近红外核壳荧光纳米颗粒的生化分析应用及新型压电免疫传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料掺杂荧光纳米颗粒相对于量子点、荧光染料和等离子体共振颗粒而言具有诸如高量子产率、光稳定性、亲水性及易于使各种功能团在其表面修饰等显著的优点,所以近年来关于染料掺杂荧光纳米颗粒的研究报道时有增加,也引起了众多研究者的关注。但目前几乎所有的研究报道都集中于那些在可见区域激发的染料的包埋,这些染料掺杂的荧光纳米颗粒易于受自身荧光或细胞和体内测量的内滤效应的影响,从而限制了荧光纳米颗粒在生物分析、生物医学领域的进一步应用。相对于常规荧光检测而言,在近红外光区的荧光检测,生物基体光吸收或荧光强度很小,且致密介质(如组织)的光散射明显降低,激发光的穿透性更强,因而自发荧光的背景干扰显著降低,可以高灵敏和选择性地检测复杂生物分子及活细胞中的特定成分。而且,由于全血在近红外区域具有很弱的吸收,所以有望发展一种基于近红外荧光纳米颗粒对全血样品无需分离的直接检测方法。本论文前半部份报告有关近红外核壳荧光纳米颗粒的生化分析应用研究结果。针对目前荧光纳米颗粒的研究现状,发展了一种新型近红外核壳荧光纳米颗粒,并将其进行生物标记应用于全血样品中肿瘤标志物、白血病细胞及单碱基突变的直接检测。此外,利用纳米金的凝集变色效应,尚建立了一种新的等温滚环扩增反应的单碱基突变检测方法。主要内容如下:
     (1)基于一种改进的合成方法制备了新型近红外核壳荧光纳米颗粒。通过引入疏水性的硅醇盐作为纳米粒子内核,接着在油包水的微乳液中通过氨水催化正硅酸乙酯水解形成一层亲水的硅外壳,合成了核壳型的亚甲基兰掺杂荧光纳米颗粒,并对纳米颗粒的合成条件进行了优化。这种纳米颗粒的荧光明显强于用常规方法合成的纳米颗粒,且纳米颗粒的光稳定性明显增强,在水中几乎没有染料泄漏。纳米颗粒呈均匀的圆球型,大小一致,直径大约为65 nm。由于荧光分子在硅基质中得到了很好的保护,从而可免于被环境所污染。同时,基于近红外荧光的特性构建了一种新型近红外荧光纳米粒子的荧光各向异性免疫凝集分析方法,用于直接检测全血样品中的肿瘤标记物——甲胎蛋白(AFP),而不需经过分离步骤。结果表明,近红外荧光纳米探针在这种复杂的生物体系中不受背景的干扰,因此可以快速进行全血样品中AFP的直接检测。
     (2)结合cell-SELEX技术筛选得到能特异性识别人急性淋巴白血病细胞的核酸适体的高特异性和核壳型近红外荧光纳米颗粒的优点,发展了一种能快速实现全血样品中肿瘤细胞的识别新技术,该方法简便、快速、灵敏,可望用于癌症的早期诊断、治疗方案的选择及预后的判断。
     (3)结合运用连接酶反应和核壳型荧光纳米颗粒,提出了一种基于荧光各向异性技术与DNA连接酶的高保真性的检测方法,用于单碱基突变的直接检测。该方法使用一个等位特异的识别探针和一个普通的探针,这两条探针都标记在荧光纳米颗粒的表面。当这两条DNA探针与目标链发生杂交反应时,就引起荧光纳米颗粒的凝集,从而引起荧光探针的荧光各向异性值的增加。当识别探针3’端的碱基与目标链完全匹配时,DNA连接酶就会把这两条探针之间的缺口封闭,反之,当识别探针3’端的碱基与目标链不匹配时,缺口就不能被封闭。对于不匹配的情况,当加热解链形成的双链时,凝集的荧光纳米颗粒就会彼此分开,溶液的荧光各向异性值将恢复到初始值;而对于完全匹配的情况,溶液的荧光各向异性值仍保持纳米粒子团聚后的值。因此,通过灵敏的荧光各向异性检测就能很好地实现单碱基突变的检测。用该方法对结肠癌k-ras基因的第12位密码子的突变情况进行了检测,使突变型和野生型得到了很好的区分。
     (4)结合本实验室在基因单碱基突变检测技术方面已有的研究成果,利用核酸修饰纳米金的这一凝集变色特性,提出了一种新的等温滚环扩增反应的检测方法,并用于人β地中海贫血基因-28位点的点突变灵敏定量检测。该方法能够区分突变的杂合子或纯合子,为DNA目标链单碱基突变的临床医学诊断提供了一种新的途径。
     本论文的余下部分报告有关新型压电免疫传感器的研究成果。针对当前免疫传感器传感界面构建研究中存在的问题,在实验室原有工作的基础上,以压电石英晶体微天平为换能器,结合自组装膜技术、纳米生物修饰技术及聚电解质吸附组装技术,设计了一系列免疫活性材料固定化新方法,以期提高压电免疫传感技术用于临床实际诊断的可行性。同时,由于压电石英晶体微天平很难实现对小分子物质的直接检测,所以利用大分子亲和素与生物素之间的亲和力,设计了一种石英晶体微天平实现对小分子生物素的检测的方法。
     (5)结合电聚合膜和纳米金自组装技术,提出了一种新的生物分子固定化方法,研制成一种检测抗胰蛋白酶的压电免疫传感器。通过在石英晶振金电极表面电聚合邻苯二胺膜,再在膜表面自组装一层纳米金粒,以静电吸附作用固定抗体(抗原),实现对相应抗原(抗体)的检测。利用扫描电镜技术,从形态上考察了晶振金电极上自组装纳米金后的表面形貌。考察了抗体的固定化条件,探讨了传感器的响应与再生性能。结果表明,这种固定化方法对所固定的生物分子的生物活性影响小,传感器的测定灵敏度高,响应性能和再生性能较好。
     (6)基于Nafion膜界面构建了一种石英晶体微天平免疫传感器,用于血清中补体C4的检测。Nafion膜界面的表面形貌通过扫描电子显微镜进行表征。考察了抗体静电吸附过程,抗体固定的最佳条件以及免疫反应过程,所构建的免疫传感器测定补体C4的线性浓度范围为0.08-1.6μg/mL,检测相对标准偏差低于5.3%。该传感器制作简便,也易于使用后再生。
     (7)通过带相反电荷聚电解质可交替吸附的自组装技术,研制了一种新型的生物传感界面。在压电石英晶体微天平(QCM)的金电极表面,修饰巯基乙酸(MAA)自组装单层膜(SAM)和带相反电荷聚电解质的多层自组装膜。然后将具有双面胶功能的带正电荷的壳聚糖分子连接带负电荷的褐藻酸钠-HSA抗体分子到负电性的MAA-SAM层。并实时考察了传感界面的组装过程和组装条件,运用原子力显微镜(AFM)考察了每层组装膜的表面形貌。与传统的抗体直接固定方法相比,本文提出的新型免疫传感技术能很好地保持抗体的活性,使灵敏度显著提高,也使传感器检测的线性范围明显变宽。尤其这种传感器具有简便而快速的再生性能。因此这种新的生物传感界面,在开发新的生物传感器件上具有潜在的优势。
     (8)结合自组装技术和聚电解质间的静电吸附作用,在石英晶振的金电极表面构建了半胱胺自组装膜和壳聚糖/褐藻酸钠相反电荷聚电解质的多层自组装膜的传感界面,研制成一种检测人血清中B因子的压电免疫传感器。考察了标记抗体的固定化条件,探讨了传感器的响应与再生性能。与戊二醛共价交联固定方法相比较,这种优化的固定化方法所获得的传感器响应的频移值大,检测限低,检测范围宽,灵敏度高,传感器能够简便地实现再生。而且这种固定化方法有利于传感器上所固定的蛋白质分子的生物活性的保持。特异性实验和回收率结果表明,该传感系统可发展成临床检测B因子的一种有效工具。
     (9)提出了一种新型的石英晶体微天平生物传感器用于小分子生物素的测定,该传感器是基于巯基化合物在金基底上稳固的混合自组装单层膜以及生物素和生物素类似化合物HABA与亲和素之间生物亲和力的不同。亲和素与固定于电极表面的HABA形成一种亚稳态分子复合物,当该传感器接触到包含生物素的样品溶液时,亚稳态分子复合物中的亲和素由于与溶液中生物素形成更为稳定的复合物而被拉离传感器表面,从而引起晶振频率的变化。该频率的变化与脱落的亲和素量成一定的比例关系,而且与溶液中生物素的浓度成一种明确的数学关系。传感器的制备过程中,混合自组装单层膜一方面有利于生物分子在电极表面的牢稳固定,另一方面,由于混合自组装单层膜较长的空间“手臂”更有利于俘获生物分子,有效提高了生物分子的固定量。实验证明,本章提出的生物传感器对浓度范围在0.017– 1.67μg/mL的小分子生物素有很好的响应,而且该传感器的再生非常简单方便。
Nanoparticle-based bionanotechnology is a rapidly growing field that deals with particulate systems for bioanalytical, biotechnological, and biomedical applications. Recent years have seen proliferated studies of fluorescent organic nanoparticles, among which dye-doped silica nanoparticles attracted research interest due to their potential applications as fluorescence probes for various biological detection. The dye-doped silica nanoparticles entrap a large number of fluorophores in the silica matrix, which produce a strong fluorescence signal when excited properly. Incorporation of dye molecules inside the silica matrix protects the dye from the surroundings, making the fluorescence very stable and thereby offering accurate measurements for bioanalysis. Moreover, the silica surface serves as a universal biocompatible and versatile substrate for the immobilization of biomolecules. Nevertheless, almost all these studies are focused on the entrapment of dyes with excitation in the visible region. These dye-doped silica nanoparticles are susceptible to the interference from autofluorescence and inner filtration effect in cellular or in vivo measurement implementations.
