藏猪几个重要遗传特性基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏猪(Sus scrofa,Tibetan swine)主要产于我国西藏、四川西部、云南西北部以及甘肃南部的农区和半农半牧区,是世界上分布在海拔最高地区(2500~4300m)的稀有放牧猪种之一。藏猪具有抗逆性强、肌肉纤维细、肌间脂肪含量高和肉质风味好等优点;但同时存在产仔数低、生长缓慢和胴体瘦肉率低等不足。由于藏猪的生产性能低下,为了提高其生产性能,因而长期以来引进其他猪种与之进行杂交,导致其数量急剧减少,若不采取有效的措施,藏猪也会和许多其他地方猪种一样濒临灭绝,其所携带的优良基因,在我们还没有认识其价值以前就永远从基因库中消失。因此,有针对性开展藏猪遗传特性方面的研究,对猪种资源的保护和开发利用具有重大的价值,对今后的新品种培育和品种复壮、实现养猪生产的可持续发展具有十分重要的战略意义。
     由于藏猪分布在偏远高海拔山区和处于放牧的半野生状态,因此采样和测定研究工作难度大,目前国内外对这一宝贵的猪种资源的研究很少,并且主要是集中在生长发育性能和血液蛋白多态性研究方面,有关藏猪抗病力、肌肉品质和产仔数等特色性状基因方面的研究尚属空白。天然抗性巨嗜细胞蛋白基因(natural resistance associated-macrophage protein 1,NRAMP1)、心脏脂肪酸结合蛋白基因(heart fatty acid binding protein,H-FABP)和雌激素受体基因(estrogen receptor,ESR)是与抗病力、肌肉品质和产仔数相关的侯选基因,藏猪的这3个基因尚未有人研究。因此,本论文选择藏猪的NRAMP1、H-FABP和ESR基因进行研究,以发掘藏猪的优势特色,为藏猪资源的保护和开发利用奠定基础。
     首先,我们克隆了藏猪NRAMP1基因。从脾脏和血液白细胞样品制备RNA后,用RT-PCR的方法克隆了藏猪NRAMP1基因,序列分析发现其开放阅读框长度为1614bp,编码538个氨基酸残基,其蛋白质分子量为58.8kD,等电点为8.01,疏水氨基酸占52.8%,亲水氨基酸占31.4%,碱性氨基酸占5.8%,酸性氨基酸占5.4%,该蛋白质不含信号肽序列。预测的藏猪NRAMP1蛋白质具有其他物种保守的所有结构区域,包括1个富含脯氨酸和精氨酸的SH3结合域(SH3-binding domain),4个PKC磷酸化位点(S/T-X-R/K),2个N型糖基化位点(N-X-S/T),1个转运功能区(transport motif)和12个转膜区域(transmembrane,TM)。将藏猪的NRAMP1cDNA序列与家猪相应序列比较,有13个位点发生了突变,其同源性达99.2%,但编码的氨基酸序列完全相同。藏猪与狗、绵羊、牛、鹿、马、人和鼠的NRAMP1cDNA之间的同源性分别为91.2%、88.7%、88.1%、86.8%、85.8%、83.2%和71.6%。
     其次,采用半定量和定量PCR方法,对藏猪的10种组织中NRAMP1基因的表达模式和表达水平进行研究。结果表明,该基因在藏猪的10个组织以及白细胞中均获得表达,不存在组织表达特异性。该基因在藏猪中表达比西方家猪更加广泛,说明NRAMP1基因在不同的品种间可能存在差异。定量和半定量PCR结果进一步证实了NRAMP1基因在藏猪中没有组织表达特异性。该基因表达拷贝数平均为3233拷贝/μL cDNA,但各组织间表达丰度存在极大差异,表达量最高为脾脏,最低为肝脏,两者相差77倍以上。各组织表达丰度从高到低的顺序是脾脏、大脑、肺、回肠、肾脏、淋巴结、结肠、心脏、肌肉和肝脏。上述测试结果为藏猪较其他猪种具有更强的抵抗力提供了间接证据。
     再其次,采用PCR-RFLP技术(限制内切酶采用MspⅠ、HaeⅢ和HinfⅠ酶)检测了96头藏猪在H-FABP基因位点的遗传变异。结果表明:藏猪H-FABP基因在HinfⅠ和MspⅠ酶切位点均具有多态性,分别表现为HH、Hh、hh和AA、Aa和aa基因型,其中,H和A等位基因的频率分别为0.521和0.406;在HaeⅢ位点无变异,均表现为DD型。
     最后,采用PCR-RFLP技术检测了96头藏猪在ESR基因位点的遗传变异,并分析了不同基因型对产仔数的影响。结果表明:在藏猪中只有AA和AB 2种基因型,没有高产仔的优势基因型BB,其中,AA和AB基因型分布频率分别为0.75和0.25,A、B等位基因的频率分别为0.875和0.125,研究结果较好地解释了藏猪产仔数不高的现象。藏猪不同ESR基因型产仔数和产活仔数之间存在明显差异,其中AB基因型的产仔数较AA型高2.03头。这些发现对藏猪的产仔数性状的改进具有重要意义。
     对藏猪最具特色的3个性状相关基因进行的初步研究和所获得结果,为认识、保护和利用藏猪的优良基因资源奠定了基础。
Tibetan Pig (Sus scrofa, Tibetan pig) is indigenous to vast areas of Tibet, West of Sichuan, North of Gansu and Northernwest of Yunnan Province. It is the representative of the grazing breeds, which has unique resistance to harsh climate, poor feeding and veterinary preventation compared with other pig breeds. It has advantages of better resistance to stressful environment, more fine muscle fibre, more intramuscle fat and better flavour, and the disadvantages of low litter size, slow growth and low lean meat percentage. Due to its low productive performances, many exotic breeds have been introduced to cross with them sine 1950s. After 60 years' crossbreeding, the quantity of pure Tibetan Pigs is decreased dramatically. Nowadays, even in their provenance, it is difficult to find pure Tibetan Pigs. The breed is at risk of extinction. It is important to understand the rare breed resource before it becomes extinction.
     So far, a few papers have been reported about Tibetan pigs, and the researches related to resistance, meat quality and litter size candidate genes are even less. In addition, natural resistance-associated macrophage protein (NRAMP1), heart fatty-binding protein (H-FABP) and estrogen receptor (ESR) have been documented well in other breeds of swine. Herein, genes encoding above three proteins were chosen in Tibanten pigs in the present study.
     First of all, full cDNA of NRAMP1 was cloned with RT-PCR.The length of cDNA fragment is 1614 bp, encoding a peptide of 538 amino acid residues with a molecular weight of 58.8 Kda and isoelectric point 8.01. The predicted NRAMP1 protein is a typical NRAMP1, which is composed of a putative N-terminal proline- and serine-rich Src homology 3 (SH3)-binding domain, four phosphorylation sites for protein kinase C (PKC) , two N-linked glycosylation sites and twelve transmembrane (TM) domains. Sequence homology analysis showed that there are 13 nucleotides different between Tibetan pig and domestic pig but which is not resulted in the amino acid difference. By blasting the homologous sequences in GenBank database with demostic pig, dog, sheep, american bison red deer, horse, human and norway rat, their nucleotide sequence identities are 99.2%, 91.2, 88.7%, 88.1%, 86.8%, 85.8%, 83.2% and 71.6%, respectively.
