首发精神分裂症的神经认知功能和分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的1.对首发精神分裂症患者、父母、子女和同胞进行神经认知功能的评定,研究神经认知功能的家族聚集性。寻找可能代表精神分裂症遗传特征的“内表型”;2.采用候选基因策略,在病例对照和家系的定性分析中研究5号染色体q31区的8个候选基因与精神分裂症的关系;3.将候选“内表型”作为数量性状进行定量的传递不平衡研究,对精神分裂症的易感基因进行精细定位。
     研究方法1.采用成套神经心理测评工具(包括利手、知识、算术、数字符号、数字广度、木块拼图、逻辑记忆、视觉记忆、Stroop测试、连线测试、言语流畅测试、汉诺塔、威斯康星卡片分类测试和连续操作任务测试),完成了首发精神分裂症患者232例,精神分裂症父母355例,精神分裂症患者同胞、子女273例和正常对照465例的神经认知功能的测评。采用多水平线性混合模式对神经认知功能进行分析,筛选出可以作为“内表型”的神经认知功能指标;2.对142例患者和449例正常受试者进行候选基因的病例对照研究;3.在142个核心家系中进行定性的传递不平衡研究;4.以神经认知功能为数量性状,在以上核心家系中进行定量的传递不平衡研究,探讨候选基因作为精神分裂症致病基因的可能性。
     结果1.精神分裂症患者存在广泛的神经认知功能的损害,患者一级亲属存在相似神经认知功能的损害,但损害的维度更狭窄;2.将其中神经认知功能损害程度存在患者组>子女同胞组>父母组>正常对照组的关系者作为“内表型”的指标,包括知识、算术、木块拼图、Stroop的读字错误数,即刻视觉记忆和逻辑记忆、以及延迟的视觉记忆和逻辑记忆,汉诺塔的计划时间、执行时间和得分,CPT的反应时间;3.在病例对照的遗传学研究中,NMU2R基因的SNPs rs1051566的等位基因A的OR值为1.70(x~2=4.670,P<0.03),有增高精神分裂症患病风险的趋势;在单体型分析中,rs3792906和rs1051566构建的单体型C-A的OR值为30.22(x~2=36.07,P<1.9×10~(-9))、T-G的OR值为12.49(x~2=16.16,P<5.83×10~(-5))和单体型T-A的OR值为30.6(x~2=25.16,P<3.92×10~(-7));rs1051566和rs12658265构建的单体型T-G的OR值为34.53(x~2=48.17,P<3.92×10~(-19)),以及单体型A-T的OR值为52.35(x~2=21.37,P<3.98×10~(-6));rs3792906、rs1051566和rs12658265构建的单体型C-A-A的OR值为39.65(x~2=39.13,P<3.97×10~(-10))和T-A-T的OR值为65.21(x~2=23.38,P<1.33×10~(-6));rs1051566、rs12658265和rs6875501构建的单体型A-A-G的OR值为13.82(x~2=11.86,P<5.73×10~(-4)),单体型A-A-T的OR值为19.31(x~2=27.1,P<1.93×10~(-7))和单体型A-T-G的OR为23.22(x~2=20.96,P<4.70×10~(-6));rs3792906、rs1051566、rs12658265和rs6875501构建的单体型C-A-A-G的OR值为11.34(x~2=8.238,P<4.08×10~(-3))、单体型C-A-A-T的OR值为14.77(x~2=26.47,P<2.68×10~(-7))和单体型T-A-T-G的OR值为23.22(x~2=20.96,P<4.70×10~(-6)),提示NMU2R基因可能是精神分裂症的致病基因;3.在定性的传递不平衡研究中,没有发现候选基因的单体型同精神分裂症存在关联;4.在定量的传递不平衡研究中,SYNPO基因的单体型T-G-T-T(x~2=-2.786,P<0.005339)和T-T-G-T-T(x~2=-3.164,P<0.001555)与即刻逻辑记忆存在关联;SNPs rs3756579和rs33412构建的单体型T-T(x~2=-2.811,P<0.004944);rs3756579、rs33412和rs3733932构建的单体型T-T-G(x~2=-2.847,P<0.004419):rs3756579、rs33412、rs3733932和rs3733931构建的单体型T-T-G-T(x~2=-2.843,P<0.004472):rs33412、rs3733932、rs3733931和rs931055构建的单体型T-G-T-T(x~2=-2.670,P<0.007577):s3756579、rs33412、rs3733932、rs3733931和rs931055构建的单体型T-T-G-T-T(x~2=-3.312,P<0.000927)同延迟逻辑记忆存在关联:SLC6A7基因的SNPs rs3776084和rs731376构建的单体型A-A(x~2=2.852,P<0.004341);rs3776084、rs731376和rs2240795构建的单体型A-A-T(x~2=2.644,P<0.008203)同词汇流畅性正确数存在关联;NMU2R基因的rs12658265和rs6875501构建的单体型A-G(x~2=2.667,p<0.007659);rs3792906、rs10515666和rs12658265构建的单体型T-A-A(x~2=3.220,p<0.00128);rs10515666、rs12658265和rs6875501构建的单体型A-A-G(x~2.631,p<0.0085);rs3792906、rs10515666、rs12658265和rs6875501构建的单体型T-G-T-T(x~2=3.272,p<0.0011)与WCST分类数存在关联。
     结论本研究的结果提示神经认知功能损害在精神分裂症家系中存在家族聚集性,可以作为精神分裂症的“内表型”;NMU2R基因明显增高精神分裂症的患病风险,可能是精神分裂症的致病基因;SYNPO基因同延迟逻辑记忆存在关联;SLC6A7同词汇流畅和执行功能(WCST分类数)关联;NMU2R同执行功能(WCST分类数)存在关联;其中NMU2R基因rs10515666、rs12658265和rs6875501构建的单体型A-A-G在病例对照研究中发现同精神分裂症相关,OR值为13.82(x~2=11.86,P<5.73×10~(-4)),在定量传递不平衡研究中,同WCST分类数存在关联。
Objects: 1. To investigate if neurocognitive deficits would be suitable to beused as a quantitative "endophenotype" for susceptibility gene searching of schizophrenia by analyzing familial cluster in first episode schizophrenic patients and their first degree relatives; 2. By using case-control and family-based association designs, to analyze the relationship between eight candidate genes on 5q31 and schizophrenia; 3. By using selected neurocognitive function assessments as quantitative "endophentypic" traits to study the association between these candidate genes and neurocognitive functions of schizophrenia.
     Methods: 1. 232 first-episode schizophrenic patients, 355 parents, 273offspring and siblings and 472 normal controls were assessed by using a battery of neuropsychological tests, which includes information, arithmetic, digital symbol, digital span, block design, logical memory, visual memory, Stroop test, Trail Making test A and B, verbal fluency, tower of HANOI, modified version of Wisconsin Card Sorting Tests and CPT (continuous performance test). The differences of neurocognitive functions between schizophrenic patients, offspring and siblings, parents and normal controls were compared by using Multiple Linear Mixed Model, and then the neurocognitive function which met criteria of "endophenotype" were later used in family-based association analysis. 2. Single nucleotide polymorphism (SNP) markers from eight candidate genes on 5q31 were analyzed using single and haplotypic analysis methods in 142 patients and 449 normal controls by using COCAPHASE program and Chi-squared tests, in 142 schizophrenic TRIOS by using PDTPHASE program.