     Spectrofluorimetry in the near-infrared region (about 650 - 1000 nm) is an area of increasing interest. In comparison to more conventional measurements made in the ultraviolet and visible regions, near-infrared (NIR) fluorescence has many advantages. For instance, NIR fluorescence generally exhibit relatively low levels of background interference, since few naturally occurring molecules undergo electronic transitions in such a low-energy region of the electromagnetic spectrum. Moreover, the penetration of NIR light through skin and overlaying tissue is as deep as a few millimeters, NIR fluorescence holds considerable promise for the development of noninvasive diagnostic techniques. For these reasons, NIR fluorescence imaging is potentially very attractive for in vivo imaging. In addition, as the whole blood shows very weak absorption in the NIR region, there is potential to use NIR fluorescence for direct analysis of whole blood samples without separation steps. The first-part of this thesis focused on the research topics of fluorescent nanoparticles. We synthesized a class of novel core-shell near-infrared fluorescent nanoparticles and used them as highly sensitive and photostable label in the detection of alpha fetoprotein (AFP) and leukemia cancer cells recognition in whole blood samples as well as the detection of single nucleotide polymorphisms (SNPs). Moreover, based on the optical properties of aggregated Au nanoparticles, a colorimetric method for the identification of point mutation based on isothermal rolling-circle amplification has been developed.
     (1) A class of novel core-shell near-infrared fluorescent nanoparticles was prepared through co-hydrolysis of a hydrophobic silicon alkoxide, hexadecyltrimethoxysilane, and tetraethyl orthosilicate as the dye-doped core followed by the formation of a hydrophilic shell via hydrolysis of tetraethyl orthosilicate in water-in-oil microemulsion. The co-hydrolysis of hexadecyltrimethoxysilane and tetraethyl orthosilicate produced a highly hydrophobic core for the entrapment of a low-cost near-infrared fluorescence dye methylene blue. Experimental investigation of this particular core-shell nanoparticles in comparison with conventional dye-doped silica nanoparticles demonstrated that the hydrophobic core enabled the doped dye to exhibit enhanced fluorescence and show improved stability to dye leaching and exogenous quenchers. In contrast to rhodamine B-doped silica nanoparticles, the near-infrared fluorescent nanoparticles also showed negligible background fluorescence and low inner filtration interference in complex biologic systems such as whole blood. This advantage was utilized for the development of an immunoagglutination assay method based on fluorescence anisotropy measurement for the detection of alpha fetoprotein (AFP) in whole blood samples. The results revealed that the fluorescence anisotropy increases were linearly correlated to the AFP concentration in the range from 1.9 to 51.9 ng/mL.
     (2) A method for the rapid detection of leukemia cells in whole blood samples has been developed based on a group of aptamers for the specific recognition of leukemia cells and the core-shell near-infrared fluorescent nanoparticles. The results demonstrate the potential application of this method for medical diagnostics.
     (3) A proof-of-principle has been reported for a sensitive genotyping assay approach that can detect single nucleotide polymorphisms (SNPs) based on the sensitive fluorescence anisotropy measurement through core-shell fluorescent nanoparticles assembly and the ligase reaction. By incorporating the core-shell fluorescent nanoparticles into the fluorescence anisotropy measurement, this assay provided a convenient and sensitive detection assay that enabled a straightforward single-base discrimination without the need of the complicated operational steps. The assay could be implemented via two steps: firstly, the hybridization reaction that allowed two nanoparticle-tagged probes to hybrid with the target DNA strand and the ligase reaction that generated the ligation between perfectly matched probes while no ligation occurred between mismatched ones were implemented synchronously in the same solution. Then, a thermal treatment at a relatively high temperature discriminated the ligation of probes. When the reaction mixture was heated to denature the formed duplex, fluorescence anisotropy value of the perfect-match solution does not revert to the initial value, while that of the mismatch again comes back as the assembled fluorescent nanoparticles dispart. The present approach has been demonstrated with the discrimination of a single base mutation in codon 12 of a K-ras oncogene that is of significant value for colorectal cancers diagnosis, and the wild type and mutant type were successfully scored. Due to its ease of operation and high sensitivity, it was expected that the proposed detection approach might hold great promise in practical clinical diagnosis.
     (4) Using the distance-dependent optical properties of aggregated Au nanoparticles functionalized with oligonucleotides, we developed a detection method for identification of point mutation based on the isothermal rolling-circle amplification and the agglutination aggregation of Au nanoparticles.
     The remaining sections of the present thesis repart the research results concerning fabrication of new-type biosensing interfaces for pizeoelectric immunosensor. Pizeoelectric immunosensor are widely used for the assay of biological analytes due to the advantages of this approach including simple-design, high-sensitivity and low-cost. However, the method of immobilization, the reproducibility and the reusability still remain to be improved in the design and applications of these sensors. Among these problems presented, the key step for the fabrication of biosensors with excellent property is the immobilization of bio-species on the surface of transducers. Focused on these topics in the formation of the biosensing interface, several new procedures for immobilizing bio-species to construct biosensor have been developed.
     (5) Electropolymerized films (Eps) and the self-assembled technology are combined for a novel immobilization of biomolecules applied to an immunosensor for detecting the antitrypsin (α1-AT) in human serum. The o-phenylenediamine electropolymerized films are immobilized on the surface of quartz crystal microbalance (QCM). After self-assembling a nano-gold layer on the Eps, the antibodies of the antitrypsin (Anti-α1-AT) are electrostatically adsorbed onto the QCM for immunoreacting Antitrypsin. The surface morphologies of the QCM are investigated by scanning electron microscopy (SEM) after being modified with o-phenylenediamine Eps and nano-gold layer. The conditions of immobilizing anti-α1-AT are optimized in detail. Compared to the glutaraldehyde binding approach, the antibodies immobilized by the nano-gold self-assembly procedure present higher bioactivity and greater frequency response to immunoreaction. It is concluded that this immunosensing system provides the advantages of improved sensitivity, selectivity and reusability.