     Secondly, NRAMP1 gene expression in 10 tissues of Tibetan Pig were analyzed by using semi-quantitative and real-time quantitative PCR methods. The gene expression was observed in all the tissues and no tissue-specific expression model was found in Tibetan Pig. Real-time quantitative PCR proved that the gene expression abundance was greatly different in various tissues. The maximal expression was observed in spleen and the minimum in liver. The average copy number is 3233 per ug cDNA. The difference between the maximal and the minimum is more than 77 times. The abundance of NRAMP1 expression in Tibetan Pig from high to low is in the following order: spleen, brain, lung, ileum, kidney, lymph node, colon, heart, muscle and liver. The finding suggests that there likely exists interspecies variation between Tibetan Pigs and demostic pig breeds.
     Thirdly, the genetic variation of H-FABP gene in 96 Tibetan Pigs were detected by PCR-RFLP with MspⅠ, HaeⅢ, HinfⅠ. The results showed as follows: there are polymorphisms in HinfⅠand MspⅠlocus, with the genotypes of HH, Hh, hh and AA, Aa, aa, among which the gene frequencies of H and A are 0.521 and 0.406. However, there is no variation in HaeⅢ locus, with the genotype of DD only.
     Last, the genetic variation of ESR gene in 96 Tibetan Pigs were detected by PCR-RFLP with MspⅠ, HaeⅢ, HinfⅠ, meanwhile the relationship between ESR genotype and their litter size was analyzed. The results showed that there are 2 genotypes (AA and AB). The distribution of AA and AB is 0.75 and 0.25, respectively. The gene frequencies for A and B are 0.875 and 0.125, respectively. The litter size of AB type is 2.3 piglets more than that of AA.
     These findings are significant importance for realizing, preservation and utilization of the prescious resource in the future.
引文
1.段诚中.藏猪调查研究报告.中国畜牧杂志,1980,1:16-19.
    2.段诚中,马继明.藏猪和成华猪生长发育的初步观测.中国畜牧杂志,1984,1:31-34.
    3.邱祥聘主编,四川畜禽品种资源志.四川科技出版社,成都,1987,92-95.
    4.吴宏梅,王立贤.NRAMP1基因研究进展及其在抗病育种中的应用.中国畜牧兽医,2005,32(4):26-28.
    5.许振英主编.中国地方猪种种质特性.杭州:浙江科学技术出版社,1987,322-333.
    6. Blackwell J M, Barton C H, & White J K. Genetic regulation of leishmanial and mycobaterial infections: the Bcy/Ity/Lsh gene story continues. Immunol. Lett., 1994, 43: 99-104.
    7. Cellier M, Govoni G, & Vidal S. Human natural resistance-associated macrophage protein cloning, chromosomal mapping, genomic organization, and tissue-specific expression. H. Exp. Med., 1994, 180: 1741-1745.
    8. Cheng P. Animal Production and Health Papers.Livestock Breeds of China, Rome, 1984, 217.
    9. Erin J B, David T, & Gauthier. Natural-resistance Associated Macrophage Protein (Nramp) In Striped Bass (Morone saxatiLis). Infect. Immun., 2004, 72:1626-1530.
    10. Feng J, Li Y, & Hashand M. Bovine natural resistance associated macrophage protein(Nramp1) gene. Genome Res., 1995, 5: 955-960.
    11. Gros P, Skamene E, & Forget A. Cellular mechanisms of genetically controlled host resistance to Mycobacteria bovis(BCG). J. Immun., 1983, 131: 1955-1959.
    12. Hiroaki Inoue, Hiroshi Nojima, Hiroto Okayama. High efficiency transfomation of Escherichia Coli with plasmids. Gene, 1990, 95(1): 23 -25.
    13. Hu, Bumstead N, & Burke D, Genetic and physical mapping of the natural disease resistance-associated macrophage protein 1(Nramp1) in chicken. Mammalian Genome, 1995, 5: 809-814.
    14. Mola D, Vogan K, & Hu J. Haplotype mapping and sequence analysis of the mouse Nramp gene predicts susceptibility to infection with intracellular parasites. Genomics, 1994, 23:51-56.
    15. Pitel F, Lantier I, & Riquet J. Cloning, sequencing, and localization of an ovine fragment of the Nramp gene, a candicate for the ITY/LSH/BCG gene. Mammalian Genome, 1994,5: 834-836.
    16. Pitel F, Cribu E P, & Lahbib-Mansais Y. Regional localization of ovine NRAMP gene to chromosome 2q41-q42 by in suit hybridization. Cytogenet. Cell Genet., 1995,70:116-120.
    17. Rothschild M F. Selection for disease resistance in the pig. Pig News and Information, 1985,6:277-283.
    18. Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2001
    19. Sun H S, Wang L, & Rothschild M F. Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. Animal genetics, 1998,29:138-142.
    20. Tunggle C K, Sclunitz C B, & Gingerich-Feil D. Rapid communication: cloning of a pig full-length Natural Resistance Associated Macrophage Protein(NRAMP1) cDNA. J. Anim. Sci.1997,75:277.
    21. Vidal S M, Malo D, Vogan K. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell, 1993,73:469-472.
    22. Waner C M, Meeker D L, & Rothschild M F. Genetic control of immune responsiveness: a review of its use as a tool for selection for disease resistance. Anim. Sci.,1987,64: 394-399.
    23. Yang H C. Current status of pig diseases in 2004 and the trend analysis in the future.Swine on Line, 2004,12:18-23.
    24. Zhang G, Hua W, & Christopher R. Cloning of porcine NRAMP1 and Its induction by lipopolysaccharide, tumor necrosis factor alpha, and interleukin-1: Role of CD 14 and Mitogen-Activated Protein Kinases. Infect. Immun., 2000, 68: 1086-1091.
    1.邱祥聘主编,四川畜禽品种资源志,四川科技出版社,成都,1987,92-95.
    2.吴宏梅,王立贤.NRAMP1基因研究进展及其在抗病育种中的应用.中国畜牧兽医,2005,32(4):26-28.
    3. Abe T, Iinuma Y, & Ando M. NRAMP1 polymorphisms, susceptibility and clinical features of tuberculosis. J. Infect.2003, 46: 215-220.
    4. Agranoff D, Kirshna S. Metal ion homeostasis and intracelluiar parasitism. Mol. Microbiol. 1998, 28: 403-406.
    5. Agranoff D, Monahan I M, & Mangan J A. Mycobacteerium tubercuLosis expresses a novel pH-dependenf divalent cation transporter belonging to Nramp family. J. Exp. Med. 1999, 190: 717-722.
    6. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucl. Acids Res. 1993, 21: 3097-3102.
    7. Bellamy R, Ruwende C, & Corrah T. Variations in the NRAMP1 gone and susceptibility to tuberculosis in West Africans. N. Engl. J. Med. 1998, 338: 640-645.
    8. Blackwell J M, Barton C H, & White J K. Genetic regulation of leishmanial and mycobaterial infections: the Bcy/Ity/Lsh gene story continues. Immunol. Lett.1994, 43: 99-104.
    9. Blackwell J M. Structure and function of the natural-resistance-associated macrophage protein (Nramp 1), a candidate protein for infectious and autoimmune disease susceptibility. Mol. Med. Today. 1996, 2: 205-209.
    10. Brown D H, Lafuse W, and Zwilling B S. Stabilized expression of mRNA is associatied with mycobacterial resistance controlled by Nramp1. Intect. Immun. 1997, 65: 597-602.
    11. Brown D H, Lafuse W, and Zwilling B S. Cytokin-mediated activation of macrophage from Mycobacterbovis BCG-resistant and -susceptible mice: different effects of corticosterone on antimycobacterial activity and the expression of the Bcg gene (candidate Nramp). Intect. Immun. 1995, 63: 2983-2985.
    12. Cellier M, Govoni G, & Vidal S. Human natural resistance-associated macrophage protein cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J. Exp. Med. 1994,180:1741-1746.