     Results: 1.We found that first episode schizophrenic patients generallyperformed much worse on neuropsychological tests than normal controls, and the relatives of schizophrenic patients also had selective neurocognitive deficits. 2. Some of neurocognitive function showed different level in four different subjects groups: patientscontrols, which suggested they could be served as "endophenotype" of schizophrenia. These neurocogitive tests included information, arithmetic, block design, Stroop test, immediate visual memory and logical memory, delayed visual memory and logical memory, planning time, execute time and scores of tower of HANOI and reaction time of CPT. 3. In case-control association analysis, we found that NMU2R gene was associated with schizophrenia. However, family-based association analysis did not support this finding. 4. Using family-based quantitative trait analysis, we found that some genes were associated with selective neurocognitive function, which included SYNPO gene (immediate logical memory and delayed logical memory), SLC6A7 gene (verbal fluency), NMU2R gene (WCST).
     Conclusion: This study provided further evidence that neurocognitivedeficits are familial cluster in schizophrenia and can be served as "endophenotype" in molecular genetic study; NMU2R is associated with schizophrenia and their executive function, SYNPO associated with delayed logical memory, and SLC6A7 associated with verbal fluency and execute function. Further work is needed to confirm our findings.
引文
1. Gottesman II. Schizophrenia Genesis: The Origin of Madness,Freeman. New York, USA: 1991.
    2. Gottesman II. Origins of schizophrenia: past as prologue. In Nature, Nurture and Psychology. (Plomin, R. and McClearn, G.E., eds). American Psychological Association, Washington DC, USA: 1993:231-244.
    3. Faraone SV, TD, Tsuang MT. Psychiatric Genetics: A Guide for Mental Health Professionals. Guilford, New York, USA: 1999.
    4. Kendler KS. Overview: a current perspective on twin studies of schizophrenia. Am.J.Psychiatry .1983; 140:1413-1425.
    5. Gottesman II. Schizophrenia Genesis: The Origin of Madness, Freeman. New York, USA: 1991.
    6. Prescott CA, Gottesman II. Genetically mediated vulnerability to schizophrenia. Psychiatr.Clin.North Am. 1993; 16:245-267.
    7. Harrison PJ, Geddes JR. Psychiatry. Molecules, mice, and meta-analyses. Lancet 1995; 346 Suppl:s19.
    8. Kety SS, Wender PH, Jacobsen B et al. Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Arch.Gen.Psychiatry 1994; 51:442-455.
    9. Gottesman II, McGuffin P, Farmer AE. Clinical genetics as clues to the "real" genetics of schizophrenia (a decade of modest gains while playing for time). Schizophr.Bull. 1987; 13:23-47.
    10. Sham PC, Gottesman II, MacLean CJ, et al. Schizophrenia: sex and familial morbidity. Psychiatry Res. 1994; 52:125-134.
    11. Faraone SV, Tsuang MT. Quantitative models of the genetic transmission of schizophrenia. Psychol Bull 1985; 98:41-66.
    12. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Ami Hum.Genet. 1990; 46:222-228.
    13. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. J.Neuropsychiatry Clin.Neurosci. 1994; 6:348-357.
    14. Aleman A, Hijman R, de Haan EH, et al. Memory impairment in schizophrenia: a meta-analysis. Am.J Psychiatry 1999; 156:1358-1366.
    15. Hintze B, Bembenek A, Kuhn-Dymecka A, et al. Working memory dysfunction in patients suffering from schizophrenia and their first-degree relatives. Psychiatr.Pol. 2004; 38:847-860.
    16. Sponheim SR, Steele VR, McGuire KA. Verbal memory processes in schizophrenia patients and biological relatives of schizophrenia patients: intact implicit memory, impaired explicit recollection. Schizophr.Res. 2004; 71:339-348.
    17. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am.J Psychiatry 2003; 160:636-645.
    18. Freedman R, Coon H, Myles-Worsley M et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc.Natl.Acad.Sci.U.S.A 1997; 94:587-592.
    19. Gershon ES, Goldin LR. Clinical methods in psychiatric genetics. I. Robustness of genetic marker investigative strategies. Acta Psychiatr.Scand. 1986; 74:113-118.
    20. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J. Psychiatric genetics: search for phenotypes. Trends Neurosci. 1998; 21:102-105.
    21. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104:569-580.
    22. Keating M, Atkinson D, Dunn C, et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science 1991; 252:704-706.
    23. Lalouel JM, Le ML, Simon M et al. Genetic analysis of idiopathic hemochromatosis using both qualitative (disease status) and quantitative (serum iron) information. Am.J Hum.Genet. 1985; 37:700-718.
    24. Greenberg DA, gado-Escueta AV, Widelitz H et al. Juvenile myoclonic epilepsy (JME) may be linked to the BF and HLA loci on human chromosome 6. Am.J Med.Genet. 1988; 31:185-192.
    25. Leppert M, Burt R, Hughes JP et al. Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. N.Engl.J Med. 1990; 322:904-908.
    26. Gasperoni TL, Ekelund J, Huttunen M et al. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am.J Med.Genet.B Neuropsychiatr.Genet. 2003; 116:8-16.
    27. Arolt V, Lencer R, Nolte A et al. Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. Am.J Med.Genet. 1996; 67:564-579.
    28. O'Driscoll GA, Benkelfat C, Florencio PS et al. Neural correlates of eye tracking deficits in first-degree relatives of schizophrenic patients: a positron emission tomography study. Arch.Gen.Psychiatry 1999; 56:1127-1134.
    29. Snitz BE, Curtis CE, Zald DH, et al Neuropsychological and oculomotor correlates of spatial working memory performance in schizophrenia patients and controls. Schizophr.Res. 1999; 38:37-50.
    30. Franco I.[Cognitive functions of images in schizophrenia. Recall and cognitive function of the image. Encephale 1994; 20:169.
    31. Cornblatt B, Obuchowski M, Schnur DB, et al Attention and clinical symptoms in schizophrenia. Psychiatr.Q. 1997; 68:343-359.
    32. Finkelstein JR, Cannon TD, Gur RE, et al. Attentional dysfunctions in neuroleptic-naive and neuroleptic-withdrawn schizophrenic patients and their siblings. J Abnorm.Psychol 1997; 106:203-212.
    33. Chan RC, Chen EY, Cheung EF, et al. Executive dysfunctions in schizophrenia. Relationships to clinical manifestation. Eur.Arch.Psychiatry Clin. Neurosci. 2004; 254:256-262.
    34. Szoke A, Schurhoff F, Mathieu F, et al. Tests of executive functions in first-degree relatives of schizophrenic patients: a meta-analysis. Psychol Med. 2005; 35:771-782.
    35. Park S, Holzman PS. Schizophrenics show spatial v/orking memory deficits. Arch.Gen.Psychiatry 1992; 49:975-982.
    36. Harvey PD, Silverman JM, Mohs RC et al. Cognitive decline in late-life schizophrenia: a longitudinal study of geriatric chronically hospitalized patients. Biol.Psychiatry 1999; 45:32-40.