     (6) A piezoelectric immunosensor based on Nafion membrane interface with a simple immobilization procedure has been developed for the determination of complement C4 in human serum. The polyanionic perfluorosulfonated Nafion polymer was used to modify the electrode surface of QCM as a platform for the immobilization of complement C4 antibodies. The surface morphology of QCM modified with Nafion membrane was investigated using scanning electron microscopy. The system was optimized with regard to parameters involved in the preparation of immunosensor and the assay process. The proposed immunosensor possesses nice response to C4 in the range of 0.08-1.6μg/mL with a relative standard deviation of below 5.3%. Moreover, the proposed immunosensor shows the advantage in terms of the speed and ease in the immobilization procedure as well as the simple and advantageous regeneration process. Experimental results obtained with regards of non-specific adsorption and recoveries indicated that the proposed immunosensor offers a promising alternative tool for clinical diagnosis of complement C4.
     (7) A novel biosensing interfacial design strategy has been produced by the alternate adsorption of the oppositely charged polyelectrolytes. A quartz-crystal microbalance as a model transducer was modified by use of mercaptoacetic acid (MAA) self-assembled monolayer (SAM) and the adsorption multilayers of the oppositely charged polyelectrolytes. MAA-SAM was first applied to the gold electrode surface of the crystal, and the positively charged chitosan was used as a double-sided linker to attach the negatively charged alginate-HSA antibodies to the negatively charged MAA-SAM layer. The assembly process and conditions were studied using the real-time-output device and the surface topologies of the resulting crystals were characterized by atomic force microscopy (AFM) imaging. The proposed immunosensor in optimal conditions has a linear detection range of 12.3-184.5μg/mL for HSA detection. Comparing with the direct immobilization method of antibodies, the immunosensor with the proposed immobilization procedure shows some advantages, such as improved sensitivity due to the well-retained antibody activity and the significantly extended detection range. In particular, the regeneration of the developed immunosensor was simple and fast. Analytical results indicate that the developed immobilization procedure is a promising alternative for the immobilization of biorecognition element on the electrode surface.
     (8) A piezoelectric immunosensor based on a novel immobilization strategy combining cysteamine self-assembled monolayer and chitosan/alginate adsorption procedure has been developed for the determination of factor B in human serum. Cysteamine SAM was first applied to the gold electrode surface of the crystal, and a strong positively-charged chitosan monolayer was posed on the cysteamine SAM by using glutaraldehyde cross-linking. Alginate-factor B was then electrostatically immobilized on the crystal with the aid of the negatively-charged alginate layer. The conditions of immobilizing antibodies were optimized in detail. Comparing with the conventional glutaraldehyde covalent immobilization, the immunosensor with the proposed immobilization procedure shows an improved performance in terms of the magnitude of the response and sensitivity. Moreover, the proposed immobilization procedure results in immobilized entities with relatively high biological activity and favorable immunosensing characteristics. The QCM devices are readily regenerated. Analytical results obtained from the tests of non-specific adsorption and recoveries indicated that the immunosensor prepared by use of the chitosan/alginate adsorption procedure is a useful tool for the determination of factor B in plasma in clinical diagnosis.
     (9) A quartz crystal microbalance sensor was proposed for the detection of small molecule biotin based on the mixed self-assembled monolayer of thiols on gold substrate and the bioaffinity difference between an analyte (biotin) and an analogue compound 2-[(4-hydroxyphenyl)azo]benzoic acid (HABA) in binding avidin. Avidin formed a metastable complex with HABA immobilized on the crystal surface. When the sensor contacts a sample solution containing biotin, the avidin was released from the sensor surface to form a more stable complex with biotin in solution. The frequency change recorded is proportional to the desorbed mass of avidin, and there is a clear mathematic relationship between the frequency change and the biotin concentration. The use of mixed SAMs allows the stable attachment of bioreceptor molecules on the QCM and enhances the amount of the immobilized molecules on the QCM, as a longer“space arm”in the mixed SAMs makes this monolayer membrane more accessible to capture the immobilized molecules. The proposed bioaffinity sensor has nice response to biotin in the range of 0.017– 1.67μg/mL. The sensor could be regenerated under very mild conditions simply by reimmersion of the sensor into a biotin solution to desorb the surplus avidin.
引文
[1] 梁文平, 庄乾坤. 分析化学的明天-学科发展前沿与挑战. 北京: 科学出版社, 2003, 92-96
    [2] Crandall B C. Nanotechnology: molecular speculations on global abundance. Cambridge: The MIT Press, 1996, 58-70
    [3] Crandall B C, Lewis J. Nanotechnology: research and perspectives. Cambridge: The MIT Press, 1992, 40-42
    [4] 白春礼. 纳米科技及发展前景. 微纳电子技术, 2002, 1(1): 2-5
    [5] 李民乾. 纳米科学技术——面向 21 世纪的新科技. 物理, 1996, 21(2): 65-69
    [6] 解思深. 国际纳米科技发展动态. 纳米科技发展调研报告汇编. 科学技术部基础研究司, 2002: 15-47
    [7] 解思深. 纳米生物和医药. 纳米科技发展调研报告汇编. 科学技术部基础研究司, 2002: 104-121
    [8] Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 2005, 5(3): 161-171
    [9] 顾大勇, 鲁未平, 周园国. 纳米级金颗粒在基因芯片检测技术中的研究进展. 国外医学生物医学工程分册, 2005 , 28 (2): 75-80
    [10] Faulk W P, Taylor G M. An immunocolloid method for the election microscope. Immunochemistry, 1971, 8 (11): 1081-1083
    [11] Danscher G. Localization of gold in biological tissue: A photochemical method for light and electronmicroscopy. Histochemistry, 1981, 71 (1): 81-88
    [12] Liu T, Tang J, Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochemical and Biophysical Research Communication, 2004, 313(1): 3-7
    [13] Barth M, Oulmi Y, Ehrenreich H, et al. Pre-embedding immunogold labeling of TUNEL stain enables evaluation of DNA strand breaks and ultrastructural alterations in individual cells of neuronal tissue. Acta Neuropathologica, 2002, 104(6): 621-636
    [14] Wang H, Wang C C, Lei C X, et al. A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Analytical and Bioanalytical Chemistry, 2003, 377(4): 632-638
    [15] 刘涛, 唐季安, 韩梅梅, 等. 纳米金颗粒在石英晶体微天平检测中的表面修饰作用. 科学通报, 2003, 48(4): 342-344
    [16] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(8): 607-609
    [17] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(22): 1078-1081
    [18] Murphy D, O'Brien P, Redmond G. Sub-picomole colorimetric single nucleotide polymorphism discrimination using oligonucleotide–nanoparticle conjugates. Analyst, 2004, 129(8): 970-974
    [19] Storhoff J J, lucas A D, Garimella V, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnology, 2004, 22(7): 883-887
    [20] Storhoff J J, Marla S S, Bao P, et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosensors and Bioelectronics, 2004, 19(8): 875–883
