.
    [32] Kluber HD, Conrad R. Inhibitory effects of nitrate,nitrite,NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J]. FEMS Microbiol Ecol, 1998,25:331-339.
    [33] Zumft WG.The biological role of nitric oxide in bacteria[J]. Arch Microbiol,1993, 160:253-264.
    [34] Schalk J, Oustad H, Kuenen JG, et al. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metablism[J]. FEMS Microbiology Letters,1998,158:61-67.
    [35] 郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74-76
    [36] Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Wat Res, 2001,35(3):657-664.
    [37] Zart D, Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass rentention in the presence of gases NO2 or NO[J]. Arch Microbiol,1998,169:282-286.
    [38] Schmidt I, Hermelink C, van de Pas-Schoonen KT, et al.Anaerobic ammonia oxidation in the presence of nitrogen oxides(NOx) by two different lithotrophs[J]. Appl Environ Microbiol, 2002,12:5351-5357.
    [39] Schmidt I, Zart D, Bock E. Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha[J]. Antonie van Leeuwenhoek, 2001,79: 311-318.
    [40] Schmidt I, Sliekers O, Schmidt M, et al. Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners [J] ? FEMS Microbiol Ecol, 2002,39:175-181.
    [41] Zart D, Schmidt I, Bock E. Significance of gases NO for ammonia oxidation by Nitrosomonas eutropha[J]. Antonie Leeuwenhoek,2000,77:49-55.
    [42] Schmidt I, Zart D, Bock E. Effects of gas NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source[J]. Antonie Leeuwenhoek, 2001,79:39-47.
    [43] Schmidt I, Bock E. Anaerobic ammaonia oxidation with nitrogen dioxide by nitrosomonas eutropha[J]. Arch Microbiol, 1997,167:106-111.
    [44] Akunna JC, Bizeau C and Moletta R. Nitrate reduction by anaerobic sludge using glucose at various nitrate concentrations-ammonification-denitrification and methanogenic activities[J]. Environ Technol,1994,15:41-49.
    [45] Fetzer S and Conrad R.Effect of redox potential on methanogenesis by Methanosarcina barkeri[J]. Arch Microbiol,1993,160:108-113.
    [46] Roy R, Conrad R. Effect of methanogenic precursors (acetate,hydrogen,propionate) on the suppression of methane production by nitrate in anoxic rice field soil[J]. FEMS Microbiology Ecology, 1999, 28:49-61.
    [47] Belay N, Jung KY, Rajogopal BS,et al. Nitrate as a sole nitrogen source for Methanococcus thermolithotrophicus and its effect on growth of several methanogenic bacteria[J].Curr Microbiol, 1990,21:193-198.
    [48] Fischer R,Thauer RK. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: Isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2[J].Arch Microbiol,1990,153:156-162.
    [49] Clarens M,Bernet N,Delgenes JP,et al. Effects nitrogen oxides and denitrification by pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei[J].FEMS Microbiology Ecology,1998,25:271-276.
    [50] 祖波,张代钧,白玉华.厌氧氨氧化菌特性及其在生物脱氮中的应用[J].微生物学通报,2006,33(1):149-153.
    [51] 康晶,王建龙. COD 对颗粒污泥厌氧氨氧化反应性能的影响[J].应用与环境生物学报,2005,11(5):604-607.
    [52] Guven D, Dapena A, Kartal B, et al. Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria [J]. Applied and Environmental Microbiology, 2005 ,71 (2): 1066-1071.
    [53] Akunna JC, Bizeau C,Moletta R. Nitrate and nitrite reductions with anaerobic sludge using glucose at various carbon sources:glucose, glycerol,acetic acid,lactic acid and methanol[J].Wat Res ,1993, 27:1303-1312.
    [54] Akunna JC, Bizeau C and Moletta R. Denitrification in anaerobic digesters:possibilities and influence of wastewater COD/N-NOX ratio[J].Environ Technol,1992,13:825-836.
    [55] 张波,徐剑波,蔡伟民.有机废物厌氧消化过程中氨氮的抑制性影响[J].中国沼气,2003,21 (3):26-31.