    37. Waddington JL, Youssef HA. Cognitive dysfunction in chronic schizophrenia followed prospectively over 10 years and its longitudinal relationship to the emergence of tardive dyskinesia. Psychol.Med. 1996; 26:681-688.
    38. Waddington JL, Youssef HA, Kinsella A. Cognitive dysfunction in schizophrenia followed up over 5 years, and its longitudinal relationship to the emergence of tardive dyskinesia. Psychol.Med. 1990; 20:835-842.
    39. Waddington JL, O'Callaghan E, Larkin C, et al. Cognitive dysfunction in schizophrenia: organic vulnerability factor or state marker for tardive dyskinesia? Brain Cogn 1993; 23:56-70.
    40. Mishara AL, Goldberg TE. A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol.Psychiatry 2004; 55:1013-1022.
    41. Keefe RS, Silva SG, Perkins DO, et al. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr.Bull. 1999; 25:201-222.
    42. Faraone SV, Green AI, Seidman LJ, et al. "Schizotaxia": clinical implications and new directions for research. Schizophr.Bull 2001; 27:211-218.
    43. Seidman LJ, Faraone SV, Goldstein JM et al. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch.Gen.Psychiatry 2002; 59:839-849.
    44. Faraone SV, Seidman LJ, Kremen WS, et al. Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnorm.Psychol 1995; 104:286-304.
    45. Seal JL, Gornick MC, Gogtay N et al. Segmental uniparental isodisomy on 5q32-qter in a patient with childhood-onset schizophrenia. J.Med.Genet. 2006; 10:286-304.
    46. Petryshen TL, Middleton FA, Tah1 AR et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol.Psychiatry 2005; 10:1074-1088,1057.
    47. Lewis CM, Levinson DF, Wise LH et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am.J.Hum.Genet. 2003; 73:34-48.
    48. Kohn Y, Lerer B. Genetics of schizophrenia: a review of linkage findings. Isr.J.Psychiatry Relat Sci. 2002; 39:340-351.
    49. Kendler KS, MacLean CJ, Ma Y, et al. Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p, and 8p in Irish high-density schizophrenia pedigrees. Am J.Med.Genet. 1999; 88:29-33.
    50. Kaufmann CA, DeLisi LE, Lehner T, et al. Physical mapping, linkage analysis of a putative schizophrenia locus on chromosome 5q. Schizophr.Bull. 1989; 15:441-452.
    51. Sherrington R, Brynjolfsson J, Petursson H, et al. Localization of a susceptibility locus for schizophreniaon chromosome 5. 1988:336:164-167.
    52. Kalsi G, Mankoo B, Curtis D, et al. New DNA markers with increased informativeness show diminished support for a chromosome 5q11-13 schizophrenia susceptibility locus and exclude linkage in two new cohorts of British and Icelandic families. 1999: 247:235-263.
    53. Pimm J, McQuillin A, Thirumalai S et al. The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am.J.Hum.Genet. 2005; 76:902-907.
    54. Gurling HM, Kalsi G, Brynjolfson J, et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. 2001:68:661-673.
    55. Straub RE, MacLean CJ, O'Neill FA,et al. Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol.Psychiatry 1997; 2:148-155.
    56. Devlin B, Bacanu SA, Roeder K et al. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol.Psychiatry 2002; 7:689-694.
    57. Paunio T, Ekelund J, Varilo T et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum.Mol.Genet. 2001; 10:3037-3048.
    58. Levinson DF, Holmans P, Straub RE et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am.J.Hum.Genet. 2000; 67:652-663.
    59. Schwab SG, Hallmayer J, Albus M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol.Psychiatry 2000; 5:638-649.
    60. Levinson DF, Levinson MD, Segurado R, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: Methods and power analysis. Am.J.Hum.Genet. 2003; 73:17-33.
    61. Gowan K, Helms AW, Hunsaker TL et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 2001; 31:219-232.
    62. Perez SE, Rebelo S, Anderson DJ. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 1999; 126:1715-1728.
    63. Sun Y, Nadal-Vicens M, Misono S, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. 2001: 104:365-376.
    64. Shi Y, Ullrich SJ, Zhang J et al. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J.Biol.Chem. 2000; 275:19167-19176.
    65. Jacquet H, Raux G, Thibaut F et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. Hum.Mol.Genet. 2002; 11:2243-2249.
    66. Wang H, Zhu Z, Wang H, et al. Characterization of different expression patterns of calsarcin-1 and calsarcin-2 in porcine muscle. Gene 2006; 374:104-111.
    67. Frey N, Olson EN. Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J.Biol.Chem. 2002; 277:13998-14004.
    68. Smith RG, Palyha OC, Feighner SD et al. Growth hormone releasing substances: types and their receptors. Horm.Res. 1999; 51 Suppl 3:1-8.
    69. Howard AD, Wang R, Pong SS et al. Identification of receptors for neuromedin U and its role in feeding. Nature 2000; 406:70-74.
    70. Tan CP, McKee KK, Liu Q et al. Cloning and characterization of a human and murine T-cell orphan G-protein-coupled receptor similar to the growth hormone secretagogue and neurotensin receptors. Genomics 1998; 52:223-229.
    71. Knofler M, Meinhardt G, Bauer Set al. Human Handl basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains. Biochem.J. 2002; 361:641-651.
    72. Russell MW, Baker P, Izumo S. Cloning, chromosomal mapping, and expression of the human eHAND gene. Mamm.Genome 1997; 8:863-865.
    73. Vassilatis DK, Hohmann JG, Zeng H et al. The G protein-coupled receptor repertoires of human and mouse. Proc.Natl.Acad.Sci.U.S.A 2003; 100:4903-4908.
    74. First MB, Gibbon M, Spitzer RL, et al. SCID-I/P(Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version for Patients). New York: Biometrics Research Department New York State Psychiatric Institute.: 1996.
    75.何燕玲、诸索宇和张明园译.阳性和阴性症状量表中文版(内部资料).1992.
    76.周茹英和胡峻梅译,DSM-Ⅳ轴Ⅴ大体功能量表(内部研究使用).2000.
    77.张明园主编.精神科评定量表手册.长沙:湖南科学技术出版社:1998.
    78. Spreen O, Strauss E. A compendium of neuropsychological tests: Administration, norms, and commentary. NY: Oxford University Press: 1991.
    79. Myakishev MV, Khripin Y, Hu S, et al. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 2001; 11:163-169.
    80. Addington J, Brooks BL, Addington D. Cognitive functioning in first episode psychosis: initial presentation. Schizophr.Res. 2003; 62:59-64.
    81. Ho BC, Alicata D, Ward J et al. Untreated initial psychosis: relation to cognitive deficits and brain morphology in first-episode schizophrenia. Am.J.Psychiatry 2003; 160:142-148.
    82. Moritz S, Perro C, Woodward TS, et al. Subjective cognitive dysfunction in first-episode patients predicts symptomatic outcome: a replication. Psychopathology 2002; 35:367-368.
    83. Albus M, Hubmann W, Scherer J et al. A prospective 2-year follow-up study of neurocognitive functioning in patients with first-episode schizophrenia. Eur.Arch.Psychiatry Clin.Neurosci. 2002; 252:262-267.