    13. Cellier M, Belouchi A, & Gross P, Resistance to intracellular infection: comparative genomic analysis of NRAMP1. Trends Genet 1996,12:201.
    14. Cheng P. Animal Production and Health Papers. Livestock Breeds of China, Rome, 1984,217.
    15. Erin J B, David T, & Gauthier. Natural-resistance Associated Macrophage Protein (Nramp) In Striped Bass (Morone saxatiLis). Infect. Immun.2004,72:1626-1630.
    16. Feng J, Li Y, & Hashand M. Bovine natural resistance associated macrophage protein(Nrampl) gene. Genome Res. 1996,6: 956-960.
    17. Govoni G, and Gross P. Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm. Res. 1998,47:277-284.
    18. Gros P, Skamene E, & Forget A. Cellular mechanisms of genetically controlled host resistance to Mycobacteria bovis(BCG). J. Immun. 1983,131:1966.
    19. Hentze W. Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells. Biochem. Biophys. Acta. 1991,1090: 281-285.
    20. Hu, Bumstead N, & Burke D. Genetic and physical mapping of the natural disease resistance-associated macrophage protein 1 (Nramp 1) in chicken. Mammalian Genome. 1995, 6: 809-814.
    21. Mason I L. World Dictionary of Livestock Breeds, Third Edition, C.A.B. International, 1988
    22. Mola D,Vogan K, & Hu J. Haplotype mapping and sequence analysis of the mouse Nramp gene predicts susceptibility to infection with intracellular parasites. Genomics. 1994,23: 51-56.
    23. Peltz S W, Higgins C F, and Jacobsen A. Turnover of mRNA in prokaryotes and lower eukaryotes. Curr. Opin. Genet.Dev.1992,2: 739-745.
    24. Pitel F, Lantier I, & Riquet J. Cloning, sequencing, and localization of an ovine fragment of the Nramp gene, a candicate for the ITY/LSH/BCG gene. Mammalian Genome. 1994,5: 834-836.
    25. Pitel F, Cribu E P, & Lahbib-Mansais Y. Regional localization of ovine NRAMP gene to chromosome 2q41-q42 by in suit hybridization[J]. Cytogenet. Cell Genet. 1995,70: 116-120.
    26. Rothschild M F. Selection for disease resistance in the pig. Pig News and Informatio.985,6: 277-283.
    27. Ryu S, Park Y K, & Bai G H. 3UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int. J. Tuberc. Lung Dis.2000,4: 577-582.
    28. Shaw M A, Collins A, & Peacock C S. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA.. Tuber Lung Dis.1997, 78: 35-39.
    29. Skamene E, Gros P, and Forget A. Genetic regulation of resistance to intracellular pathogens. Nature. 1982,297: 506-509.
    30. Sun H S, Wang L, & Rothschild M F. Mapping of the natural resistance-associated macrophage protein 1(NRAMP1) gene to pig chromosome 15. Animal genetics. 1998,29: 138-142.
    31. Tunggle C K, Sclunitz C B, & Gingerich-Feil D. Rapid communication: Cloning of a pig full-length Natural resistance Associated Macrophage Protein(NRAMP1) cDNA. J. Anim. Sci.1997,75:277.
    32. Vidal S M, Malo D, Vogan K. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell.1993,73: 469-472.
    33. Waner C M, Meeker D L, & Rothschild M F. Genetic control of immune responsiveness: a review of its use as a tool for selection for disease resistance. Anim. Sci.1987,64: 394-399.
    34. Zhang G, Hua W, & Christopher R. Cloning of Porcine NRAMP1 and Its Induction by lipopolysaccharide, Tumor Necrosis Factor Alpha, and Interleukin-1β: Role of CD14 and Mitogen-Activated Protein Kinases. Infect. Immun. 2000, 68: 1086-1091.
    1.陈效华.猪育种的理论与实践.农业出版社,北京:1990,32-35。
    2.段诚中.藏猪调查研究报告.中国畜牧兽医杂志,1980,1:16-19.
    3.段诚中,马继明.藏猪和成华猪生长发育的初步测定.中国畜牧兽医杂志,1984,1:31-34.
    4.林万华,黄路生,任军等.中外十个猪种H-FABP基因遗传变异的研究.遗传学报,2002,29(1):12-15.
    5.庞卫军,孙世铎,李影等.西部地区主要猪种和野猪H-FABP基因分子标记与IMF含量关系.遗传,2005,27(3):351-356.
    6.邱样聘主编.四川家畜家禽品种志.成都:四川科技出版社,1987,92-95.
    7.熊远著.瘦肉猪育种的发展与展望.中国工程科学,2000,2(9):117-121。
    8.许振英主编.中国地方猪种种质特性,杭州:浙江科学技术出版社,1987,322-333。
    9.张桂香.四个中国地方猪种H-FABP基因5’上游区和第二内含子的遗传变异。《第七届全国畜禽遗传标记研讨会论文集》.中国南昌,2000.
    10. Bejerholm C and Barton-Gade P A. Effect of intramuscular fat level on eating quality. In: Proc. 32nd European Mtg. Of Meat Research Workers. August 24-29,1986, Ghent, Belgium. Part Ⅱ .pp389-391.
    11. DeVo D L, McKeith F K. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a raddom sample of pork carcsaaes. J. Anim. Sci. 1988, 66:385-395.
    12. Frand G, Schaap. Fatty acid-binding protein in the heart. Molecular and Cellular Biochemistry, 1998, 180: 43-51.4.
    13. Gerbens F, Rettenberger G, Lenstra J A. Characterization chromosomal location and genetic variation of the porcine heart fatty acid-binding protein gene. Mammalian genome, 1997, 8: 328-332.
    14. Gerbens F, de Koning D J, Harders F L, Meuwissen T H E. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci., 1999, 77:846-852.
    15. Gerbens F, de Koning D J, Harders F L, Meuwissen T H E, Janss L L G, Groenen M A M, Veerkamp J H, Van Arendonk J A M and te pas M F W. The effect of adipocyte and heart fatty-acid-binding-protein gene on intramuscular fat andbackfat content in Meishan crossbred pigs. J. Anim. Sci. 2000 78(3): 552-559.
    16. Gerbens F, de Koning D J, Harders F L, Meuwissen THE. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 2001 79: 347-354.
    17. Hovenier R, Kanis E, Verhoeven J A. Repeatability of taste panel tenderness scoresand relationships to objective pig meat quality trait. J. Anim. Sci. 1993 71(8): 2018-2025.
    18. Kevin P, Claffey. Cloning and tissue distribution of rat heart fatty acid-binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry, 1987, Vol. 26. No. 24: 7900-7904.
    19. Roger Peeters et al. Cloning of the cDNA encoding human skeletal muscle fatty acid binding protein, its peptide sequence and chromosomal location. J. Biochen., 1991, 276: 203-207.
    20. Sambrook J, Fritsch E F, Maniatis T (eds). Molecular coloning, a laboratory manual. 2nd ed. Cold Spring Harbor Labortory Press. 1989.
    21. Wood J D, Enser M. Effect of carcass tatness and sex on the composition and quality of pig meat. In: Proc. 34th Int. Congr. Meat Sci. Technol., 1988, Brisbane, Australia, PP 562-564.
    1.陈克飞等,猪雌激素受体(ESR)基因对产仔数性状的影响,遗传学报,2000,27(10):853-857.
    2.段诚中.藏猪调查研究报告.中国畜牧兽医杂志,1980,1:16-19。
    3.段诚中,马继明.藏猪和成华猪生长发育的初步测定.中国畜牧兽医杂志,1984,1:31-34.