    [21] BaoY P, Huber M, Wei T F, et al. SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Research, 2005, 33(2): e15-e21
    [22] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detection using High-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168-e176
    [23] 李继山. 基因点突变检测新方法及新型界面设计的免疫传感器研究: [湖南大学博士学位论文]. 长沙: 湖南大学化学化工学院, 2006, 3: 19-28
    [24] Sandhu K K, McIntosh C M, Simard J M, et al. Gold nanoparticles mediated transfection of mammalian cells. Bioconjugate Chemistry, 2002, 13(1): 3-6
    [25] Han M Y, Gao X H, Nie S M, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology, 2001, 19(7): 631-635
    [26] Chan W C, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(25): 2016-2018
    [27] Bruchez Jr M, Morone M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(25): 2013-2016
    [28] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of QDs encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [29] 徐晖, 郑俊民, 潘研, 等. 聚合物纳米颗粒的制备及其应用(I)通过聚合反应制备纳米颗粒. 中国药剂学杂志, 2003, 1(3): 124-136
    [30] Boussif O, Lezoualc’h F, Zanta M A, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: ployethylenimine. Proceeding of National Academy of Sciences of the USA, 1995, 92(16): 7297–7301
    [31] Bettinger T, Remy J S, Erbacher P. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjugate Chemistry, 1999, 10(4): 558-561
    [32] Ferrari S, Pettenazzo A, Garbati N, et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochimica Biophysica Acta, 1999, 1447(2-3): 219-225
    [33] Pollard H, Remy J S, Loussouarn G S, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. The Journal of Biological Chemistry, 1998, 273(13): 7507-7511
    [34] Zanta M A, Boussif O, Adib A, et al. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chemistry, 1997, 8(6): 839-844
    [35] Erbacher P, Zou S, Bettinger T, et al. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharmaceutical Research, 1998, 15(9): 1332-1339
    [36] Hayatsu H, Kubo T, Tanaka Y, et al. Polynucleotide-chitosan complex, an insoluble but reactive form of polynucleotide. Chemical Pharmaceutical Bulletin, 1997, 45(8): 1363-1368
    [37] Lee K Y, Kwon I C, Kim Y H, et al. Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 1998, 51(2-3): 213-220
    [38] Leong K W, Mao H Q, Truong-Le V L, et al. DNA-polycation nanospheres as nonviral gene delivery vehicles. Journal of Controlled Release, 1998, 53(1-3): 183-193
    [39] MacLaughlin F C, Mumper R J, Wang J, et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release, 1998, 56(1-3): 259-272
    [40] Mitra S, Gaur U, Ghosh P C, et al. Tumour targeted delivery of encapsulated dextran-doxorubicin conjuate using chitosan nanoparticles as carrier. Journal of Controlled Release, 2001, 74(1-3): 317-323
    [41] Roy K, Mao H Q, Huang S K, et al. Oral gene delivery with chitosan-DNAnanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 1999, 5(4): 387-391
    [42] Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Effect of pH, serum and molecular mass of chitosan on the transfection efficiency. Biomaterials, 2001, 22(15): 2075-2080
    [43] Venkatesh S, Smith T J. Chitosan-mediated transfection of heLa cells. Pharmaceutical Development and Technology, 1997, 2(4): 417-418
    [44] Venkatesh S, Smith T J. Chitosan-membrane interactions and their probable role in chitosan-mediated transfection. Biotechnology and Applied Biochemistry, 1998, 27(3): 265-267
    [45] Sato T, Ishii T, Okahata Y. In vitro delivery mediated by chitosan. Effect of pH, serum and molecular weight of chitosan on transfection efficiency. Biomaterials, 2001, 22(15): 2075-2080
    [46] Wagner E, Zenke M, Cotton M. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceeding of National Academy of sciences of the USA, 1990, 87(9): 3410-3414
    [47] Brown M D, Gray A I, Tetley L, et al. In vitro and in vivo gene transfer with poly(amino acid) vesicles. Journal of Controlled Release, 2003, 93(2): 193-211
    [48] Maruyama A, Ishihara T, Kim J S, et al. Design of multi-functional nanoparticles as a DNA carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153(1-3): 439-443
    [49] Carlisle R C, Read M L, Wolfert M A, et al. Self-assembling poly (l-lysine)/DNA complexes capable of integrin-mediated cellular uptake and gene expression. Colloids and Surfaces B: Biointerfaces, 1999, 16(1-4): 261-272
    [50] Kawano T, Okuda T, Aoyagi H, et al. Long circulation of intravenously administered plasmid DNA delivered with dendritic poly(l-lysine) in the blood flow. Journal of Controlled Release, 2004, 99(2): 329-337
    [51] Murakami H, Kobayashi M, Takeuchi H, et al. Preparation of Poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International Journal of Pharmaceutics, 1999, 187(2): 143-152
    [52] Panagi Z, Beletsi A, Evangelatos G, et al. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. International Journal of Pharmaceutics, 2001, 221(1-2): 143–152
    [53] Yin Win K, Feng S S. Effects of particle size and surface coating on cellularuptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005, 26(15): 2713-2722
    [54] Yoo H S, Lee K H, Oh J E, et al. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. Journal of Controlled Release, 2000, 68(3): 419-431
    [55] Li Y P, Pei Y Y, Zhang X Y, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in Rats. Journal of Controlled Release, 2001, 71(2): 203-211
    [56] Panyam J, Sahoo S K, Prabha S, et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics, 2003, 262(1-2): 1-11
    [57] Ravi Kumar M N V, Bakowsky U, Lehr C M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials, 2004, 25(10): 1771-1777
    [58] Elamanchili P, Diwan M, Cao M, et al. Characterization of poly(d,l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine, 2004, 22(19): 2406-2412
    [59] Fonseca C, Sim?es S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal Controlled Release, 2002, 83(2): 273-286
    [60] Lee S J, Jeong J R, Shin S C, et al. Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. Journal of Magnetism and Magnetic Materials, 2004, 272-276(3): 2432-2433
    [61] Kwon H Y, Lee J Y, Choi S W, et al. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182(1-3): 123-130
    [62] Pinto Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. International Journal of Antimicrobial Agents, 2000, 13(3): 155-168
    [63] Moghimi S M, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Progress in Lipid Research, 2003, 42(6): 463-478
    [64] Müller R H, M?der K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery– a review of the state of the art. European Journal of Pharmaceuticsand Biopharmaceutics, 2000, 50(1): 161-177
    [65] Nielsen U B, Kirpotin D B, Pickering E M, et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochimica et Biophysica Acta /Molecular Cell Research, 2002, 1591(1-3): 109-118
    [66] Tabatt K, Kneuer C, Sameti M, et al. Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. Journal of Controlled Release, 2004, 97(2): 321-332
    [67] Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Advanced Drug Delivery Reviews, 2001, 52(3): 197-207
    [68] Kataoka K, Harada A, Nagasaki K. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001, 47(1): 113-131
    [69] Torchilin V P. Structure and design of polymeric surfactant based drug delivery systems. Journal of Controlled Release, 2001, 73(2-3): 137-172