    84. Bilder RM, Goldman RS, Robinson D et al. Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am.J.Psychiatry 2000; 157:549-559.
    85. Bilder RM, Lipschutz-Broch L, Reiter G, et al. Intellectual deficits in first-episode schizophrenia: evidence for progressive deterioration. Schizophr.Bull 1992; 18:437-448.
    86. Moritz S, Andresen B, Jacobsen D et al. Neuropsychological correlates of schizophrenic syndromes in patients treated with atypical neuroleptics. Eur.Psychiatry 2001; 16:354-361.
    87. Bilder RM, Goldman RS, Robinson D et al. Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. Am.J.Psychiatry 2000; 157:549-559.
    88. Toulopoulou T, Rabe-Hesketh S, King H, et al. Episodic memory in schizophrenic patients and their relatives. Schizophr.Res. 2003; 63:261-271.
    89. Byrne M, Hodges A, Grant E, et al. Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: preliminary findings of the Edinburgh High Risk Study (EHRS). Psychol.Med. 1999; 29:1161-1173.
    90. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am.J.Psychiatry 2003; 160:636-645.
    91. Egan MF, Goldberg TE, Gscheidle T et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol.Psychiatry 2001; 50:98-107.
    92. Egan MF, Goldberg TE, Kolachana BS et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2001; 98:6917-6922.
    93. Bilder RM, Volavka J, Czobor P et al. Neurocogitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol.Psychiatry 2002; 52:701-707.
    94. Conklin HM, Curtis CE, Katsanis J, et al. Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am.J.Psychiatry 2000; 157:275-277.
    95. Faraone SV, Seidman LJ, Kremen WS, et al. Neuropsychological functioning among the elderly nonpsychotic relatives of schizophrenic patients. Schizophr.Res. 1996; 21:27-31.
    96. Faraone SV, Kremen WS, Lyons MJ, et al. Diagnostic accuracy and linkage analysis: how useful are schizophrenia spectrum phenotypes? Am.J.Psychiatry 1995; 152:1286-1290.
    97. Laurent A, Moreaud O, Bosson JL et al. Neuropsychological functioning among non-psychotic siblings and parents of schizophrenic patients. Psychiatry Res. 1999; 87:147-157.
    98. Park S, Holzman PS, Goldman-Rakic PS. Spatial working memory deficits in the relatives of schizophrenic patients. Arch.Gen.Psychiatry 1995;52:821-828.
    99. Renick SE, Kleven DT, Chan J et al. The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J.Neurosci. 1999; 19:21-33.
    100.Bustini M, Stratta P, Daneluzzo E, et al. Tower of Hanoi and WCST performance in schizophrenia: problem-solving capacity and clinical correlates. J.Psychiatr.Res. 1999; 33:285-290.
    1. Chen EY, Hui CL, Dunn EL et al. A prospective 3-year longitudinal study of cognitive predictors of relapse in first-episode schizophrenic patients. Schizophr Res 2005; 77: 99-104.
    2. Levin ED, Petro A, Beatty A. Olanzapine interactions with nicotine and mecamylamine in rats: effects on memory function. Neurotoxicol Teratol 2005; 27:459-464.
    3. Harvey PD, Parrella M, White L, et al. Convergence of cognitive and adaptive decline in late-life schizophrenia. Schizophr Res 1999; 35: 77-84.
    4. Barch DM. The Relationships Among Cognition, Motivation, and Emotion in Schizophrenia: How Much and How Little We Know. Schizophr Bull 2005.
    5. Heaton RK, Gladsjo JA, Palmer BW, et al. Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiatry 2001; 58: 24-32.
    6. Waddington JL, Youssef HA, Kinsella A. Cognitive dysfunction in schizophrenia followed up over 5 years, and its longitudinal relationship to the emergence of tardive dyskinesia. Psychol Med 1990; 20: 835-842.
    7. Waddington JL, Youssef HA. Cognitive dysfunction in chronic schizophrenia followed prospectively over 10 years and its longitudinal relationship to the emergence of tardive dyskinesia. Psychol Med 1996; 26: 681-688.
    8. Censits DM, Ragland JD, Gur RC, et al. Neuropsychological evidence supporting a neurodevelopmental model of schizophrenia: a longitudinal study. Schizophr Res 1997; 24: 289-298.
    9. Gold S, Arndt S, Nopoulos P, et al. Andreasen NC. Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia. Am J Psychiatry 1999; 156: 1342-1348.
    10. Kaiser S, Mundt C, Weisbrod M. Executive control functions and neuropsychiatric disorders -- perspectives for research und clinical practice. Fortschr Neurol Psychiatr 2005; 73: 438-450.
    11. Friedman JI, Harvey PD, Coleman T et al. Six-year follow-up study of cognitive and functional status across the lifespan in schizophrenia: a comparison with Alzheimer's disease and normal aging. Am J Psychiatry 2001;158: 1441-1448.
    12. Harvey PD, Keefe RS. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 2001; 158: 176-184.
    13. Mortimer AM. Cognitive function in schizophrenia—do neuroleptics make a difference? Pharmacol Biochem Behav 1997; 56: 789-795.
    14. Cassens G, Inglis AK, Appelbaum PS, et al. Neuroleptics: effects on neuropsychological function in chronic schizophrenic patients. Schizophr Bull 1990; 16: 477-499.
    15. King DJ. The effect of neuroleptics on cognitive and psychomotor function. Br J Psychiatry 1990; 157: 799-811.
    16. Spohn HE, Strauss ME. Relation of neuroleptic and anticholinergic medication to cognitive functions in schizophrenia. J Abnorm Psychol 1989; 98: 367-380.
    17. Strauss ME, Lew MF, Coyle JT, et al. Psychopharmacologic and clinical correlates of attention in chronic schizophrenia. Am J Psychiatry 1985; 142: 497-499.
    18. Sweeney JA, Keilp JG, Haas GL, et al. Relationships between medication treatments and neuropsychological test performance in schizophrenia. Psychiatry Res 1991; 37: 297-308.
    19. Zakzanis KK. Statistics to tell the truth, the whole truth, and nothing but the truth: formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Arch Clin Neuropsychol 2001; 16: 653-667.
    20. Mishara AL, Goldberg TE. A meta-analysis and critical review of the effects of conventional neuroleptic treatment on cognition in schizophrenia: opening a closed book. Biol Psychiatry 2004; 55: 1013-1022.
    21. Keefe RS, Silva SG, Perkins DO, et al. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 1999; 25: 201-222.
    22. Keefe RS, McGurk SR, Meltzer HY, et al. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull 2002; 27: 301-322.
    23. McGurk SR. The effects of clozapine on cognitive functioning in schizophrenia. J Clin Psychiatry 1999; 60 Suppl 12: 24-29.
    24. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 1999; 25: 233-255.
    25. Harvey PD, Keefe RS. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 2001; 158: 176-184.
    26. Goldberg TE, Weinberger DR. The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 1994; 55 Suppl B: 88-90.
    27. Hagger C, Buckley P, Kenny JT, et al. Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 1993; 34: 702-712.
    28. Lee MA, Thompson PA, Meltzer HY. Effects of clozapine on cognitive function in schizophrenia. J Clin Psychiatry 1994; 55 Suppl B: 82-87.