    [56] Calli B, Mertoglu B, Inanc B, et al.Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J].Process Biochemistry,2005,40: 1285-1292.
    [57] Ying-Feng L,Kuo-Cheng C. Denitrification and methanogenesis in a coimmobilized mixed culture system[J].Wat Res,1995,29(1):35-43.
    [58] Hendriksen HV,Ahring BK. Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB)reactor: operating performance[J].Wat Res,1996,30(6): 1451-1458.
    [59] Jeong-Hoon IM, Hae-Jin W, Myung-Won C, et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an Anaerobic-aerobic system[J].Wat Res ,2001, 35(10):2403-2410.
    [60] Mosquera-corral A, Sanchez M, Campos JL,et al.Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry[J]. Wat Res,2001,35(2): 411-418.
    [61] Tal Y, Watts JEM, Schreier SB, et al. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J].Aquaculture,2003,215:187-202.
    [62] Pozo RD, Diez V. Organic matter removal in combined anaerobic-aerobic fixed film bioreactors[J]. Wat Res,2003,37:3561-3568.
    [63] Sponza DT, Atalay H.Influence of nitrate and COD on phosphonate,nitrogen and dintrotoluene(DNT) removal under batch anaerobic and anoxic condition[J].Anaerobe, 2004,10:287-293.
    [64] Eiroa M, Kennes C, Veiga MC.Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor[J].Wat Res,2004,38:3495-3502.
    [65] Reyes-Avila J, Razo-Flores E, Gomez J.Simultaneous biological removal of nitrogen,carbon and sulfur by denitrification[J].Wat Res,2004,38:3313-3321.
    [66] Sponza DT, Atalay H.Simultaneous phosphorus,nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials[J].Process Biochemistry,2005,40:25-34.
    [67] Jianlong W,Jing K.The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor[J].Process Biochemistry,2005,40: 1973-1978.
    [68] Sumino Tatsuo, Isaka Kazuichi, Ikuta Hajime,et al.Nitrogen Removal from Wastewater Using Simultaneous Nitrate Reduction and Anaerobic Ammonium Oxidation in Single Reactor[J]. Journal of bioscience and bioengineering,2006,102(4):346-351.
    [69] Anthonisen AC,Loehr RC,Parkasam TBS,et al.Inhibition of nitrification by ammonia and nitrous acid[J].J Wat Pollut Control Fed,1976,4 8(5):835-852.
    [70] Sheintuch M, Tartakovsky B, Narkis M,et al. Substrate inhibition and multiple states in a continuous nitrificationp rocess[J].Wat Res,1995,29(3):953-963.
    [71] Rowe JJ,Yarbrough JM,Rake JB,et al.Nitrite inhibition of aerobic bacteria[J].Curr Microbiol,1979,2:51-54.
    [72] Binkred EF,Kolari E. The history and use of nitrate and nitrite in the curing of meat[J]. Food Cosmet Toxicol,1975,13:655-661.
    [73] Strous M ,Heijnen J J,Kuenen J G,et al.The sequenching batch reactor as a powerful tool for the study of slowly growing an aerobic ammonium-oxidizing microorganisms[J]. Appl Microbial Bitechnol,1998,50 :589-596.
    [74] Gee C S ,Suidan M T ,Pfeffer J T,et al. Modeling of nitrification under substrate inhibitingconditions[J]. J Environ Eng ,1990 ,116(1) :18-31.
    [75] 林琳. 厌氧氨氧化生物脱氮技术的研究[D].江南大学硕士学位论文,2003.
    [76] Monod J. The growth of bacterial cultures [J]. Annual Review of Microbiology Vol III,1949:371-376.
    [77] 胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002.
    [78] McCarty PL, Mosey FE. Modeling of anaerobic digestion processes (A discussion of concepts) [J].Water Science and Technology, 1991, 24(8):17-33.
    [79] Contois DE. Kinetics of bacterial growth: relationship between population density and specific growth of continuous culture[J]. J Gen Microbiol,1959,21:40-50.