    [70] Lemieux P, Vinogradov S V, Gebhart C L, et al. Block and graft copolymers and Nanogel TM copolymer networks for DNA delivery into cell. Journal of Drug Targeting, 2000, 8(2): 91-105
    [71] Jung P D T, Breitenbach A, Kissel T. Sulfobutylated poly(vinylalcohol)-graft-poly(lactide-co-glycolide) facilitate the preparation of small negatively charged biodegradable nanospheres for protein delivery. Journal of Controlled Release, 2000, 67 (2-3): 157-169
    [72] 潘研, 郑俊民, 唐星. 可生物降解聚合物纳米粒的研究进展. 中国药学杂志, 2002, 37 (12): 890-893
    [73] Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Advanced Drug Delivery Reviews, 2001, 52(3): 197–207
    [74] Noh C H, Uhm T, Oh S M, et al. Treatment of prostate cancer by systemic delivery of p53 and importin genes by using liposome. European Urology Supplements, 2003, 2(1): 35-35
    [75] Safarikova M, Kibrikova I, Ptackova L, et al. Magnetic solid phase extraction of non-ionic surfactants from water. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 377-381
    [76] Safarikova M, Safarik I. Magnetic solid-phase extraction. Journal of Magnetismand Magnetic Materials, 1999, 194(1-3): 108-112
    [77] Ashtari P, Wang K, Yang X, et al. Novel separation and preconcentration of trace amounts of copper(II) in water samples based on neocuproine modified magnetic microparticles. Analytica Chimica Acta, 2005, 550(1-2): 18-23
    [78] Papisov M I, Torchilin V P. Magnetic drug targeting. II. targeted drug transport by magnetic microparticles: factors influencing therapeutic effect. International Journal of Pharmaceutics, 1987, 40 (3): 207-214
    [79] Rosengart A J, Kaminski M D, Chen H, et al. Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 633-638
    [80] Jeong J, Ha T H, Chung B H. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Analytica Chimica Acta, 2006, 569(1-2): 203-209
    [81] Zeng L, Luo K, Gong Y. Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. Journal of Molecular Catalysis B: Enzymatic, 2006, 38(1): 24-30
    [82] Demirel D, ?zdural A R, Mutlu M. Preparation and characterization of magnetic duolite–polystyrene composite particles for enzyme immobilization. Journal of Food Engineering, 2004, 62(3): 203-208
    [83] Schoepf U, Marecos E M. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. BioTechniques,1998, 24(4): 642-651
    [84] Handgretinger R, Lang P, Schumm M, et al. Isolation and transplantation of autologous peripheral CD34+ progenitor cells highly purified by agnetic-activated cell sorting. Bone Marrow Transplantation, 1998, 21(10): 987-993
    [85] Weissleder R, Cheng H C, Bogdanova A, et al. Magnetically labeled cells can be etected by MR imaging. Journal of Magnetic Resonance Imaging: JMRI, 1997, (1): 258-263
    [86] Zhao L, Jin-Ming Lin. Development of a micro-plate magnetic hemiluminescence enzyme immunoassay (MMCLEIA) for rapid- and high-throughput analysis of 17β-estradiol in water samples. Journal of Biotechnology, 2005, 118(2): 177-186
    [87] Zhang R Q, Hirakawa K, Seto D, et al. Sequential injection chemiluminescence immunoassay for anionic surfactants using magnetic microbeads immobilized with an antibody. Talanta, 2005, 68 (2): 231-238
    [88] 向娟娟, 朱诗国, 吕红斌, 等. 用氧化铁磁性纳米颗粒作为基因载体的研究.癌症, 2001, 2010: 1009-1014
    [89] 曹正国, 周四维, 孙凯, 等. 超顺磁性葡聚糖氧化铁纳米颗粒的制备及其作为 基因载体的可行性研究. 癌症, 2004, 23(10): 1105-1109
    [90] Widder K J, Senyei A E. Magnetic microspheres: a vehicle for selective targeting of drugs. Pharmacology & Therapeutics, 1983, 20(3): 377-395
    [91] 蒋秉植, 杨健美. 磁性液体材料的应用. 化工新型材料, 1994, 4(1): 1-5
    [92] Nakatsuka K. Trends of magnetic fluids applications in Japan. Journal of Magnetism and Magnetic Materials, 1993, 122(1-3): 387-394
    [93] Rheinlander T, Kotitz R, Weitschies W, et al. Magnetic fluids: biomedical applications and fractionation. Magnetic Electronics, 2000, 10 (3): 179-198
    [94] Reimer P, Weissleder R, Lee A S, et al. Receptor imaging: Application to MR imaging of liver cancer. Radiology, 1990, 177(3): 729-734
    [95] Hamm B, Staks T, Taupitz M. Contrast-enhanced MR imaging of liver and spleen, first experience in humans with new superparamagnetic iron oxide. Journal of Magnetic Resonance Imaging, 1994, 4(5): 659-668
    [96] Kircher M F, Mahmood U, King R S, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Research, 2003, 63(1): 8122-8125
    [97] 许乙凯, 陈永鹏, 张嘉宁, 等. 肝细胞去唾液酸糖蛋白受体介导的超顺磁性氧化铁粒子磁共振增强研究. 放射学实践, 1999, 14(3): 152-154
    [98] Zhao X J, Rovelyn T D, Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society, 2003, 125(38): 11474-11475
    [99] Wang L, Tan W H. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Letter, 2006, 6(1): 84-88
    [100] 何晓晓, 王柯敏, 谭蔚泓. 基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用. 科学通报, 2001, 46 (16): 1353-1356
    [101] Honlme D J, Peck H. Analytical biochemistry. 3rd ed., 世界图书出版公司, 1999
    [102] Issac P G. Protocols for nucleic acid analysis by nonradioactive probes. Humana, Totowa, NJ, 1994
    [103] Diamandis E P, Christopoulos T K. Immunoassay. Academic Press, New York, 1996
    [104] Bui J D, Zelles T, Lou H J, et al. Probing intracellular dynamics in living cells with near-field optic. Journal of Neuroscience Methods, 1999, 89(1): 9-15
    [105] Tan W H, Parpura V, Haydon P G, et al. Neurotransmitter imaging in living cellsbased on native fluorescence detection. Analytical Chemistry, 1995, 67(15): 2575-2579
    [106] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467
    [107] Fung J C, Marshall W F, Dernburg A D, et al. Homologus chromosome paring in drosophila melanogaster proceeds through multiple independent initiations. Journal of Cell Biology, 1998, 141(1): 5-20
    [108] Bornhop D J, Hubbard D S, Houlne M P, et al. Fluorescent tissue site-selective lanthanide chelare, TB-PCTMB for enhanced imaging of cancer. Analytical Chemistry, 1999, 71(14): 2607-2615
    [109] 许屏. 荧光和免疫荧光染色技术及应用. 人民卫生出版社, 2000, 64
    [110] Bagwe R P, Yang C, Hilliard L R. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir, 2004, 20 (19): 8336-8342
    [111] Bagwe R P, Hilliard L R, Tan W H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir, 2006, 22(9): 4357-4362
    [112] 杜仕国, 施冬梅, 韩其文. 纳米颗粒的液相合成技术. 粉末冶金技术, 2000, 18(1): 46-50
    [113] 包定华, 翟继卫, 张良莹, 等. TiO3纳米晶粉末的溶胶凝胶合成及表征. 功能材料, 1999, 30(2): 182-183
    [114] 吴淑荣 , 李冬升 , 畅柱国 , 等 . 不同 Ti/Ba摩尔比的钛酸钡纳米晶粉体的Sol-gel法制备与表征. 功能材料, 1999, 30(2) : 179-181
    [115] 曾庭英, 刘剑波, 邱勇, 等. 纳米级微孔SiO2玻璃材料制备技术研究I. 纳米级微孔SiO2玻璃粉末的研制. 功能材料, 1997, 28(3) : 268-271
    [116] Yin M, Zhang W, Xia S, et al. Luminescence of nanometric scale Y2SiO5:Eu3+. Journal of Luminescence, 1996, 68(6): 335-339
    [117] Monaci R, Musinu A, Piccaluga G, et al. Fabrication, characterization and application of Ni/SiO2 nanocomposites materials prepared by Sol-gel. Materials Science Forum, 1995, 195(1): 1-8
    [118] Zhang Z, Inman D. Preparation of yttria-doped zirconia powder from molten salts. Rare Material, 1995, 14(2): 91-95
    [119] 惠春, 徐爱兰, 徐毓龙, 等. 水热法制备PZT纳米晶体微粉结构与热效应的分析. 功能材料, 1997, 28(3): 324-327
    [120] Qian Y T, Su Y, Xie Y, et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite. Materials Research Bulletin, 1995, 30(5): 601-605
    [121] Wang C Y, Qian Y T, Xie Y, et al. A novel method to prepare nanocrystalline (7nm) ceria. Material Science Engineering, 1996, B39(2) : 160-162