    29. Meltzer HY. Dimensions of outcome with clozapine. Br J Psychiatry Suppl 1992;46-53.
    30. Hoff AL, Faustman WO, Wieneke M et al. The effects of clozapine on symptom reduction, neurocogitive function, and clinical management in treatment-refractory state hospital schizophrenic inpatients. Neuropsychopharmacology 1996; 15: 361-369.
    31. Seeman P. Atypical neuroleptics: role of multiple receptors, endogenous dopamine, and receptor linkage. Acta Psychiatr Scand Suppl 1990; 358: 14-20.
    32. Purdon SE. Cognitive improvement in schizophrenia with novel antipsychotic medications. Schizophr Res 1999; 35 Suppl: S51-S60.
    33. Rossi A, Mancini F, Stratta P et al. Risperidone, negative symptoms and cognitive deficit in schizophrenia: an open study. Acta Psychiatr Scand 1997; 95: 40-43.
    34. Green MF, Marshall BD, Jr., Wirshing WC et al. Does risperidone improve verbal working memory in treatment-resistant schizophrenia? Am J Psychiatry 1997; 154: 799-804.
    35. Purdon SE. Measuring neuropsychological change in schizophrenia with novel antipsychotic medications. J Psychiatry Neurosci 2000; 25: 108-116.
    36. Bell M, Bryson G, Wexler BE. Cognitive remediation of working memory deficits: durability of training effects in severely impaired and less severely impaired schizophrenia. Acta Psychiatr Scand 2003; 108: 101-109.
    37. Nuechterlein KH, Edell WS, Norris M, et al. Attentional vulnerability indicators, thought disorder, and negative symptoms. Schizophr Bull 1986; 12: 408-426.
    38. Hain C, Maier W, Klingler T, et al. Positive/negative symptomatology and experimental measures of attention in schizophrenic patients. Psychopathology 1993; 26: 62-68.
    39. Roitman SE, Keefe RS, Harvey PD, et al. Attentional and eye tracking deficits correlate with negative symptoms in schizophrenia. Schizophr Res 1997; 26: 139-146.
    40. Liu SK, Hwu HG, Chen WJ. Clinical symptom dimensions and deficits on the Continuous Performance Test in schizophrenia. Schizophr Res 1997; 25:211-219.
    41. Cornblatt B, Obuchowski M, Schnur DB, et al. Attention and clinical symptoms in schizophrenia. Psychiatr Q 1997; 68: 343-359.
    42. Finkelstein JR, Cannon TD, Gur RE, et al. Attentional dysfunctions in neuroleptic-naive and neuroleptic-withdrawn schizophrenic patients and their siblings. J Abnorm Psychol 1997; 106: 203-212.
    43. Seidman LJ, Van Manen KJ, Turner WM et al. The effects of increasing resource demand on vigilance performance in adults with schizophrenia or developmental attentional/learning disorders: a preliminary study. Schizophr Res 1998; 34: 101-112.
    44. Nelson EB, Sax KW, Strakowski SM. Attentional performance in patients with psychotic and nonpsychotic major depression and schizophrenia. Am J Psychiatry 1998; 155: 137-139.
    45. Liu SK, Hwu HQ Chen WJ. Clinical symptom dimensions and deficits on the Continuous Performance Test in schizophrenia. Schizophr Res 1997; 25:211-219.
    46. Chen WJ, Liu SK, Chang CJ, et al. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 1998; 155: 1214-1220.
    47. Grove WM, Lebow BS, Clementz BA, et al. Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J Abnorm Psychol 1991; 100: 115-121.
    48. Addington J, Addington D. Attentional vulnerability indicators in schizophrenia and bipolar disorder. Schizophr Res 1997; 23: 197-204.
    49. Liu SK, Chen WJ, Chang CJ, et al. Effects of atypical neuroleptics on sustained attention deficits in schizophrenia: a trial of risperidone versus haloperidol. Neuropsychopharmacology 2000; 22: 311-319.
    50. Cornblatt BA, Risch NJ, Fans G, et al. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res 1988; 26: 223-238.
    51. Grove WM, Lebow BS, Clementz BA, et al. Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. J Abnorm Psychol 1991; 100: 115-121.
    52. Chen WJ, Liu SK, Chang CJ, et al. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 1998; 155: 1214-1220.
    53. Lenzenweger MF. Reaction time slowing during high-load, sustained-attention task performance in relation to psychometrically identified schizotypy. J Abnorm Psychol 2001; 110: 290-296.
    54. Seidman LJ, Kremen WS, Koren D, et al. A comparative profile analysis of neuropsychological functioning in patients with schizophrenia and bipolar psychoses. Schizophr Res 2002; 53: 31-44.
    55. Liu SK, Chiu CH, Chang CJ, et al. Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. Am J Psychiatry 2002; 159: 975-982.
    56. Mojtabai R, Bromet EJ, Harvey PD, et al. Neuropsychological differences between first-admission schizophrenia and psychotic affective disorders. Am J Psychiatry 2000; 157: 1453-1460.
    57. Nelson EB, Sax KW, Strakowski SM. Attentional performance in patients with psychotic and nonpsychotic major depression and schizophrenia. Am J Psychiatry 1998; 155: 137-139.
    58. Fleck DE, Sax KW, Strakowski SM. Reaction time measures of sustained attention differentiate bipolar disorder from schizophrenia. Schizophr Res 2001; 52: 251-259.
    59. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 1994; 6: 348-357.
    60. Park S, Holzman PS. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 1992; 49: 975-982.
    61. Park S, Holzman PS, Goldman-Rakic PS. Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 1995; 52:821-828.
    62. Hintze B, Bembenek A, Kuhn-Dymecka A, et al. Working memory dysfunction in patients suffering from schizophrenia and their first-degree relatives. Psychiatr Pol 2004; 38: 847-860.
    63. Glahn DC, Therman S, Manninen M et al. Spatial working memory as an endophenotype for schizophrenia. Biol Psychiatry 2003; 53: 624-626.
    64. Ho BC, Wassink TH, O'Leary DS, et al, Andreasen NC. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 2005; 10: 229, 287-229, 298.
    65. Winterer G, Coppola R, Goldberg TE et al. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 2004; 161:490-500.
    66. Hintze B, Bembenek A, Kuhn-Dymecka A, et al. Working memory dysfunction in patients suffering from schizophrenia and their first-degree relatives. Psychiatr Pol 2004; 38: 847-860.
    67. Gallinat J, Bajbouj M, Sander T et al. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003; 54: 40-48.
    68. Callicott JH, Egan MF, Mattay VS et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 2003; 160: 709-719.
    69. Diamond A, Briand L, Fossella J, et al. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatry 2004; 161:125-132.
    70. Egan MF, Goldberg TE, Kolachana BS et al. Effect of COMT Vall08/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001; 98: 6917-6922.
    71. Malhotra AK, Kestler LJ, Mazzanti C, et al. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652-654.
    72. Baker K, Baldeweg T, Sivagnanasundaram S, et al. COMT Val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry 2005; 58: 23-31.
    73. Weickert TW, Goldberg TE, Mishara A et al. Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 2004; 56: 677-682.
    74. Ho BC, Wassink TH, O'Leary DS, et al. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 2005; 10: 229, 287-229, 298.