    [80] IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes.Anaerobic digestion model No.1 (ADM1), IAW scientific and technical report No.13 [R].London: IWA,2002.
    [81] Andrews P. Resolution with merging[J], JACM,1968,15:367-381.
    [82] 王希成. 生物化学[M].北京:清华大学出版社,2001,71.
    [83] Ho-Joon Y, Dong-jin K. Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reacter[J]. Jour Che Tech Bio, 2003, 18:377-383.
    [84] Julian C, Irene J, Lorena C, et al. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems[J]. Process Biochemistry, 2004, 39:1159-1165.
    [85] Gheewala SH, Rupa RK, Annachhatre AP. Nitrification modeling in biofilms under inhibitory conditions[J]. Wat Res, 2004,38:3179-3188.
    [86] Aleem MIH, Sewell DL. Mechanism of nitrite oxidation and oxidoreductase systems in Nitrobacter agilis[J]. Curr Microbiol ,1981,5:267-272.
    [87] Ginestet P, Audic JM, Urbain V,et al. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide[J]. Appl Env Mic,1998, 64:2266-2268.
    [88] Chandran K,Smets BF. Single-step Nitrification Models Erroneously Describe Batch Ammonia Oxidation Profiles when Nitrite Oxidation Becomes Rate Limiting[J]. Biotechnology and Bioengineering ,2000 ,68(4):396-406.
    [89] Hooper AB,Terry KR. Specific inhibiters of ammonia oxidation in Nitrosomonas[J].J Bacteriol,1973,115:480-485.
    [90] Manser R,Gujer W,Siegrist H. Consequences of mass transfer effects on the kinetics ofnitrifiers[J].Water Research,2005,39:4633-4642.
    [91] 俞俊棠,唐考宣.生物工艺学(下)[M]. 上海:华东化工学院出版社,1992.
    [92] Christersen MH. Biological Denitrification of sewage:A Literatwre Review[J],Prog Wat Tech,1997,8(4/5):509-555.
    [93] 徐亚同.废水反硝化除氮[J].上海环境科学,1994,13(10):8-12.
    [94] 张亚雷,李永梅(译).活性污泥数学模型[M].国际水协废水生物处理设计与运行数学模型课题组(著),同济大学出版社,2000:116-118.
    [95] 李斌. 序批式活性污泥(SBR)系统内的短程硝化及特性试验研究[D]. 西安建筑科技大学硕士学位论文,2004.
    [96] 何连生,朱迎波.高效厌氧生物反应器研究动态及趋势[J].环境工程,2004,22(1):7-13.
    [97] Schmidt JE,Ahring BK.Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors[J]. Biotechnol Bioeng,1996,49 : 229-246.
    [98] 周琪.升流式厌氧污泥层反应器处理生活污水工艺与机理的研究[D].清华大学博士论文,1993.
    [99] Rebac S. High rate anaerobic treatment of malting wastewater in apilot-scale EGSB system under psychrophilic conditions[J]. Chem Tech Biotechnol,1997,68:135-146.
    [100] ander LARM, Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial level cities[J]. Wat Sci Tech ,1992,25 (7) :167-178.
    [101] Austermann-Haun U,Meyer H,Seyfried CF,et al. Full scale experiences with anaerobic treatment plants in the food and beverage industry[J].Wat Sci Tech,1999,40(1):305-312.
    [102] Zoutberg George R,Eker Z.Anaerobic treatment of potato processing wastewater[J].Wat Sci Tech,1999,40 (1):297-304.
    [103] Dries J, Smul AD, Goethals L. High rate biological treatment of sulfate-rich wastewater in an acetate fed EGSB reactor[J]. Biodegradation,1998,9:103-111.
    [104] Hwu CS, van Lier JB, Lettinga G. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids[J]. Process Biochemistry ,1998. 33(1) :75-81.
    [105] Zoutberg G R ,Franking R. Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor:the Biobed or EGSB reactor[J].Wat Sci Tech,1996,34(5- 6):375-381.