    4.兰旅涛,周利华等.3个外来种猪群ESR基因位点多态性及其与繁殖性能相关性分析.江西农业大学学报,2006,28(1):115-118
    5.李凤娥等,猪品种间ESR基因PCR-RFLP的初步研究.华中农业大学学报,2000,19(1):37-39
    6.李明洲,张凯等.中国地方猪种ESR基因PvuⅡ多态性与产仔数性状间关系的研究.四川农业大学学报,2003,258-262.
    7.李宁等,利用遗传连锁分析研究猪产仔数基因,中国动物遗传育种研究进展,北京:中国农业科技出版社,1995,8:32-34.
    8.李婧,杨润清等.民猪产仔数性状四个侯选基因的效应分析.上海交通大学学报,2004,22(1):74-77.
    9.柳淑芳等,猪雌激素受体基因Pvu Ⅱ多态性与产仔数性状间的关系,遗传,2002,24(3):267-270。
    10.孟庆利,刘铁铮.猪雌激素受体基因Pvu Ⅱ酶切片段多态性与产仔性能的关系.江苏农业学报,2005,21(1):49-52.
    11.邱祥聘主编.四川家畜家禽品种志.成都:四川科技出版社,1987,92-95.
    12.田勇等,四川省外种猪雌激素受体基因对繁殖性状和生长性状的影响,中国畜牧杂志,2004,40(9):9-12.
    13.许振英主编.中国地方猪种种质特性,杭州:浙江科学技术出版社,1987,322-333.
    14.叶昌辉等,猪雌激素受体(ESR)基因的多态性分析,湛江海洋大学学报,2002,22(3):70-72
    15. Dennis B L, Jeffery S M, Thomas S G, et al. Alteration of reproductive function but not prenatal sexual development after insertional s=disruption of the the mouse oestrogen receptor gene. Proc. Natl. Acad Sci. USA, 1993, 90: 9460-9446.
    16. Drogemuller C Thievven U, Harlizius B. An Ava Ⅰ and Msp A1 Ⅰ polymorphism at the porcine ESR gene. Animal Genetics, 1997,28(1): 59.
    17. Kmietc M, J. Dvorak, I. Vrtkova. Study on a relationship between estrogen (ESR) gene polymorphism and some pig reproduction performance characters in Polish Landrace breed. Czech J. Anim. Sci.2002,47(5): 189-1934.
    18. Rothschild M V.PVU Ⅱ polymorphism at the porcine estrogen receptor locus (ESR). Animal Genetics, 1991,22:448.
    19. Rothschild M F.A major gene for litter in swinc.5th WCGALP, 1994,21: 225-228.
    20. Rothschild M F.Genetics and reprouction in the pig. Anim. Reprodu. Sci., 1996, 42:143-151.
    21. Short T H, Rothschild M F, Sorthwood O I. Effect of estrogen receptor (ESR) locus on litter size of pigs. In: Ning Li, Yongfu Chen, (ed.), Proceedings of International Conference on Animal Biotechnology. Beijing, International Academic Publishers, 1997,21-24.
    22. Stephen Green, Philipinpe Walter, Vijay Kumar.Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A.Nature,1986,302(13): 134-139.
    23. Wei M.HAM Van der steen, McLaren D G. Effect of estrogen receptor(ESR) locus on litter size of pigs.In: Ning Li, Yongfu Chen(ed.) Proceeding of International Conference on Animal Biotechnology. Beijing, International Academic Publishers, 1997,21-24
    1.蔡宝样,杨汉春.Infectious diseases of pigs in China.Proceeding of International Conference on Pig Production.1998,Academic Press.Beijing.
    2.常宏,米玛次仁等.新遗传资源林芝猪的调查.中国农业科学,2002,35(9):1114-1118.
    3.陈克飞,黄路生,李宁等.猪雌激素受体(ESR)基因对产仔数性状的影响.遗传学报,2000,27(10):853-857.
    4.陈克飞,黄路生,罗明等.猪ESR(Estrogen Receptor)基因的PCR-RFLPs多态性分析.中国动物遗传育种研究进展,北京:中国农业科技出版社,1999,199-201.
    5.陈克飞等,猪雌激素受体(ESR)基因对产仔数性状的影响,遗传学报,2000,27(10):853-857.
    6.陈效华.猪育种的理论与实践.农业出版社,北京:1990,32-35。
    7.陈瑶生.瘦肉型猪育种新技术策略.广东畜牧兽医科技,2002,27(4):3-7.
    8.方美英.中国地方猪种分子进化研究.北京:中国农业大学博士学位论文,2002.
    9.丁能水,任冬仁等.猪前列腺素内过氧化物2(PTGS2)基因的遗传变异及其与繁殖性能相关性研究.遗传学报,2006,33(3):213-219.
    10.段诚中.藏猪调查研究报告.中国畜牧兽医杂志,1980,1:16-19.
    11.段诚中,马继明.藏猪和成华猪生长发育的初步测定.中国畜牧兽医杂志,1984,1:31-34.
    12.侯振平,蒋思文.猪产仔数的遗传改良研究进展.中国畜牧兽医,2003,30(4):26-28.
    13.黄勇富,张亚平.猪线粒体DNA多态性与中国地方猪种起源分化的关系.遗传学报,1998,25(4):322-329.
    14.黄勇富.中国主要地方猪种遗传多样性及起源分化研究.四川农业大学博士学位论文,四川,雅安,1996.
    15.兰宏,王文等.西南地区家猪和野猪mtDNA遗传多样性研究.遗传学报,1995,25(1):28-33.
    16.李凤娥,熊远著,邓昌彦,郑嵘,屈彦纯.猪品种间ESR基因PCR-RFLP的初步研究.华中农业大学学报,2000,19(1):37-399.
    17.李宁.利用遗传连锁分析研究猪产仔数基因,中国动物遗传育种研究进展,北京:中国农业科技出版社,1995,8:32-34.
    18.李晓丽,何万领,董淑丽,邓昌彦。主要抗病侯选基因在猪育种中的研究进展,河南科技大学学报(自然科学版),2006,27(5)65-69.
    19.林万华,黄路生,任军等.中外十个猪种H-FABP基因遗传变异的研究.遗传学报,2002,29(1):12-15
    20.柳淑芳等,猪雌激素受体基因PvuⅡ多态性与产仔数性状间的关系,遗传,2002,24(3):267-270.
    21.李华,张亚平等.中国部分猪种SLA-DQB外显子2遗传多样性.遗传,2005,27(2):173-180.
    22.李相运,常宏.林芝猪血液蛋白多态性研究.西北农业学报,2000a,9(1):24-28.
    23.李相运,常宏.合作猪、迪庆藏猪和成华猪血清运铁蛋白多样性.甘肃农业大学学报,2000b,35(2):194-196.
    24.李相运,任战军等.迪庆藏猪遗传多样性研究.生物多样性,2000c,8(3):253-256.
    25.刘伟敏,熊远著,蒋思文,邓昌彦,郑嵘.猪数量性状位点定位研究进展,2000(2),湖北农业科学,55-58.
    26.蒋思文,熊远著,邓昌彦等.猪RYR_1基因的PCR-RFLP分析和氟烷基因利用的研究1997,33(2),9-21.
    27.聂龙,施立明.西南地区地方品种血液蛋白多样性研究.生物多样性,1995,3(1):1-7.
    28.庞卫军,孙世铎,李影等.西部地区主要猪种和野猪H-FABP基因分子标记与IMF含量关系.遗传,2005,27(3):351-356。
    29.樊斌.地方猪遗传多样性的微卫星DNA标记检测与评估方法研究.武汉,华中农业大学博士研究生学位论文,2002.