    75. Hovatta I, Varilo T, Suvisaari J et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114-1124.
    76. Kieseppa T, Tuulio-Henriksson A, Haukka J et al. Memory and verbal learning functions in twins with bipolar-I disorder, and the role of information-processing speed. Psychol Med 2005; 35: 205-215.
    77. Marcus MM, Jardemark KE, Wadenberg ML, et al. Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol 2005; 8:315-327.
    78. Stefani MR, Moghaddam B. Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia. Biol Psychiatry 2005; 57: 433-436.
    79. Sacco KA, Bannon KL, George TP. Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J Psychopharmacol 2004; 18: 457-474.
    80. Stone M, Gabrieli JD, Stebbins GT, et al. Working and strategic memory deficits in schizophrenia. Neuropsychology 1998; 12: 278-288.
    81. Sponheim SR, Steele VR, McGuire KA. Verbal memory processes in schizophrenia patients and biological relatives of schizophrenia patients: intact implicit memory, impaired explicit recollection. Schizophr Res 2004; 71: 339-348.
    82. Paulsen JS, Heaton RK, Sadek JR et al. The nature of learning and memory impairments in schizophrenia. J Int Neuropsychol Soc 1995; 1: 88-99.
    83. Conklin HM, Calkins ME, Anderson CW, et al. Recognition memory for faces in schizophrenia patients and their first-degree relatives. Neuropsychologia 2002; 40: 2314-2324.
    84. Faraone SV, Seidman LJ, Kremen WS, et al. Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biol Psychiatry 2000; 48: 120-126.
    85. Faraone SV, Seidman LJ, Kremen WS, et al. Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a 4-year follow-up study. J Abnorm Psychol 1999; 108: 176-181.
    86. Egan MF, Goldberg TE, Gscheidle T et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol Psychiatry 2001; 50: 98-107.
    87. Seidman LJ, Faraone SV, Goldstein JM et al. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 2002; 59: 839-849.
    88. O'Driscoll GA, Florencio PS, Gagnon D et al. Amygdala-hippocampal volume and verbal memory in first-degree relatives of schizophrenic patients. Psychiatry Res 2001; 107: 75-85.
    89. Cannon TD, Huttunen MO, Lonnqvist J et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 2000; 67: 369-382.
    90. Tuulio-Henriksson A, Haukka J, Partonen T et al. Heritability and number of quantitative trait loci of neurocogitive functions in families with schizophrenia. Am J Med Genet 2002; 114: 483-490.
    91. Tuulio-Henriksson A, Haukka J, Partonen T et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. Am J Med Genet 2002; 114: 483-490.
    92. Gasperoni TL, Ekelund J, Huttunen M et al. Genetic linkage and association between chromosome lq and working memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 8-16.
    93. Keri S, Kelemen O, Benedek G, et al. Different trait markers for schizophrenia and bipolar disorder: a neurocognitive approach. Psychol Med 2001; 31: 915-922.
    94. Chen EY, Lam LC, Chen RY, et al. Prefrontal neuropsychological impairment and illness duration in schizophrenia: a study of 204 patients in Hong Kong. Acta Psychiatr Scand 1996; 93: 144-150.
    95. Chen RY, Chen EY, Chan CK, et al. Verbal fluency in schizophrenia: reduction in semantic store. Aust N Z J Psychiatry 2000; 34: 43-48.
    96. Hutton SB, Puri BK, Duncan LJ, et al. Executive function in first-episode schizophrenia. Psychol Med 1998; 28: 463-473.
    97. Elliott R, McKenna PJ, Robbins TW, et al. Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 1995; 25: 619-630.
    98. Evans JJ, Chua SE, McKenna PJ, et al. Assessment of the dysexecutive syndrome in schizophrenia. Psychol Med 1997; 27: 635-646.
    99. Chan RC, Chen EY, Cheung EF, et al. Executive dysfunctions in schizophrenia. Relationships to clinical manifestation. Eur Arch Psychiatry Clin Neurosci 2004; 254: 256-262.
    100.Szoke A, Schurhoff F, Mathieu F, et al. Tests of executive functions in first-degree relatives of schizophrenic patients: a meta-analysis. Psychol Med 2005; 35: 771-782.
    101.Zalla T, Joyce C, Szoke A et al. Executive dysfunctions as potential markers of familial vulnerability to bipolar disorder and schizophrenia. Psychiatry Res 2004; 121: 207-217.
    102.Martinez-Aran A, Penades R, Vieta E et al. Executive function in patients with remitted bipolar disorder and schizophrenia and its relationship with functional outcome. Psychother Psychosom 2002; 71: 39-46.
    103.Hugdahl K, Rund BR, Lund A et al. Attentional and executive dysfunctions in schizophrenia and depression: evidence from dichotic listening performance. Biol Psychiatry 2003; 53: 609-616.
    104.Berrettini W. Evidence for shared susceptibility in bipolar disorder and schizophrenia. Am J Med Genet C Semin Med Genet 2003; 123: 59-64.
    105.Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405-411.
    106.Pritchard WS. Cognitive event-related potential correlates of schizophrenia. Psychol Bull 1986; 100: 43-66.
    107.Fowler B, Mitchell I. Biological determinants of P300: the effects of a barbiturate on latency and amplitude. Biol Psychol 1997; 46: 113-124.
    108.Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology(Berl)2001; 156: 194-215.
    109.Cadenhead KS, Light GA, Geyer MA, et al. Neurobiological measures of schizotypal personality disorder: defining an inhibitory endophenotype? Am J Psychiatry 2002; 159: 869-871.
    110.Mathalon DH, Faustman WO, Ford JM. N400 and automatic semantic processing abnormalities in patients with schizophrenia. Arch Gen Psychiatry 2002; 59: 641-648.
    111.Freedman R, Coon H, Myles-Worsley M et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A 1997; 94: 587-592.
    112.Carter CS. Applying New Approaches From Cognitive Neuroscience to Enhance Drug Development for the Treatment of Impaired Cognition in Schizophrenia. Schizophr Bull 2005.
    113.MacDonald AW, III, Carter CS, Kerns JG et al. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 2005; 162: 475-484.
    114.Buchsbaum MS, Trestman RL, Hazlett E et al. Regional cerebral blood flow during the Wisconsin Card Sort Test in schizotypal personality disorder. Schizophr Res 1997; 27: 21-28.
    115.Buchsbaum MS, Nenadic I, Hazlett EA et al. Differential metabolic rates in prefrontal and temporal Brodmann areas in schizophrenia and schizotypal personality disorder. Schizophr Res 2002; 54: 141-150.
    1. Harrison P J, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417-419.
    2. Badner JA, Gershon ES. Meta-analysis ofwhole-genome linkage scans of bipolar disorder and schizophrenia. Mol.Psychiatry 2002; 7: 405-411.
    3. Wise LH, Lanchbury JS, Lewis CM. Meta-analysis of genome searches. Ann.Hum.Genet. 1999; 63 (Pt 3): 263-272.
    4. Levinson DF, Levinson MD, Segurado R, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part Ⅰ: Methods and power analysis. Am. J. Hum. Genet. 2003; 73: 17-33.
    5. Lewis CM, Levinson DF, Wise LH, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part Ⅱ: Schizophrenia. Am. J. Hum. Genet. 2003; 73: 34-48.