    [106] 左剑恶,王妍春,陈浩,等. EGSB 反应器的启动运行研究[J].给水排水,2001,27 (3) :25-31.
    [107] 任洪强,丁丽丽,陈坚,等. EGSB 反应器中颗粒污泥床工作状况及污泥性质研究[J].环境科学研究,2001,14(3) :33-38.
    [108] Chen J J,McCarty D,Slack D,et al.Full scale case studies of a simplified aerated filter (BAF) for organics and nitrogen removal[J].Water Science and Technology,2000,41(4-5):1-4.
    [109] 邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验研究[J].环境工程,2001, 19(2):22-24.
    [110] Cromphout J. Design of an upflow biofilm reactor for the elimination of high ammonia concentrations in eutrophic surface water ammonia concentrations in eutrophic surface water[J].Water Supply,1992,10(3):145-150.
    [111] 李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验[J].环境科学,1999,20(5):69-71.
    [112] Pujol Roger. Process improvements for upflow submerged biofilters[J].Water 21,2000,4: 25-29.
    [113] Fdz-Polanco F,Mendez E,Uruena M A,et al. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification[J].Water Res,2000,34(16):4081-4089.
    [114] Chen Shing-Der,Chen Chiu-Yang,Wang Yu-Feng.Treating high-strength nitrate wastewater by three biological processes[J].Water Sci Technol,1999,39(10-11):311-314.
    [115] Goncalves R F,Le Grand L, Rogalla F.Biological phosphorus uptake in submerged biofilters with nitrogenremoval[J].Water Sci Technol,1993,29(10-11):135-143.
    [116] Pujol R,Hamon M,Kandel X,et al.Biofilters: flexible, reliable biological reactors[J].Water Sci Technol,1994,29(10-11):33-38.
    [117] 郭晓燕, 张振家.EGSB 反应器处理米酒废水的启动方法研究[J]. 环境污染与防治, 2004, 26(2): 107-109.
    [118] 国家环境保护局.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社,2002.
    [119] Matsumoto A, Sakamoto M, Noike T. A new operation of car-bohydrate-containing wastewater treatment in an anaerobic fluidized bed system[J]. Wat Sci Tech, 1992, 26(9-11): 2453-2456.
    [120] Brummeler ET, Hulshoff PLW, Dolfing J, et al.Methanogenesis in an Upflow Anaerobic Sludge Blanket Reactor at pH6 on an Acetate-Propionate Mixture[J].Appl Env Micro, 1985, (6): 1472-1477.
    [121] 凌雪峰, 左剑恶, 顾夏声. pH6.0 酸性条件下产甲烷 EGSB 反应器的运行研究[J]. 环境科学, 2004, 25(1): 57-61.
    [122] Schmidt JE, Ahring BK. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors[J]. Appl Microbiol Biotech, 1994, 42:457-462.
    [123] Hae SJ, Naomichi N, Shiro N. Influence of redox potential on biomethanation of H2 and CO2 by Methanobacterium Thermoautotrophicum in Eh-stat batch cultures[J]. Journal of Genernal Applied and Microbiology, 1987, 33: 401-408.
    [124] Nozhevnikova AN, Holliger C, Ammann A, et al. Psychrophilic methanogenesis in sediments of deep lakes[J].Wat Sci Tech, 1997, 36: 57-64.
    [125] 斯皮思 RE 著(李亚新译). 工业废水的厌氧生物处理技术[M]. 北京: 中国建筑工业出版社, 2001.
    [126] Bohn I, Siversson B, Batstone D, et al. Anaerobic digestion of agriculture residues under psychrophlilic conditions. Arhing BK. Proceedings of the 9th World Congress Anaerobic Digestion[C]. Liege: IWA Antwerpen, 2001: 2-6.
    [127] Zinder SH, Anguish T, Cardwell SC. Effect of temperature on methanogenesis in a thermophilic (58℃ ) anaerobic digester[J]. Appl Env Micro, 1984, 35: 808-813.