    [122] Yu S H, Shu L, Wu Y S, et al. Benzene-thermal synthesis and characterization of ultrafine powders of antimony sulfide. Materials Research Bulletin, 1998, 33(8): 1207-1211
    [123] Peng X G, Wickham J, Alvivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: focusing of size distributions. Journal of the American Chemical Society, 1998, 120(21): 5343-5344
    [124] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of physical chemistry, 1996, 100(2): 468-471
    [125] 施利毅, 华彬, 张剑华. 微乳液的结构及其在制备超细颗粒中的应用. 功能材料, 1998, 29(2): 136-139
    [126] Lopez-Quintela M A, Rivas J. Chemical reaction in microemulsion: a powerful method to obtain ultrafine particles. Journal of Colloid and Interface Science, 1993, 158 (2): 446-451
    [127] 潘庆谊, 徐甲强, 刘宏民, 等. 微乳液法纳米SnO2材料的合成、结构与气敏性能. 无机材料学报, 1999, 14(1): 83-89
    [128] 王笃金, 吴瑾光, 徐光宪. 反胶团或微乳液法制备超细颗粒的研究进展. 化学通报, 1995, 9(1): 1-5
    [129] Kim W Y, Hanaoka T, Kishida M, et al. Hydrogenation of carbon monoxide over Zirconia-supported palladium catalysts prepared using water-in-oil microemulsion. Applied Catalysis A, 1997, 155(2): 283-289
    [130] Santra S, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry, 2001, 73(20): 4988-4993
    [131] Doering W E, Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Analytical Chemistry, 2003, 75(22): 6171-6176
    [132] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society, 2003, 125(38): 11474-11475
    [133] Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Analytical Chemistry, 2004, 76(18): 5302-5312
    [134] Sasaki E, Kojima H, Nishimatsu H, et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. Journal of the American Chemical Society, 2005, 127(11): 3684-3685
    [135] Ow H, Larson D R, Srivastava M, et al. Wiesner bright and stable core-shell fluorescent silica nanoparticles. Nano Letter, 2005, 5(1): 113-117
    [136] 朱诗国, 向娟娟, 唐柯. 生物荧光氧化硅纳米颗粒的研制与应用. 物理化学学报, 2003, 19(4): 311-314
    [137] 原茵. 嵌合异硫氰酸罗丹明核壳荧光纳米颗粒的制备及在生物医学中应用: [湖南大学硕士学位论文]. 长沙: 湖南大学, 2004, 9
    [138] 原茵, 何晓晓, 王柯敏, 等. 嵌合异硫氰酸罗丹明 B 核壳荧光纳米颗粒制备新方法的研究. 高等学校化学学报, 2005, 26(3): 446-448
    [139] Koo Y E L, Cao Y, Kopelman R, et al. Philbert real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Analytical Chemistry, 2004, 76(9): 2498-2505
    [140] Weissleder R. A clearer vision for in vivo imaging. Nature Biotechnology, 2001, 19(4): 316-317
    [141] Kircher M F, Weissleder R, Josephson L. A dual fluorochrome probe for imaging proteases. Bioconjugate Chemistry, 2004, 15(2): 242-248
    [142] Sauerbrey G. Use of a quartz vibrator for weighing thin layers on a microbalance. Z. Physik, 1959, 155(2): 206-222
    [143] Bunde R L, Jarvi E J, Rosentreter J J. Piezoelectric quartz crystal biosensors. Talanta, 1998, 46(6): 1223-1236
    [144] Konash P L, Bastiaans G J. Piezoelectric crystals as detectors in liquid chromatography. Analytical Chemistry, 1980, 52(12): 1929-1931
    [145] 姚守拙. 压电化学与生物传感. 长沙: 湖南师范大学出版社, 1997, 1-4: 386-391, 393-396
    [146] Shons A, Dorman F, Najarian J, et al. An immunospecific microbalance. Journal of biomedical materials research, 1972, 6(6): 565-570
    [147] Martin S J, Granstaff V E, Frye G C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 1991, 63(20): 2272-2281
    [148] 吴朝阳. 日本血吸虫及其它生命物质的压电免疫传感技术研究: [湖南大学博士学位论文]. 长沙: 湖南大学化学化工学院, 2000, 1: 5-60
    [149] 王桦. 新型压电免疫传感技术用于白血病等重大疾患诊断的研究: [湖南大学博士学位论文]. 长沙: 湖南大学化学化工学院, 2004, 1: 1-12
    [150] 陈令新, 关亚凤, 杨丙成, 等. 压电晶体传感器的研究进展. 化学进展, 2002, 14(1) : 68-76
    [151] Ebersole R C, Ward M D. Amplified mass immunosorbent assay with a quartz crystal microbalance. Journal of the American Chemical Society, 1988, 110(26): 8623-8628
    [152] Muratsugu M, Ohta F, Miya Y, et al. Quartz crystal microbalance for the detection of microgram quantities f human serum albumin: relationship between the frequenccy change and the mass of protein adsorbed. Analytical Chemistry, 1993, 65(20): 2933-2937
    [153] Minunni M, Skladal P, Mascini M. A piezoelectric quartz crystal biosensor as a direct affinity sensor. Analytical Letters, 1994, 27(8): 1475-1487
    [154] Guilbault G G, Luong J H, Prusak-sochaczewski E. Immobilization methods for piezoelectric biosensors. Biotechnology, 1989, 7(2): 349-351
    [155] K?nig B, Gr?tzel M. Development of a piezoelectric immunosensor for the detection of human erythocytes. Analytica Chimica Acta, 1993, 276(2): 329-333
    [156] K?nig B, Gr?tzel M. Detection of human T-lympHocytes with a piezoelectric immunosensor. Analytica Chimica Acta, 1993, 281(1): 13-18
    [157] K?nig B, Gr?tzel M. Detection of viruses and bacteria with piezoelectric immunosensors. Analytical Letters, 1993, 26(8): 1567-1585
    [158] K?nig B, Gr?tzel M. Piezoelectric immunosensor for hepatitis viruses. Analytica Chimica Acta, 1995, 309 (1): 19-25
    [159] K?nig B, Gr?tzel M. A novel immunosensor for herpes viruses. Analytical Chemistry, 1994, 66(3): 341-344
    [160] Guilbault G G, Hock B, Schmid R. Apiezoelectric immunobiosensor for atrazine in drinking water. Biosensors and Bioelectronics, 1992, 7(6) :411-419
    [161] 司士辉, 张郁葱, 陈昕, 等. 抗体固载于TiO2 多孔膜的压电免疫型细菌传感器. 分析试验室, 2004, 23(5): 37-40
    [162] Saber R, Mutlu S, Piskin E. Glow-dicharge treated piezoelectric guartz crystal immunosensors for has detection. Biosensor and Bioelectronics, 2002,17(9): 727-734
    [163] Wang H, Zeng H, Liu Z M, et al. Immunophenotyping of acute leukemia using an integrated piezoelectric immunosensor array. Analytical Chemistry, 2004,76(8): 2203-2209
    [164] 张波, 府伟灵, 蒋天伦, 等. 压电石英晶体传感器检测血浆凝血酶原时间及其初步应用. 第三军医大学学报, 2002, 24(1): 35-38
    [165] Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983,105(13): 4481-4483
    [166] Ebato H, Gentry C A, Herron J N, et al. Investigation of specific binding of antifluorescyl antibody and Fab to fluorescein lipids in Langmuir-blodgett deposited films using quartz crystal microbalance methodology. Analytical Chemistry, 1994, 66(10): 1683-1689
    [167] Karyakin A A, Presnova G V, Rubtsova M Y, et al. Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Analytical Chemistry, 2000, 72(16): 3805-3811
    [168] Brogan K L, Wolfe K N, Jones P A, et al. Direct oriented immobilization of F(ab’) antibody fragments on gold. Analytica Chimica Acta, 2003, 496(1): 73-80
    [169] 赵红秋, 林琳, 唐季安, 等. 纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力. 科学通报, 2001, 46 (4) : 292-296
    [170] 刘涛, 唐季安, 韩梅梅, 等. 纳米金颗粒在石英晶体微天平检测中的表面修饰作用. 科学通报, 2003, 48(4): 342-344
    [171] Wang H., Liu Y L, Yang Y H, et al. A protein A-based orientation-controlled immobilization strategy for antibodies using nanometer-sized gold particles and plasma-polymerized film. Analytical Biochemistry, 2004, 324(2): 219-226
    [172] Wang H, Wang C C, Lei C X, et al. A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Analytical and Bioanalytical Chemistry, 2003, 377(4): 632-638
    [173] Li J S, He X X, Wu Z Y, et al. Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures. Analytica Chimica Acta, 2003, 481(2): 191-198
    [174] Kim G H, Rand A G, Letcher S V. Impedance characterization of a piezoelectric immunosensor part Ⅱ: Salmonella typHimurium detection using magnetic enhancement. Biosensors and Bioelectronics, 2003, 18(1): 91-99
    [175] Decher G. Fuzzy nanoassemlies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232-1237
    [176] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multiplayer films by a polyelectrolytes oncharged surfaces. Thin Solid Films, 1992, 210-211(2):831-835