    6. Harrison P J, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 2005; 10: 40-68.
    7. Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol. Rev. 1999; 51: 593-628.
    8. Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu.Rev. Pharmacol. Toxicol. 1999; 39:19-52.
    9. Tenhunen J, Salminen M, Lundstrom, et al. Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur.J.Biochem. 1994; 223:1049-1059.
    10. Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34:4202-4420.
    11. Hong J, Shu-Leong H, Tao X, et al. Distribution of catechol-O-methyl -transferase expression in human central nervous system. Neuroreport 1998; 9:2861-2864.
    12. Matsumoto M, Weickert CS, Akil M, et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 2003; 116:127-137.
    13. Kastner A, Anglade P, Bounaix C, et al. Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neuroscience 1994; 62:449-457.
    14. Karoum F, Chrapusta SJ, Egan MF. 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J.Neurochem. 1994; 63:972-979.
    15. Glatt SJ, Faraone SV, Tsuang MT. Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am.J.Psychiatry 2003; 160:469-476.
    16. Li T, Sham PC, Vallada H, et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr.Genet. 1996; 6:131-133.
    17. Kunugi H, Vallada HP, Sham PC, et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr.Genet. 1997; 7:97-101.
    18. Li T, Ball D, Zhao J, et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol.Psychiatry 2000; 5:452.
    19. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2001; 98:6917-6922.
    20. Chen X, Wang X, O'Neill AF, et al. Variants in the catechol-o-methyltransfer-ase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol.Psychiatry 2004; 9:962-967.
    21. Bilder RM, Volavka J, Czobor P, et al. Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol. Psychiatry 2002; 52:701-707.
    22. Goldberg TE, Egan MF, Gscheidle T, et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch.Gen.Psychiatry 2003; 60:889-896.
    23. Malhotra AK, Kestler LJ, Mazzanti C, et al. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am.J.Psychiatry 2002; 159:652-654.
    24. Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc.Natl.Acad.Sci.U.S.A 2003; 100:6186-6191.
    25. Gallinat J, Bajbouj M, Sander T, et al. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol.Psychiatry 2003; 54:40-48.
    26. Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol.Psychiatry 2001; 50:825-844.
    27. Huotari M, Gogos JA, Karayiorgou M, et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur.J.Neurosci. 2002; 15:246-256.
    28. Laruelle M, Kegeles LS, bi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann.N.Y.Acad.Sci. 2003; 1003:138-158.
    29. Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol.Psychiatry 2002; 51:775-787.
    30. Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 2004; 27:683-690.
    31. Shifman S, Bronstein M, Sternfeld M, et al. A highly significant association between a COMT haplotype and schizophrenia. Am.J.Hum.Genet. 2002; 71:1296-1302.
    
    32. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am.J.Hum.Genet. 2002; 71:877-892.
    33. Stefansson H, Sarginson J, Kong A, et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am.J.Hum.Genet. 2003; 72:83-87.
    34. Williams NM, Preece A, Spurlock G, et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol.Psychiatry 2003; 8:485-487.
    35. Yang JZ, Si TM, Ruan Y, et al. Association study of neuregulin 1 gene with schizophrenia. Mol.Psychiatry 2003; 8:706-709.
    36. Tang JX, Chen WY, He G, et al. Polymorphisms within 5' end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol.Psychiatry 2004; 9:11-12.
    37. Li T, Stefansson H, Gudfinnsson E, et al. Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Mol.Psychiatry 2004; 9:698-704.
    38. Iwata N, Suzuki T, Ikeda M, et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol.Psychiatry 2004; 9:126-127.
    39. Thiselton DL, Webb BT, Neale BM, et al. No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol.Psychiatry 2004; 9:777-783.
    40. Straub RE, Jiang Y, MacLean CJ, et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am.J.Hum.Genet. 2002; 71:337-348.
    41. van den Oord EJ, Sullivan PF, Jiang Y, et al. Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol.Psychiatry 2003; 8:499-510.
    42. Schwab SG, Knapp M, Mondabon S, et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am.J.Hum.Genet. 2003; 72:185-190.
    43. Geurts M, Hermans E, Maloteaux JM. Opposite modulation of regulators of G protein signalling-2 RGS2 and RGS4 expression by dopamine receptors in the rat striatum. Neurosci.Lett. 2002; 333:146-150.
    44. St CD, Blackwood D, Muir W, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336:13-16.
    45. Tang JX, Zhou J, Fan JB, et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol.Psychiatry 2003; 8:717-718.
    46. Van Den BA, Schumacher J, Schulze TG, et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am.J.Hum.Genet. 2003; 73:1438-1443.
    47. Gerber DJ, Hall D, Miyakawa T, et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc.Natl.Acad.Sci.U.S.A2003; 100:8993-8998.
    48. Williams NM, Preece A, Morris DW, et al. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBPl). Arch.Gen.Psychiatry 2004; 61:336-344.
    49. Benson MA, Newey SE, Martin-Rendon E, et al. Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J.Biol.Chem. 2001; 276:24232-24241.
    50. Mehler MF. Brain dystrophin, neurogenetics and mental retardation. Brain Res.Brain Res.Rev. 2000; 32:277-307.
    51. Blake DJ, Nawrotzki R, Loh NY, et al. beta-dystrobrevin, a member of the dystrophin-related protein family. Proc.Natl.Acad.Sci.U.S.A 1998; 95:241-246.
    52. Husi H, Ward MA, Choudhary JS, et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat.Neurosci. 2000; 3:661-669.
    53. Inoue A, Okabe S. The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Curr.Opin.Neurobiol. 2003; 13:332-340.
    54. Talbot K, Eidem WL, Tinsley CL, et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J.Clin.Invest 2004; 113:1353-1363.
    55. Weickert CS, Straub RE, McClintock BW, et al. Human dysbindin (DTNBPl) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch.Gen.Psychiatry 2004; 61:544-555.
    56. Bray NJ, Buckland PR, Owen MJ, et al. Cis-acting variation in the expression of a high proportion of genes in human brain. Hum.Genet. 2003; 113:149-153.
    57. Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174:151-162.
    58. Mirnics K, Middleton FA, Stanwood GD, et al. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol.Psychiatry 2001; 6:293-301.
    59. Brzustowicz LM, Hodgkinson KA, Chow EW, et al. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 2000; 288:678-682.
    60. Williams NM, Preece A, Spurlock G, et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol.Psychiatry 2004; 55:192-195.
    61. Morris DW, Rodgers A, McGhee KA, et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am.J.Med.Genet.B Neuropsychiatr.Genet. 2004; 125:50-53.
    62. Muma NA, Mariyappa R, Williams K, et al Differences in regional and subcellular localization of G(q/11) and RGS4 protein levels in Alzheimer's disease: correlation with muscarinic M1 receptor binding parameters. Synapse 2003; 47:58-65.
    63. Chowdari KV, Mimics K, Semwal P, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum.Mol.Genet. 2002; 11:1373-1380.
    64. Millar JK, Wilson-Annan JC, Anderson S, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum.Mol.Genet. 2000; 9:1415-1423.