    30.强巴央宗,谢庄等.高原藏猪现状与保种策略,中国畜牧杂志,2001,37(6): 46-47.
    31.邱祥聘主编.四川家畜家禽品种志.成都:四川科技出版社,1987,92-95.
    32.阮云军,董凤英.心血管系统的雌激素受体的研究进展.国外医学内科分册,1990,,26:246-248.
    33.田勇等.四川省外种猪雌激素受体基因对繁殖性状和生长性状的影响,中国畜牧杂志,2004,40(9)9-12
    34.田志华,张成忠等.藏猪血液蛋白多态性研究.西南民族学院学报(自然科学版),1999a,25(3):278-283.
    35.田志华,张成忠等.藏猪起源和品种遗传特性的研究.西南民族学院学报(自然科学版),1999b,25(4):406-412.
    36.王爱华,赵志辉等.猪繁殖性状QTL研究进展.中国兽医学报,22(4)2002,415-417.
    37.王林云.中国养猪业:如何迎接WTO挑战,21世纪养猪业与人类健康.中国畜牧兽医学会养猪学分会编,2000,20-24.
    38.王林云.优质猪肉生产和地方猪种利用.畜牧与兽医,2001,33(5):18.
    39.王林云,曾勇庆等.对我国地方猪种若干特性的分子生物学研究.猪业科学,2006,23(1):88-89.
    40.王勇强,路兴中.合作猪染色体的研究.甘肃农业大学学报,1990,26(4):359-363.
    41.王子淑,王喜忠等.藏猪显带染色体的研究.畜牧兽医学报,1988,19(3):165-170.
    42.吴宏梅,王立贤.NRAMP1基因研究进展及其在抗病育种中的应用.中国畜牧兽医,2005,32(4):26-28.
    43.西藏自治区畜牧兽医学会,西藏自治区畜牧局,西藏自治区畜牧兽医科学研究院.西藏畜牧兽医汇编.畜牧.草原分册(1980.1990),1991:332-334.
    44.熊统安,朱猛进等.中国藏猪ESR基因Pvu Ⅱ位点多态性分析.华中农业大学学报,2005,24(5):485-488.
    45.熊远著.瘦肉猪育种的发展与展望.中国工程科学,2000,2(9):117-121.
    46.徐子清,梅书棋,樊俊华.猪ESR基因一个外显子片段的克隆与序列分析.畜 牧兽医学报,2001,32(2):101-107.
    47.许振英主编.中国地方猪种种质特性,杭州:浙江科学技术出版社,1987,322-33。
    48.叶昌辉等.猪雌激素受体(ESR)基因的多态性分析,湛江海洋大学学报,2002,22(3):70-72.
    49.叶昌辉,杨关福,吴珍芳.ESR基因在猪产仔数选育中的应用研究.湖南农业大学学报,2003,29(1):47-49.
    50.张桂香等.四个中国地方猪种H-FABP基因5’上游区和第二内含子的遗传变异。《第七届全国畜禽遗传标记研讨会论文集》,中国南昌,2000.
    51.张亚妮,张恩平等.两个藏猪类群微卫星DNA遗传多样性研究.西北农林科技大学学报(自然科学版),2004,32(6):23-26.
    52.张沅.家畜育种规划.北京:中国农业大学出版社,2000.
    53.张伟力.猪文化与主肉品质改进理念.猪业科学,2006,23(4):28-30.
    54.曾勇庆,王根林.猪肉质性状基因及遗传标记研究进展.畜牧与兽医,2003,35(8):37-40.
    55.曾勇庆,王林云,王根林.猪肉质的影响因素及遗传调控与优质肉猪的培育.猪业科学,2006,6:74-77.
    56.赵静,杨汉春.规模化猪场大肠杆菌耐药性监测,Proceeding of International Conference on Pig Production,1998,Academic Press.Beijing.
    57.张淑君,曾凡同,邱祥聘等.ESR和PRLR基因二个位点在二花脸猪中的多态性及其与产仔数相关性的初探.上海畜牧兽医通讯,2000,6:14-15.
    58.赵中权,帅素容等.藏猪雌激素(ESR)基因Pvu Ⅱ多态性分析.黑龙江畜牧兽医,2005,5:38-39.
    59.赵中权,帅素容等.藏猪生长激素核甘酸多态性分析.中国畜牧杂志,2006,42(3):12-13.
    60. Abe T, Iinuma Y, Ando M. NRAMP1 polymorphisms, susceptibility and clinical features of tuberculosis. J. Infect., 2003, 46: 215-220.
    61. Adams L. G. & Templeton. Genetic resistance to bacterial diseases of animals. Rev. Sci. Tech. Off. Int. Epiz., 1998, 17(1): 200-219.
    62. Agranoff D, Kirshna S. Metal ion homeostasis and intracellular parasitism. Mol. Microbiol, 1998,28: 403-408.
    63. Agranoff D, Monahan I M, & Mangan J A. Mycobacteerium tuberculosis expresses a novel pH-dependenf divalent cation transporter belonging to Nramp family. J. Exp. Med., 1999,190: 717-723.
    64. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucl. Acids Res., 1993,21: 3097-3083.
    65. Bellamy R, Ruwende C, Corrah T. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N. Engl. J. Med., 1998, 338: 640-644.
    66. Biozzi G, Siqueira M, Stiffel C, Ibanex O M, Mouton D, and Ferreira V. C. A. 1980. Genetic selection for relevant immunological function. In: Progress in Immunology Ⅳ .Academic Press, Newyork, 432-457.
    67. Blackwell J M, Barton C H, & White J K. Genetic regulation of leishmanial and mycobaterial infections: the Bcy/Ity/Lsh gene story continues. Immunol. Lett., 1994,43: 99-104.
    68. Blackwell J M. Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Mol. Med. Today, 1996,2: 205-210.
    69. Brown D H, Lafuse W, and Zwilling B S. Stabilized expression of mRNA is associatied with mycobacterial resistance controlled by Nrampl. Intect. Tmmun 1997,65:597-564.
    70. Brown D H, Lafuse W, and Zwilling B S. Cytokin-mediated activation of macrophage from Mycobacterbovis BCG-resistant and -susceptible mice: different effects of corticosterone on antimycobacterial activity and the expression of the Bcg gene (candidate Nramp). Intect. Immun., 1995,63:2983.
    71. Buschmann H, Junge V, Krausslich H, Herramann H, Meyer J, and Kleinschmidt A. Quantitative immunological parameters in pigs-experience with the evaluation of an immunocompetence profile. Zeitschrift Fur Tierzuchtung Zuchtungsbiologie, 1985,102:189-199.
    72. Cameron H. S., Gregory P. W. & Hughes E. H. Inherited resistance to brucellosis in inbred Bershire swine. 1942, J. Anim. Sci., 1:106-110.
    73. Campell M G, Nonneman D. and Rohrer G A. Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8. Anim. Sci., 2003, 81: 1706-1714.
    74. Cassady J F, Johnson R K, Pomp D. Identification of quantitative trait loci affecting reproduction in pigs. Anim.Sci.2001,79(3): 623-633
    75. Cellier M, Govoni G, & Vidal S. Human natural resistance-associated macrophage protein cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J. Exp. Med., 1994,180:1741-1746.
    76. Cellier M, Belouchi A, & Gross P. Resistance to intracelluLar infection: comparative genomic anaLysis of NRAMP1. Trends Genet., 1996, 12: 201-208-214.