    [177] Yuri L, Katsuhiko A, Izumi I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 1995, 117(22): 6117-6123
    [178] Caruso F, Niikura K, Furlong D N, et al. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir, 1997, 13(13): 3427-3433
    [179] Wu Z Y, Yan Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Analytica Chimica Acta, 2000, 412(1): 29-35
    [180] Wang C C, Wang H, Wu Z Y, et al. A piezoelectric immunoassay based on self-assembled monolayers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies. Analytical and Bioanalytical Chemistry, 2002, 373(8): 803-809
    [181] Baar M J, Patonay G. Ultrasensitive detection of closely related angiotensin I peptides using capillary electrophoresis with near-Infrared laser-induced fluorescence detection. Analytical Chemistry, 1999, 71(3): 667-671
    [182] Legender Jr B L, Moberg D L, Williams D C, et al. Ultrasensitive near-infrared laser-induced fluorescence detection in capillary electrophoresis using a diode laser and avalanche photodiode. Journal of Chromatography A, 1997, 779(1-2): 185-194
    [183] Zhao X Y, Shippy S A. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection. Analytical Chemistry, 2004, 76(7): 1871-1876
    [184] Sun C X, Yang J H, Li L, et al. Advances in the study of luminescence probes for proteins. Journal of Chromatography B 2004, 803(2004): 173-190
    [185] Santra S M, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry, 2001, 73(20): 4988-4993
    [186] Santra S, Wang K M, Tapec R, et al. Development of novel dyedoped silica nanoparticles for biomarker application. Journal of Biomedical Optics, 2001, 6(2): 160-166
    [187] Bagwe R P, Yang C Y, Hilliard L R, et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 2004, 20(19): 8336-8342
    [188] Ye Z, Tan M, Wang G, et al. Preparation, characterization, and time-resolved fluorometric application of silica-coated Terbium(III) fluorescent nanoparticles. Analytical Chemistry, 2004, 76(3): 513-518
    [189] Rogers Y, Jiang-Baucom P, Huang Z, et al. Boyce-Jacino immobilization of oligonucleotides on to a glass support via disulfide bond:a method for preparation of DNA microarrays. Analytical Biochemistry, 1999, 266(1): 23-31
    [190] Fang X, Liu X, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society, 1999, 121(12): 2921-2922
    [191] Baker G A, Pandey S, Bright F V. Extending the reach of immunoassays to optically dense specimens by using two-photon excited fluorescence polarization. Analytical Chemistry, 2000, 72(22): 5748-5752
    [192] Furzer G S, Veldhuis L, Christopher Hall J. Development and comparison of three diagnostic immunoassay formats for the detection of azoxystrobin. Journal of Agricultural and Food Chemistry, 2006, 54(3): 688-693
    [193] Bagwe R, Khilar K. Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir, 1997, 13(24): 6432-6438
    [194] Lee B H, Shim Y B, Park S B. A lipophilic sol-gel matrix for the development of a carbonate-selective electrode. Analytical Chemistry, 2004, 76(20): 6150-6155
    [195] Benfey D B, Brown D C, Davis S J, et al. Diode-pumped dye laser analysis and design. Applied Optics, 1992, 31(3333): 7034-7041
    [196] Murcia M J, Shaw D L, Woodruff H, et al. Long facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots. Chemistry of Materials, 2006, 18(9): 2219-2225
    [197] McCarroll M E, Haddadian Billiot F, Warner I M. Fluorescence anisotropy as a measure of chiral recognition. Journal of the American Chemical Society, 2001, 123(13): 3173-3174
    [198] Matthew J H, Dmitri T, Thomas T, et al. R150A mutant of F TraI relaxase domain: reduced affinity and specificity for single-stranded DNA and altered fluorescence anisotropy of a bound labeled oligonucleotide. Biochemistry, 2002, 41(20): 6460-6468
    [199] Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [200] Gokulrangan G, Unruh J, Holub D, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry, 2005, 77(7): 1963-1970
    [201] Hoffman R, Edward J, Banz J, et al. Hematology: basic principles and practice. New York: Churchill Livingstone Press, 2000, 1007-1008, 1075
    [202] Ba D N. Modern immunological techniques and applications. Beijing: Medical University Press, 1998, 877-883
    [203] 王淑娟 主编. 实验诊断学. 北京: 北京医科大学和中国协和医科大学联合出版社, 1991, 64-69, 73, 77
    [204] Traweek S T. Immunophenotypic analysis of acute leukemia. American Journal of Clinical Pathology, 1993, 99(4): 504-512
    [205] Faderl S. Kantarjian H M, Talpaz M, et al. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood, 1998, 91(11): 3995-4019
    [206] Paredes-Aguilera R. Flow cytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia. American Journal of Hematology, 2001, 68(2): 69-74
    [207] Ghossein R A, Bhattacharya S. Molecular detection and haracterisation of circulating tumour cells and micrometastascs in solid tumnouts. Cancer, 2000, 36(9): 1681-1694
    [208] Iinuma H, Okimaga K, Adachi M, et al. Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specific amplification of p53 and K-ras genes in patients with colorectal cancer. International Journal of Cancer, 2000, 89(4): 337-344
    [209] Liu Yin J A, Grimwade D. Minimal residual disease evaluation in acute myeloid leukaemia. Lancet, 2002, 360(9327): 160-162
    [210] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6): 818–822
    [211] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505–510
    [212] Osborne S E, Ellington A D. Nucleic acid selection and the challenge of combinatorial chemistry. Chemical reviews, 1997, 97(2): 349–370
    [213] Nutiu R, Li Y. In vitro selection of structure-switching signaling aptamers. Angewandte Chemie International Edition, 2005, 44(7): 1061–1065
    [214] Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. AnnualReview of Biochemistry, 1999, 68(8): 611–647
    [215] Breaker R R. Natural and engineered nucleic acids as tools to explore biology. Nature, 2004, 432(12): 838–845
    [216] Fang X, Sen A, Vicens M, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 2003, 4(9): 829–834
    [217] Guo K, Wendel H P, Scheideler L, et al. Aptamer-based capture molecules as a novel coating strategy to promote cell adhesion. Journal of Cellular and molecular Medicine, 2005, 9(3): 731–736
    [218] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(48): 17278–17283
    [219] Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition, 2006, 45(1): 90–94
    [220] Jayasena S D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 1999, 45(9): 1628–1650
    [221] Shangguan D H, Li Y, Tang Z W, et al. Aptamer evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 11838-11843
    [222] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409(13): 928-933
    [223] Wabuyele M B, Farquar H, Stryjewski W, et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. Journal of the American Chemical Society, 2003, 125(23): 6937-6945
    [224] Ross P, Hall L, Smirnov I, et al. High-level multiplex genotyping by MALDI-TOF mass spectrometry. Nature Biotechnology, 1998, 16(10): 1347-1351
    [225] Schmalzing D, Belenky A, Novotny M A, et al. Microchip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Research, 2000, 28(9): e43-e43
    [226] Wang D G, Fan J B, Siao C J, et al. Large-scal identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082
    [227] Hacia J G. Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Research, 1998, 8(12): 1245-1258