    [128] 初里冰, 杨凤林, 张兴文. 低温厌氧处理低浓度废水研究进展[J]. 环境污染治理技术与设备, 2003, 4(4):61-65.
    [129] Ei-Mamouni R, Leduc R. Guiot S R. Influence of synthetic and natural polymers on the anaerobic granultion process[J]. Wat Sci Tech, 1998, 38: 341-347.
    [130] Kalogo Y, Seka AM, Verstraete W. Enhancing the start-up of a UASB reactor treating demestic wastewater by adding a water extract of Moringa oleifera seeds[J]. Appl Microbiol Biotech, 2001, 55: 651-664.
    [131] 郭晓磊, 胡勇有. 低浓度污水厌氧污泥颗粒化促进技术研究[J]. 中国给水排水, 2002, 18(4): 19-22.
    [132] Wu Y, Wang YH, Wang LS. Granulation in UASB reactor by adding Bentonite and Polyacrylamide[J].Environment Protection Science, 1997, 23(6): 13-15.
    [133] Show KY, Wang Y, Foong SF, et al. Accelerated start-up and enhanced granulation in UASB reactors[J]. Wat Res,2004, 38(9): 2293-2304.
    [134] 王妍春, 左剑恶, 肖晶华. EGSB 反应器内厌氧颗粒污泥性质的研究[J]. 中国沼气, 2002, 20(4): 3-7.
    [135] Ghangrekar MM, Asolekar SR, Ranganathan KR, et al.Experience with UASB reactor start-up under different operating conditions[J]. Wat Sci Tech, 1996, 34(5-6):421-428.
    [136] Kaspar HF,Tiedje JM and Firestone RB.Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge[J].Can J Microbiol,1981,27:878-885.
    [137] King D and Nedwell DB.The influence of nitrate concentration upon the end-products of nitrate dissmilation by bacteria in anaerobic salt marsh sediment[J].FEMS Microbiol Ecol,1985,31:23-28.
    [138] 贺延龄.废水厌氧生物处理[M].北京:中国轻工业出版社.1998.
    [139] 杨秀山,田沈,郑颖,等.固定化甲烷八叠球菌(Methanosarcina) 研究[J]. 中国环境科学,1998 ,18 (4) :35.
    [140] 文湘华,王建龙.环境生物技术原理与应用[M].北京:清华大学出版社,2004,430-431.
    [141] 吴婉娥.废水生物处理技术[M].北京:化学工业出版社,2003,176-177.
    [142] Kluber HD, Conrad R. Effects of nitrate,nitrite,NO and N2O on methanogenesis and other redox processes in anoxic rice field soil[J]. FEMS Microbiology Ecology, 1998, 25:301-318.
    [143] Ruiz G, Jeison D, Chamy R. Development of denitrifying and methanogenic activities in USB reactors for the treatment of wastewater: Effect of COD/N ratio[J].Process Biochemistry, 2006,41:1338-1342.
    [144] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments [J]. Appl Environ Microbiol,2002,68:1312-1318.
    [145] Schalk J,DeVries S, Kuenen JG,et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J]. Biochemistry,2000,39:5405-5412.
    [146] Nielsen M, Revsbech NP, Larsen LH,et al. On-line determination of nitrite in wastewater treatment by use of a biosensor[J]. Water Sci Technol, 2002, 45:69-76.
    [147] Amann RI, Ludwig W, Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev,1995,59:143-169.
    [148] Neef A,Amann RI,Schlesner H,et al.Monitoring a widespread bacterial group:in situ detection of planctomycetes with 16S rRNA-targeted probes[J]. Microbiology,1998,144:3257-3266.
    [149] Lee N, Nielsen PH, Andreasen KH,et al. Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology[J]. Appl Environ Microbiol,1999,65:1289-1297.
    [150] Van de Graaf A A, Mulder A, De Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Appl Environ Microbiol,1995,61:1 246-1 251.
    [151] Bock E, Schmidt I, Stuven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonia or hydrogen as electron donors and nitrite as electron acceptor[J]. Arch Microbiol,1995,163:16-20.