    77. Cheng P. Animal Production and Health Papers. Livestock Breeds of China, Rome, 1984,217.
    78. Close W H. Nutritional manipulation of meat quality in pigs ang poultry. Alltech's 11th Annual Asia-Pacific Lecture Tour.1997,99-110.
    79. Comstock G W. Tuberculosis in twins: a re-analysis of the Prophit surver. Am. Rev. respir. Dis., 1978,117:621-624.
    80. Dennis B L, Jeffery S M, Thomas S G. Alteration of reproductive function but not prenatal sexual development after insertional s=disruption of the the mouse oestrogen receptor gene. Proc. Natl. Acad Sci. USA,1993,90: 9460-9446.
    81. Drogemuller C Thievven U, HarLizius B. An Ava Ⅰ and Msp A1 Ⅰ polymorphism at the porcine ESR gene. Animal Genetics, 1997,28(1): 59-64.
    82. Erin J B, David T, & Gauthier. Natural-resistance Associated Macrophage Protein (Nramp) In Striped Bass (Morone saxatilis). Infect. Immun.2004,72:1626.
    83. Ernst C W, Rob A, Wang L, Rothschild M F. Mapping of alpastatin and three microsatellites to porcine chromosome 2q2.1-2.4. Anim. Gene, 1998,29:212-215.
    84. Feng J., Li Y., Hashand M., Schurr E., Gros P., Adam L., & Templeton J. W. Bovine natural resistance associated macrophage protein(Nrampl) gene, 1996 Genome Res., 6: 956-964.
    85. Frand G, Schaap. Fatty acid-binding protein in the heart. Molecular and Cellular Biochemistry, 1998,180:43-51.
    86. Freeman, B. M., and Bumstead, N. 1987. Breeding for disease resistance-the prospective role of genetic manipulation. Avian Pathology. 16:353-365.
    87. Fuji J, Otsu K, Zortao F. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 1991,253:448-451.
    88. Gavora J. S. & Spencer J. L. Breeding for immune responsiveness and disease resistance. Anim. Blood Groups Biochem.Genet. 1983,14:159-180.
    89. Gerbens F, Rettenberger G, Lenstra J A. Characterization chromosomal location and genetic variation of the porcine heart fatty acid-binding protein gene. Mammalian genome, 1997,8:328-332.
    90. Gerbens F, de Koning D J, Harders F L, Meuwissen THE. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci., 1999,77: 846-852.
    91. Gerbens F, de Koning D J, Harders F L, Meuwissen THE, Janss L L G, Groenen M A M, Veerkamp J H, Van Arendonk J A M and te pas M F W. The effect of adipocyte and heart fatty-acid-binding-protein gene on intramuscular fat andbackfat content in Meishan crossbred pigs. J. Anim. Sci. 2000 78(3): 552-559.
    92. Gerbens F, de Koning D J, Harders F L, Meuwissen THE. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci., 2001 79: 347-354.
    93. Govoni G, and Gross P. Macrophage NRAMP1 and its role in resistance to microbial infections. Inflamm. Res., 1998,47: 277.
    94. Gros P, Skamene E, & Forget A. Cellular mechanisms of genetically controlled host resistance to Mycobacteria bovis(BCG). J. Immun., 1983,131:1966-1971.
    95. Hentze W. Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells. Biochem. Biophys. Acta. 1991,1090:281.
    96. Hirooka H, Koning D J, Harlizius B J. A whole-genome scan for quantitative trait loci affecting teat number in pigs. Anim. Sci., 2001,79:2320-2326.
    97. Hirvonen-Santti S J, Sriraman V, Anttonen M. Small nuclear RING finger protein expression during gonad development: regulation by gonadotropins and estrogen in the postnatal ovary. Endocrinology, 2004,145(5): 2433-2444.
    98. Hoffman. What is quality? Defination, meraurement and evaluation of meat quality. Meat Focus International, 1994,3: 73-82
    99. Hovenier R, Kanis E, Verhoeven J A. Repeatability of taste panel tenderness scoresandrelationships to objective pig meat quality trait.J. Anim. Sci.1993 71(8): 2018-2025.
    100. Hu., Bumstead N., Burke D., Ponce de Leon F. A., Skamene., Gros P. & Malo D. Genetic and physical mapping of the natural disease resistance-associated macrophage protein l(Nramp1) in chicken. Mammalian Genome, 1995, 6: 809-815.
    101. Jacobi A. Treatise on dipheria. William Wood & Co., 1880, New York, 32-33.
    102. Jiang Z H, He N, Hamasima H. Comparative mapping of Homo sapiens chromosome 4 (HSA4) and Sus scrofa chromosome 8(SSC8) using orthoLogous genes representing different cytogeneticbands as landmarks. Genome, 2002, 45: 147-156.
    103. Kallmann F. J. & Reisner D. Twin studies on genetic variation in resistance to tubercilosis. J. Hered., 1943,34: 269-276.
    104. Kevin P, Claffey. Cloning and tissue distribution of rat heart fatty acid-binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry, 1987, Vol. 26, No. 24 7900-7904.
    105. Knott S A, Marklund L, Haley C S. Multiple marker mapping of quantitative trait loci in a cross between out-bred wild boar and Large White pigs. Genetics, 1998, 149: 1069-1080.
    106. Lacey C, Wilkie B N, Kennedy B W, and Mallard B A. 1990. Genetic and other effects on bacterial phagocytosis and killing by cultured peripheral blood monocyte of SLA-defined minature pigs. Animal genetics, 20:371-382.
    107. Lamont, S J. The chicken major histocompatibility complex in disease resistance and poultry breeding. Journal of Dairy Science, 1989,72:1328-1333.
    108. Lamont S J, and Dietret R R. Immunogenetics. In: Crawford, R D (Ed.), Poultry Breeding and Genetics. 1990, Elsebier, Amsterdam.
    109. Larzul C. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traitss in Large White pigs. Anim. Sci., 1997,75:3126-3137.
    110. Lassila O, Nurmi T, and Eskola J. 1979. Genetic differences in the mitogenic response of peripheral blood lymphocytes in the chicken. Journal of Immunogenetics. 6: 37-43.
    111. Le Roy P, Naveau J, Elsen J M. Evidence for a new major gene influencing meat quality in pigs. Genetic Research, Cambrideg, 1990,55(1): 33-40.
    112. Li N. Canadidate gene approach for identification of genetic loci controlling litter size in swine. Proceedings of the 6th World Congress on genetics Applied to Livestock Production. Armidate Australia, 1998, 26:183-186.
    113. Lo L L. Genetic analyses of growth, real-time ultrasound, carcass, and meat quality traits in Duroc and Landrace pig:Ⅱ. Heritabilities and correlations. Anim Sci, 1997, 75: 3126-3137.
    114. Mason I L. World Dictionary of Livestock Breed, Third Edition, C.A.B. International, 1988
    115. McGloughin P. Genetic aspects of pig meat quality. Pig News and Information.1980, 1(1): 5-8.
    116. Meeker J K, Rothschild M F, Christian L L, Warner C M, and Hill H T. Genetic control of immune response to pseudorabies and antrophic rhinitis vaccine. Ⅰ.Heterosis, general combining ability and relationship to growth and backfat. Journal of Animal Science, 1987a, 64: 407-413.
    117. Meeker J K, Rothschild M F, Christian L L, Warner C M, and Hill H T. Genetic control of immune response to pseudorabies and antrophic rhinitis vaccine. Ⅱ.Comparison of additive direct and maternal genetic effect. Journal of Animal Science, 1987b, 64: 414-419.
    118. Messer L, Wang L, Yelich J. Linkage mapping of the retinol-binding protein 4(RBP4) gene to porcine chromosome 14. Mamm Genome, 1996, 7:396-344.119.