    65. Ekelund J, Hovatta I, Parker A, et al. Chromosome 1 loci in Finnish schizophrenia families. Hum.Mol.Genet. 2001; 10:1611-1617.
    66. Hwu HG, Liu CM, Farm CS, et al. Linkage of schizophrenia with chromosome 1q loci in Taiwanese families. Mol.Psychiatry 2003; 8:445-452.
    67. Ekelund J, Hennah W, Hiekkalinna T, et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol.Psychiatry 2004; 9:1037-1041.
    68. Ekelund J, Hovatta I, Parker A, et al. Chromosome 1 loci in Finnish schizophrenia families. Hum.Mol.Genet. 2001; 10:1611-1617.
    69. Ekelund J, Hennah W, Hiekkalinna T, et al. Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol.Psychiatry 2004; 9:1037-1041.
    70. Blackwood DH, Fordyce A, Walker MT, et al. Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am.J.Hum.Genet. 2001; 69:428-343.
    71. Gasperoni TL, Ekelund J, Huttunen M, et al. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia. Am.J.Med.Genet.B Neuropsychiatr.Genet. 2003; 116:8-16.
    72. Devon RS, Anderson S, Teague PW, et al. Identification of polymorphisms within Disrupted in Schizophrenia 1 and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr.Genet. 2001; 11:71-78.
    73. Hennah W, Varilo T, Kestila M, et al. Haplotype transmission analysis provides evidence of association for DISCI to schizophrenia and suggests sex-dependent effects. Hum.Mol.Genet. 2003; 12:3151-3159.
    74. Callicott JH, Straub RE, Pezawas L, et al. Variation in DISCI affects hippocampal structure and function and increases risk for schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2005; 102:8627-8632.
    75. Millar JK, Christie S, Porteous DJ. Yeast two-hybrid screens implicate DISCI in brain development and function. Biochem. Biophys.Res. Commun. 2003; 311:1019-1025.
    76. Miyoshi K, Honda A, Baba K, et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol.Psychiatry 2003; 8:685-94.
    77. Morris JA, Kandpal G, Ma L, Austin CP. DISCI (Disrupted-In-Schizophreni-a 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum.Mol.Genet. 2003; 12:1591-1608.
    78. Ozeki Y, Tomoda T, Kleiderlein J, et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc.Natl.Acad.Sci.U.S.A 2003; 100: 289-294.
    79. Morris JA. Schizophrenia, bacterial toxins and the genetics of redundancy. Med.Hypotheses 1996; 46:362-366
    80. Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol.Ther. 2003; 97:153-179.
    81. Schiffer HH. Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol.Neurobiol. 2002; 25: 191-212.
    82. Collier DA, Li T. The genetics of schizophrenia: glutamate not dopamine? Eur.J.Pharmacol. 2003; 480:177-184.
    83. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat.Genet. 2003; 33:177-182.
    84. Marti SB, Cichon S, Propping P, et al. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am.J.Med.Genet. 2002; 114:46-50.
    85. Fujii Y, Shibata H, Kikuta R, et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr.Genet. 2003; 13:71-76.
    86. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J.Neurochem. 2000; 75:889-907.
    87. Baker DA, Xi ZX, Shen H, et al. The origin and neuronal function of in vivo nonsynaptic glutamate. J.Neurosci. 2002; 22:9134-9141.
    88. De BA, Conn PJ, Pin J, et al. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol.Sci. 2001; 22:114-120.
    89. Spooren W, Ballard T, Gasparini F, et al. Insight into the function of Group I and Group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav.Pharmacol. 2003; 14:257-277.
    90. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998; 281:1349-1352.
    91. Greene R. Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 2001; 11:569-577.
    92. Krystal JH, D'Souza DC, Mathalon D, et al. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl) 2003; 169:215-233.
    93. Ohnuma T, Augood SJ, Arai H, et al. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res.Mol.Brain Res. 1998; 56:207-217.
    94. Tamaru Y, Nomura S, Mizuno N, et al. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2001; 106:481-503.
    95. Crook JM, Akil M, Law BC, et al. Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann's area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol.Psychiatry 2002; 7:157-164.
    96. Luyt K, Varadi A, Molnar E. Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J.Neurochem. 2003; 84:1452-1464.
    97. Ohnuma T, Augood SJ, Arai H, et al. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res.Mol.Brain Res. 1998; 56:207-217.
    98. Richardson-Burns SM, Haroutunian V, Davis KL, et al. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol.Psychiatry 2000; 47:22-28.
    99. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2002; 99:13675-13680.
    100. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2002; 99:13675-13680.
    101.Addington AM, Gomick M, Sporn AL, et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol.Psychiatry 2004; 55:976-980.
    102.Freedman R, Coon H, Myles-Worsley M, et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc.Natl.Acad.Sci.U.S.A 1997; 94:587-592.
    103.Freedman R, Adler LE, Bickford P, et al. Schizophrenia and nicotinic receptors. Harv.Rev.Psychiatry 1994; 2:179-192.
    104.Leonard S, Gault J, Hopkins J, et al. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch.Gen.Psychiatry 2002; 59:1085-1096.
    105.Fabian-Fine R, Skehel P, Errington ML, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J.Neurosci. 2001; 21:7993-8003.
    106.Ganguly A, Rudin S, Bednarek DR, et al. Micro-angiography for neuro-vascular imaging. I. Experimental evaluation and feasibility. Med. Phys. 2003; 30:3018-3028.
    107.Freedman R, Hall M, Adler LE, et al. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol.Psychiatry 1995; 38:22-33.
    108.Court J, Spurden D, Lloyd S, et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J.Neurochem. 1999; 73:1590-1597.
    109.Guan ZZ, Zhang X, Blennow K, et al. Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 1999; 10:1779-1782.
    110.Marutle A, Zhang X, Court J, et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J.Chem.Neuroanat. 2001; 22:115-126.
    111.Liu H, Heath SC, Sobin C, et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc. Natl.Acad.Sci.U.S.A 2002; 99: 3717-3722.
    112.Liu H, Abecasis GR, Heath SC, et al. Genetic variation in the 22ql 1 locus and susceptibility to schizophrenia. Proc.Natl.Acad.Sci.U.S.A 2002; 99: 16859-16864.
    113.Ghosh S, Nanda KK, Addison AW, et al. Mononuclear and mixed-valence binuclear oxovanadium complexes with benzimidazole-derived chelating agents. Inorg.Chem. 2002; 41:2243-2249.
    114.Gogos JA, Santha M, Takacs Z, et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat.Genet. 1999; 21:434-439.
    115.Johnson JL, Roberts E. Proline, glutamate and glutamine metabolism in mouse brain synaptosomes. Brain Res. 1984; 323:247-256.
    116.Fan JB, Ma J, Zhang CS, et al. A family-based association study of T1945C polymorphism in the proline dehydrogenase gene and schizophrenia in the Chinese population. Neurosci. Lett. 2003; 338: 252-254.
    117.0htsuki T, Tanaka S, Ishiguro H, et al. Failure to find association between PRODH deletion and schizophrenia. Schizophr.Res. 2004; 67:111-113.
    118.Williams HJ, Williams N, Spurlock G, et al. Association between PRODH and schizophrenia is not confirmed. Mol.Psychiatry 2003; 8:644-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700