    [152] Schmid MC, Maas B,Dapena A.Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria[J].Applied and environmental microbiology, 2005, 71:1677-1684.
    [153] 雒怀庆,胡勇有.厌氧氨氧化污泥中效应菌的分子生物学研究[J]. 微生物学报,2005,45(3):335-338.
    [154] 徐昕荣,贾晓珊,陈杰娥. 一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J].环境科学学报,2006,26(6):912-918.
    [155] 杨洋, 左剑恶, 全哲学, 等. UASB 反应器中厌氧氨氧化污泥的种群分析[J].中国环境科学,2006, 26(6): 52-56.
    [156] Jetten M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobicammonium oxidation ("anamox") process[J].Curr Opin Biotechnol,2001,12:283-288.
    [157] Pathak B K,Kazama F, Saiki Y,et al.Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors[J]. Bioresource Technology,2007,98:2201-2206.
    [158] Dong X, Tollner E W. Evaluation of Anammox and denitrification during anaerobic digestion of poultry manure [J]. Bioresource Technology, 2003,86:139-145.
    [159] Andrews JE, Graef SP. Dynamic modeling and simulation of the anaerobic digestion process-Anaerobic Biological Treatment Processes Advances in Chemistry Series [M]. Washington DC, USA:American Chemical Society, 1971:126-162.
    [160] Gujer W,Zehnder AJB.Conversion processes in anaerobic digestion[J].Wat Sci Tech,1983,(15): 127-167.
    [161] Pavlostathis SG,Giraldo-Gomez E.Kinetics of anaerobic treatment:A critical review[J].Crit Rev Environ Control,1991,(21):411-490.
    [162] Sales D.Anaerobic digestion kinetics of win-distilleries wastewaters[J].Chem Tech Biotech,1989, 45:147-162.
    [163] 徐向阳,冯孝善.厌氧附着膨胀床反应器稳态运行的过程动力学[J].环境科学学报,1989,9(3):267-275.
    [164] 徐向阳,冯孝善.厌氧附着膨胀床反应器非稳态运行的过程动力学[J].中国环境科学,1988,8(6):1-8.
    [165] 王向东,谢嘉,杨靖霞.制酒废水高温厌氧消化动力学研究[J].成都科技大学学报,1996,91(3):43-48.
    [166] 顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1993,56.
    [167] 卢培利,张代钧,李小鹏.废水生物脱氮中 N2O 和 NOx的产生和作用[J].应用与环境生物学报,2005,11(5):632-637.
    [168] Kester RA, de Boer W, Laanbroek HJ. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples[J].FEMS Microbiol Ecol, 1996, 20:111-120.
    [169] Kester RA, Meijer ME, Libochant JA. Contribution of nitrification and denitrification to the NO and N2O emissions of an acid forest soil, a river sediment and a fertilized grassland soil[J]. Soil Biol Biochem, 1997, 29: 1655-1664.
    [170] Kester RA, de Boer W, Laanbroek H J.Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration[J].Appl Environ Microbiol, 1997, 63:3872–3877.
    [171] Xu B, Fortkamp U, Enfors SO.Continuous measurement of NOaq during denitrification by immobilized Pseudomonas stutzeri [J]. Biotechnol Biotech, 1995, 9:659-664.
    [172] Galbally IE, Roy CR.The fate of nitrogen compounds in the atmosphere [J].Devel Plant Soil Sci, 1983, 9: 263-284.
    [173] Andersson IC, Levine JS. Relative rates of NO and N2O production by nitrifiers, denitrifiers and nitrate respirers[J]. Appl Environ Microbiol, 1986,51:938-945.
    [174] Mancinelli RL, McKay CP.Effects of nitric oxide and nitrogen dioxide on bacterial growth[J]. Appl Environ Microbiol, 1983, 46:198-202.
    [175] Henry YC, Ducrocq JC. Drapier D, et al. Nitric oxide, a biological effector-electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells [J].Eur Biophys J,1991,20: 1-15.