    119. Meijerink E, Fries R, Vogeli P, Masabanda J, Wigger G, Stricker C, Nenenschwander S, Bertschinger H U, and Stranzinger G. Two alpha (1,2) fucosyltransferase genes on porcing Chromosome 6q11 are closely linked to the blood group inhibitor(S) and Escherichia coli F18 receptor(ECT18R) loci. Mammalian Genome, 1997, 8: 736-741.
    120. Messer L, Wang L, Yelich J. Linkage mapping of the retinol acid receptor-gamma gene to porcine chromosome 5. Anim Genet, 1996, 27: 175-177.
    121. Michaels R D, Whipp S C, and Rothschild M F. Resistance of Chinese Meishan, Fengjing and Minzhu pig to K88ac+Escherichia coli. American Journal of Veterinary Research. 1994, 55: 333-338.
    122. Milan D, Bidanel J P, Le Roy. Currenmt status of QTL detection in Large White X Meishan cross in France.Proceedings 6th world Genetics Applied to Livestock Production. 1998, 26:414-417.
    123. Mola D, Vogan K, Hu J, Cellier M, Schurr E, Fuks A, Bumstead N, Morgan V, & Gross P. Haplotype mapping and sequence analysis of the mouse Nramp gene predicts susceptibility to infection with intracellular parasites. 1994, Genomics, 23 51-61.
    124. Okamoto Y, Kiwayama H, Minami S, Matsuhashi A. Immunohistological study of LH-immunoreactivc cells in the porcine anterior pituitary. J. Vet. Med. Sci., 1993, 55(6):,937-940.
    125. Paszek A A, WiLkie P J, FLickinger G H. Interval mapping of growth in divergent swine cross. Mamm Genome, 1999, 10:117-122.
    126. Paulussen R J, Geelen M J, Beynen A C. Immunochemical quantitation of fatty-acid binding protein. I. Tissue and intracellar distribution, postnatal development and influence of physiological conditions on rat heart and liver FABP. Biochim.Biophys. Acta, 1989, 1001:201-209.
    127. Peltz S W, Higgins C F, and Jacobsen A. Turnover of mRNA in prokaryotes and lower eukaryotes. Curr. Opin. Genet. Dev., 1992, 2: 739-746.
    128. Pitel F, Lantier I, & Riquet J. Cloning, sequencing, and localization of an ovine fragment of the Nramp gene, a candicate for the ITY/LSH/BCG gene. Mammalian Genome.1994, 5: 834-839.
    129. Pitel F, Cribu E P, & Lahbib-Mansais Y. Regional localization of ovine NRAMP gene to chromosome 2q41-q42 by in suit hybridization. Cytogenet. Cell Genet., 1995, 70: 116-122.
    130. Rabin M, Fries R, Singer D. Assignment of the porcine major histocompatibility complex to chromosome 7 by in situ hybridazation. Cytogenet. Cell Genet., 1985, 39: 206-209.
    131. Rathje T A, Rohrer G A and Johnson R K. Evidence of quantitative trait loci affecting ovalation rate in pigs. Anim Sci., 1997, 75: 1486-1494.
    132. Robert E. & Card L. E. The inheritance of resistance to bacillary white diarrhea. Poult. Sci., 1926, 6: 18-23.
    133. Roger Peeters. Cloning of the cDNA encoding human skeletal muscle fatty acid binding protein, its peptide sequence and chromosomal location. J. Biochem., 1991, 276: 203-207.
    134. Rohrer G A, Ford J J, Wise T H. Identification of quantitative trait loci affecting female repeoductive traits in a Meishan-generation Meishan-White Composite swine population. Anim. Sci., 1999, 77: 1385-1391.
    135. Rohrer G A. Mapping four genes from human chromosome 4 to porcine chromosome 8 further develops the comparative map for an economically important chromosome of the swine genome. Anim Genet., 1999, 30: 60-62.
    136. Rothschild M F. Selection for disease resistance in the pig. Pig News and Information, 1985, 6: 277.
    137. Rothschild M F. PVU Ⅱ polymorphism at the porcine estrogen receptor locus (ESR). Animal Genetics, 1991, 22: 448.
    138. Rothschild M. A major gene for litter in swine.5th WCGALP, 1994, 21: 225-228.
    139. Rothschild M F, Jacobson C, Vaske D A. The estrogen receptor locus is assiciated with a major gene influencing litter size in pigs. Proc Natl Acad Sci, 1996, 93(1): 201-205.
    140. Rothschild M F.Genetics and reprouction in the pig. Anim. Reprodu. Sci.,1996, 42:143-151
    141. Rothschild M F. The estrogen receptor locus is associatiated with a major gene influencing litter size in pigs.Proc. Natl. Acad. Sci., USA, 1996, 93(1): 201-205.
    142. Rottenberger G, Gruch J, Fries R, Archibald A L, and Hameister H. Assignment of 19 porcine type Ⅰ loci by somatic cell hybrid analysis detects new region of conserved synteny between human and pig. Mamalian Genome, 1996, 7: 275-279.
    143. Ryu S, Park Y K, & Bai G H. 3UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int. J. Tuberc. Lung Dis., 2000, 4: 577-581.
    144. Shaw M A, Collins A, & Peacock C S. Evidence that genetic susceptibility to Mycobacterium tuberculosis in a Brazilian population is under oligogenic control: linkage study of the candidate genes NRAMP1 and TNFA. Tuber Lung Dis., 1997, 78: 35-40.
    145. Short T H, Rothschild M F, Sorthwood O I. Effect of estrogen receptor(ESR) locus on litter size of pigs.In: Ning Li, Yongfu Chen,(ed.) Proceedings of International Conference on Animal Biotechnology. Beijing, International Academic Publishers, 1997, 21-24
    146. Signer E N, Armour A L, and Jeffreys A J. Detetion of an Mob Ⅰ RFLP at the porcine clotting factor Ⅳ locus and verification of sex linkage. Animal Genetics. 1996, 27: 130.
    147. Skamene E, Gros P, Forget A, Kongshavn P A L, St Charles C, & Taylor B A. Genetic regulation of resistance to intracellular pathogens. 1982, Nature, 297, 506-509.
    148. Soller M, and Beckmann J S. Genetic polymorphism in varietal identification and genetic improvement. Theoretical and Applied Genetics. 1983, 67: 25-33.
    149. Sorthwood O L, Evans G, Short T H. The prolactin receptor gene is associated with increased litter size in pigs. In: Laurie Piper (ed), Proceedings of 6WCGALP. NSW. Australia: University of New England, 1998, 26:453-456.
    150. Stephen Green, Philipinpe Walter, Vijay Kumar. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature, 1986, 302(13): 134-139
    151. Straw B E, and M F Rothschild. Genetic influence on liability to acquired disease. In: Disease of Swine. 1992, 7th ed., ISU Press. Pp. 709-717.
    151. Sun H S, Wang L, & Rothschild M F. Mapping of the natural resistance-associated macrophage protein 1(NRAMP1) gene to pig chromosome 15. Animal genetics 1998, 29: 138..
    152. Szafranska B, Triton J E. Prolactin as a luteotrophin during late pregnancy in pigs. Reprod Fertil. 1993, 98(2): 643-648.
    153. Tast A, Love R J, Clarke I J, Evans G. Effects of active and passive gonadotrophin-releasing hormone immunization on recognition and establishment of pregnancy in pigs. Reprod Fertil. Dev. 2000, 12(5-6): 277-282.
    154. Tomer H, Brussow KP, Alm H, Ratky J, Kanitz W. Morphology of porcine cumulus-oocyte-complexes depends on the stage of preovulatory maturation. Theriogenology. 1998, 50(1): 39-48.
    155. Tunggle C K, Sclunitz C B, & Gingerich-Feil D. Rapid communication: Cloning of a pig full-length Natural resistance Associated Macrophage Protein (NRAMP1) cDNA. J. Anim. Sci.1997, 75: 277.
    156. Turner A I, Hemsworth P H, Canny B J, Tilbrook A J. Sustained but not repeated acute elevation of cortisol impaired the luteinizing hormone surge, estrus, and ovulation in gilts. Biol Reprod., 1999, 61(3): 614-620.
    157. Vaiman M, Hauptman G, and Mayer S. Influence of the major histocompatibility complex in the pig (SLA) on haemolytic complement level. Journal of Immunogenetics, 1987, 5: 59-63.
    158. Vaiman M, Metzger J J, Renard C H, and Vila J P. Immune response gene(s) controlling the humoral anti-lysozyme response (Ir-Lys) linked to the histoeompatibility complex SLA in the pig. Immunogenetics, 1988, 7: 231-238.
    159. Vaiman M, Chardon P, and Rothschild M F. Porcine major histoeompatibility complex. Office of International Des Epezooties(OIE) review 1998, 17: 95-107.
    161. van der Zijpp A J. Breeding for immune responsiveness and disease resistance. World's Poultry Science Journal, 1983, 39:118-131.
    162. van der Zijpp A J. The effect of the genetic origin, source antigen, and dose of antigen in the immune response of cockerels. Poultry Science, 1983, 62:205-211.
    163. van der Zijpp A J, and Leenstra F R. Genetic analysis of the humoral immune response of white Leghorn chicks. Poultry Science, 1980, 59: 1363-1369.
    164. van den Brand H, Prunier A, Soede N M, Kemp B. In primiparous sows, plasma insulin-like growth factor-I can be affected by laetational feed intake and dietary energy source and is associated with luteinizing hormone. Reprod. Nutr. Dev., 2001, 41(1): 27-39.
    165. van den Brand H, Soede N M, Kemp B. Dietary energy source at two feeding levels during lactation of primiparous sows: Ⅱ. Effects on periestrus hormone profiles and embryonal survival. J. Anim Sci., 2000, 78(2): 405-411.
    166. van Rens BT, Hazeleger W, van der Lende T. Periovulatory hormone profiles and components of litter size in gilts with different estrogen receptor (ESR) genotypes.Theriogenology. 2000, 53(6): 1375-1387.
    167. Veerkamp J H, Peeters R A, Maatman R G H J.Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim Biophys. Acta, 1991, 1081: 1-24.
    168. Vidal S M, Malo D, Vogan K, Skammene E, & Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. 1993, Cell, 73: 469-485.
    169. Vincent A, Evans G, Short T H. The prolactin receptor gene is associated with increased litter size in pigs. Proceedings of the 6th World Congress on genetics Applied to Livestock Production. Armidate Australia, 1998, 27: 15-18.
    170. Wada Y, Akito T, Awata T. Quantitative trait loci(QTL) analysis in a Meishan×Gottigen cross population. Anim Genet, 2000, 31(6): 376-384.
    171. Warier C. M., Meeker D. L., & Rothschild M. E Genetic control of immune responsiveness: a review of its use as a tool for selection for disease resistance. Anim. Sci. 64: 394-406.
    172. Warner C M, Rothschild M F, and Lamont S J. The molecular Biology of the Major Histocompatibility Complex of Domestic Animal Species. 1988, Iowa State University Press. Ames, pp 193.
    173. Warner C M, and Rothschild M F. The swine major histocompatibility complex (SLA). In: Srivastava, R.(ed), 1991, Immunogenetics of the MHC, pp 368-398.
    174. Warriss P D. Meat Science: An Introductory Text. CABI Publishing: Oxon, U. K, 2000.163.
    175. Webster L T. Inherited and acquired factors in resistance to infection. I.Development of resistant and susceptible lines of mice through selective breeding. J. ExpL. Med., 1933, 57: 793-817.
    176. Weesner G D, Becker B A, Matteri R L. Expression of luteinizing hormone-releasing hormone and its receptor in porcine immune tissues. Life Sci., 1997, 61(17): 1643-1649.
    177. Wei M, H A M Van der steen, McLaren D G. Effect of estrogen receptor(ESR) locus on litter size of pigs.In: Ning Li, Yongfu Chen(ed.) Proceeding of international conference on animal biotechnology. Beijing, International Academic Publishers, 1997, 21-24.
    178. Wilkie P J, Paszek A A, Beattie C W. A genomic scan of porcine reproduction traits reveals possible quantitative trait loci (QTL) for number of corpora lutea. Mamm. Genome, 1999, 10: 573-578.
    179. Wilkie P J, Paszek A A, Flickinger G H. Scan of eight porcine chromosome for growth, carcass and reproductive traits reveals two likely quantitative trait loci. Mamm. Genome, 1996, 27:117-118.
    180. Wise T, Klindt J, Ford J J, Buonomo FC. Effects of porcine somatotropin on circulating testosterone concentrations in boars and mechanism of action. J. Anim. Sci., 1996, 74(12): 3001-3011.
    181. Wise T, Klindt J, Howard H J, Conley A J, Ford J J. Endocrine relationships of Meishan and White composite females after weaning and during the luteal phase of the estrous cycle. J. Anim. Sci., 2001, 79(1): 176-187.
    182. Wise T, Lunstra D D, Ford J J. Differential pituitary and gonadal function of Chinese Meishan and European white composite boars: effects of gonadotropinreleasing hormone stimulation, castration, and steroidal feedback. Biol. Reprod., 1996, 54(1): 146-153.
    183. Yang H, Pettigrew J E, Johnston L J, Shurson G C, Wheaton J E, White M E, Koketsu Y, Dial G D, Pettigrew J E, Marsh W E, King V L. Influence of imposed feed intake patterns during lactation on reproductive performance and on circulating levels of glucose, insulin, and luteinizing hormone in primiparous sows. J. Anim. Sci., 1996, 74(5): 1036-1046.
    184. Yang H. Current status of pig diseases in 2004 and the trend analysis in the future. Swine on Line, 2004, 12: 18.
    185. Yang J G, Chen W Y, Li P S. Effects of glucocorticoids on maturation of pig oocytes and their subsequent fertilizing capacity in vitro.Biol. Reprod., 1999, 60(4): 929-936.
    186. Yang J, Wang J, Kijas J. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. Heredity, 2003, 94(5): 381-385.
    187. Yuan W, Connor M L, Buhr M M. Responsiveness of porcine Large and small luteal cells to luteotropic or luteoLytic hormones and cell morphologic changes during the estrous cycle and pregnancy. J Anim Sci. 1993, 71 (2): 481-491.
    188. Yuan W, Lucy M C. Messenger ribonucleic acid expression for growth hormone receptor, luteinizing hormone receptor, and steroidogenic enzymes during the estrous cycle and pregnancy in porcine and bovine corpora lutea. Domest. Anim Endocrinol., 1996, 13(5): 431-444.
    189. Zeng Y Q. Genetic variation of H-FABP gene and association with intramuscular fat content in Laiwu Black and four western pig breeds. Asian-Aust. Anim Sci, 2005, 18(1): 13-16.
    190. Zhang G, Hua W, & Christopher R. Cloning of Porcine NRAMP1 and Its Induction by lipopoLysaccharide, Tumor Necrosis Factor Alpha, and Interleukin-1: Role of CD14 and Mitogen-Activated Protein Kinases. Infect. Immun., 2000, 68: 1086-1091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700