    [176] Carr G J, Ferguson S J. Nitric oxide formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions [J]. Biochim Biophys Acta, 1990, 1017: 57-62.
    [177] Hausladen A, Privalle CT, Keng T,et al.Nitrosative stress: Activation of the transcription factor OxyR[J]. Cell, 1996,86: 719-729.
    [178] Wink DA, Kasprzak K S, Maragos CM, et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors [J].Science, 1991, 254: 1001-1003.
    [179] Braun C, Zumft WG. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stuzeri at nitric oxide [J]. J Biol Chem, 1991, 266:22785-22788.
    [180] Baumg?rtner M. Umsetzung von Stickoxiden (NOx) in B?den, auf Geb?udeoberfl?chen und in Mikroorganismen[D]. Konstanzer Dissertationen Nr.327 Hartung-Gorre Konstanz, Germanyvol Konstanzer Dissertationen Nr.327,1991.
    [181] Hellinga C, Schellen AAJC, Mulder JW, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater[J]. Wat Sci Tech, 1998,37(9):135-142.
    [182] Kuai LP,Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrificaiton-denitrification system[J]. Appl Environ Microbiol, 1998,64(11):4500-4506.
    [183] 李小鹏,张代钧,曹琳,等.氨氧化菌在污水生物处理中的应用[J].中国给水排水,2004,20(5):24-27.
    [184] Yang W,Vollertsen J,Hvitned-Jacobsen T. Nitrite accumulation in the treatment of wastewaters with high ammonia concentration[J].Wat Sci Tech,2003,48(3):135-141.
    [185] Jianlong W, Ning Y.Partial nitrification under limited dissolved oxygen conditions[J].Process Biochemistry,2004,39:1223-1229.
    [186] Mansch R, Bock E. Biodeterioration of natural stone with special reference to nitrifying bacteria[J]. Biodegradation,1998,9:47-64.
    [187] Chandran K,Smets BF. Estimating Biomass Yield Coefficients for Autotrophic Ammonia andNitrite Oxidation from Batch Respirograms[J]. Wat Res, 2001, 35 (13):3153-3156.
    [188] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration [J]. Water Research, 2003, 37:1371-1377.
    [189] Hanaki K,Chalermraj W,Shinihiro O. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J].Wat Res,1990,24(3):297-302.
    [190] Turk O,Mavinc DS. Stability of nitrite build–up in an activated sludge system[J].J WPCF,1989,61(8):1440-1448.
    [191] Hyungseok Yoo.Nitrogen removal from synthetic wastewater by simultaneus nitrification and denitrification via nitrite in an intermittently-aerated reactor [J].Wat Sci Res,1999,33(1):146.
    [192] Mulder JW,van Kempen R.N-removal by SHARON[J].Water Quality International,1997,2:30-31.
    [193] Balmelle B,Nguyen KM, Capderille B. et al.Study of factors controlling nitrite build-up in biological processes for water nitrification[J].Wat Sci Tech,1992,26(5-6):1017-1025.
    [194] Fdz-Polanco F,Villaverde S,Garcia PA.Temperature effect on nitrifying bacteria activity in biofilters:activation and free ammonia inhibition[J].Wat Sci Tech,1994,34(3):371-378.
    [195] Yang I,Alleman JE.Investigation of batchwise nitrite build-up by an enriched nitrification culture[J].Wat Sci Tech,1992,26(5-6):997-1005.
    [196] Abeling U.Anaerobic-aerobic treatment of high-strengh ammonium wastewater nitrogen removal via nitrite[J].Wat Sci Tech,1992,26(5-6):1007-1014.
    [197] Wong-chong GM, Loehr RC. Kinetics of microbial nitrification[J].Wat Res,1975,9(12): 1099-1106.
    [198] Mauret M,Paul E,Puech-Costes E, et al.Application of experimental research methodology to the study of nitrification in mixed culture[J].Wat Sci Tech,1996,34(1):269-252.
    [199] Villavede S,Fda-Polanco F,Garcio PA. Influence of pH on nitrifying bacteria activity in submerged biofilters[J].Wat Res,1997,31(5):1180-1186.
    [200] Suthursan S, Ganezarezyk JJ.Inhibition of nitrite oxidation during nitrification-some observations[J].Wat Pollut Res J Can,1986,21(2):257-266.
    [201] Neufeld R,Greenfield J,Riedr B.Temprature ,cyanide and phenolic nitrification inhibition[J]. Wat Res,1986,20(5):633-642.
    [202] Smets B F,Jobbagy A,Cowan R M,et al.Evaluation of respirometric data: identification of features that preclude data fitting with existing kinetic expressions[J]. Ecotoxicol Environ Safety, 1996,33(1):88-99.
    [203] McCarty PL. Stoichiometry of biological reactions[J].Prog Water Technol,1975,7(1):157-172.
    [204] Grady CPLJr,Daigger GT,Lim HC. Biological Wastewater Treatment[M]. MarcelDekker:New York,1999.
    [205] Dochain D,Vanro lleghem PA, Van Daele M. Structural identifiability of biokinetic models of activated sludge respiration[J].Water Res,1995,29(11),2571-2578.
    [206] Zhu Songming ,Chen Shulin. An experimental study on nitrification biofilm performances using a series reactor system[J].Aqua Eng,1999,20(2):245-259.
    [207] George Tchobanoglous,Franklin L Burton.Wastewater Engineering Treatment,Disposal and Resue[M].New York:Mc Graw-Hill Publishing Company,1993.
    [208] 郑平, 金仁村, 卢刚. 短程硝化反应器过程动力学特性研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(1):14-20.
    [209] 单明军, 张海灵, 吕艳丽,等. 焦化废水亚硝化过程的动力学研究[J].哈尔滨工业大学学报. 2006, 38(20):312-321.
    [210] Hao XD, Heijnen JJ, van Looadrecht MCM. Sensitivity analysis of a biofilm model describing a one stage completely autotrophic nitrogen removal(CANON)process [J]. Biotech Bioeng, 2002, 77(3):265-277.
    [211] Chandran K, Smets BF. Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from batch respirograms[J].Wat Res, 2005, 39: 4969-4978.
    [212] Sikkema J, de Bont JAM ,Poolman B. Mechanisms of membrane toxicity of hydrocarbons[J]. Mic Rev, 1995,59:201-222.
    [213] Schirmer M. Investigation of multi-scale biodegradation process: modeling approach[D]. University of Waterloo, Ontario, Canada, 1998.
    [214] 张代钧,卢培利,李小鹏,等.氨氧化菌混培物在微量 NO2 气氛下的氨代谢特性[J].中国环境科学,2005,25(3):348-352.
    [215] Wrage N, Velthof GL, van Beusichem ML, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biol Biochem, 2001,33:1723-1732.
    [216] 赵宗升,刘鸿亮,李炳伟,等. 高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水,2001,17(5):24-28.
    [217] Colliver BB, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers[J]. Biotechnol Adv, 2000,18:219-232.
    [218] Stuven R, Bock E. Nitrification and denitrification as a sourcr for NO and NO2 production in high-strength wastewater[J]. Wat Res, 2001,35(8):1905-1914.
    [219] Ye RW, Thomas SM. Microbial nitrogen cycles: physiology, genomics and applications [J]. Curr Opin Microbiol , 2001, 4:307-312.
    [220] Bremner JM, Blackmer AM.Nitrous oxide:emission from soils during nitrification of fertilizer nitrogen[J]. Science,1978, 199:295-296.
    [221] Valentis G,Lesavre J.Waste-water treatment by attached-growth microorganisms on a geotextile support[J].Water Sci Technol,1989,22(1-2):43-51.
    [222] Kent T D,Fitzpatrick C S,Williams S C.Testing of biological aerated filter(BAF) media[J].Water Sci Technol,1996,29(10-11):197-208.
    [223] 江萍,胡九成.国产轻质球型陶粒用于曝气生物滤池的研究[J].环境科学学报,2002,22(4): 459-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700