    [228] Livak K J, Marmaro J, Todd A J. Towards fully automated genome-wide polymorphism screening. Nature Genetics, 1995, 9(2): 341-342
    [229] Chen X, Kwok Y P. Template-directed dyeterminator incorporation (TDI) assay:a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Research, 1997, 25(2): 347-353
    [230] Tobe V O, Taylor S L, Nickerson D A. Single-well genotyping of diallelic sequence variations by a two-color ELISA-based oligonucleotide ligation assay. Nucleic Acids Research, 1996, 24(19): 3728-3732
    [231] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988, 241(4869): 1077-1080
    [232] Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(1): 189-193
    [233] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(11): 607-609
    [234] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetricdetection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078-1081
    [235] Storhoff J J, Elghanian R, Mucic RC, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [236] Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research, 2005, 33(19): e168-e168
    [237] Luo J Y, Bergstrom D E, Barany F. Improving the fidelity of thermos thermophilus DNA ligase. Nucleic Acids Research, 1996, 24(14): 3071-3078
    [238] Tong J, Cao W G, Barany F. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Research, 1999, 27(3):788-794
    [239] Hsu T M, Law S M, Duan S H, et al. Genotyping single-nucleotide polymorphisms by the invader assay with dual-color fluorescence polarization detection. Clinical Chemistry, 2001, 47(8): 1373–1377
    [240] Gibson N J, Gillard H L, Whitcombe D, et al. A homogeneous method for genotyping with fluorescence polarization. Clinical Chemistry, 1997, 43(8): 1336-1341
    [241] Deng T, Li J S, Jiang J H, et al. Preparation of near-IR fluorescent nanoparticles for fluorescence anisotropy-based immunoagglutination assay in whole blood. Advanced Functional Materials, 2006, 16(16): 2147-2155
    [242] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998, 19 (3): 225-232
    [243] Mok M, Marians K J. Formation of rolling-circle molecules during phiX174 complementary strand DNA replication. Journal of Biological Chemistry, 1987, 262 (5): 2304-2309
    [244] Blanco L, Bernad A, Lazaro J M, et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. Journal of Biological Chemistry, 1989, 264(15): 8935-8940
    [245] 王亚君, 黄朝阳, 程金平. 滚环扩增体系及其应用研究进展. 临床输血与检验, 2005, 7(1): 73-75
    [246] Nelson J R, Cai Y C, Giesler T L, et al. TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. Biotechniques, 2002, 32(1): 44-47
    [247] Wu H C, Shieh J, Wright D J, et al. DNA sequencing using rolling circle amplification and precision glass syringes in a high-throughput liquid handling system. Biotechniques, 2003, 34 (1): 204-207
    [248] Qi X, Bakht S, Devos K M, et al. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Research, 2001, 29(22): e116-e122
    [249] Faruqi A F, Hosono S, Driscoll M D, et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. Genomics, 2001, 2(1): 4-11
    [250] Alsmadi O A, Bornarth C J, Song W, et al. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay. Genomics,2003, 4(1): 21-26
    [251] Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Research, 2001, 29(23): e118-e124
    [252] Ladner D P, Leamon J H, Hamann S, et al. Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays. Laboratory Investigation, 2001, 81(10): 1079-1086
    [253] Kingsmore S F, Patel D D. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification. Current Opinion in Biotechnology, 2003, 14(1): 74-81
    [254] Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnology, 2002, 20(4): 359-365
    [255] Shao W, Zhou Z, Laroche I, et al. Optimization of rolling circle amplified protein microarrays for multiplexed protein profiling. Journal of Biomedicine and Biotechnology, 2003, 2003(5): 299-307
    [256] Wiltshire S, O’Malley S, Lambert J, et al. Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification. Clinical Chemistry, 2000, 46(12): 1990-1993
    [257] Nilsson M, Gullberg M, Dahl F, et al. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design, Nucleic Acids Research, 2002, 30(14): e66-e71
    [258] Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society, 1998, 120(9): 1959-1964
    [259] Fendler J H. Self-assembled nanostructured materials. Chemistry of Materials, 1996, 8(8): 1616-1624
    [260] Bourgeat-Lami E. Organic-inorganic nanostructured colloids. Journal of Nanoscience and Nanotechnology, 2002, 2(1): 1-24
    [261] Grabar K, Smith P, Musick M, et al. Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. Journal of the American Chemical Society, 1996, 118(5): 1148-1153
    [262] Brown K R,Fox A P,Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. Journal of the American Chemical Society, 1996, 118(5): 1154-1157
    [263] Li H, Wen J X, Cai Q, et al. A novel nano-Au-assembled gas sensor for atmospheric oxygen determination. Analyst, 2001, 126(2): 1747-1752
    [264] Graber K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 1995, 67(4): 735-743
    [265] 王雪林, 杨秋霞, 罗秀梅. 电聚合邻苯二胺薄膜的研究. 山东建材学院学报 1996, 10(4): 19-24
    [266] Xu Y Y, Circolo A, Jing H, et al. Mutational analysis of the primary substrate specificity pocket of complement factor B. The Journal of Biological Chemistry, 2000, 275(1): 378-385
    [267] Porter R R. Complement polymorphism, the major histocompatibility complex and associated diseases: a speculation. Molecular Biology and Medicine, 1983, 1(1): 161-168
    [268] Blanchong C A, Chung E K, Rupert K L, et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. International Immunopharmacology, 2001, 1(3): 365-392
    [269] Wang S J. Experimental diagnostics, Integrated Press of Beijing Medical University and Peking Union Medical College, Beijing, 1992, 91
    [270] Lv G R, Song Z Y. Newly-edited clinical test normal value, Qindao Press, Qindao, 1996, 186
    [271] Guibault G G, Luong J H T, Prusak-Sochaczewski E. Immobilization methods for piezoelectric biosensors. Bio/Technology, 1983, 7(44): 349-351
    [272] Ebersole R C, Miller J A, Moran J R,et al. Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors. Journal of the American Chemical Society, 1990, 112(8): 3239-3241
    [273] Alvarez-Icaza M, Bilitewski U. Mass production of biosensors. Analytical Chemistry, 1993, 65(1111): 525-535
    [274] Yamaguchi S, Shimomura T, Tatsuma T, et al. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators. Analytical Chemistry, 1993, 65(14): 1925-1927
    [275] Konig B, Gratzel M. A novel immunosensor for herpes viruses. Analytical Chemistry, 1994, 66(3): 341-344
    [276] Suri C R, Raje M, Mishra G C. Determination of immunoglobulin M concentration by piezoelectric crystal immunobiosensor coated with protamine.Biosensors and Bioelectronics, 1994, 9(4-5): 325-332
    [277] Minunni M, Mascini M, Carter R M, et al. A QCM displacement assay for listeria monocytogenes. Analytica Chimica Acta, 1996, 325(3): 169-174
    [278] Boveniser J S, Jacobs M B, Guilbault G G, et al. The detection of pseudomonas aeroginosa using the quartz crystal microbalance. Analytical Letters, 1998, 31(373): 1287-1295
    [279] Muramatsu H, Dicks J, Tamia E, et al. Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins. Analytical Chemistry, 1987, 59(23): 2760-2763
    [280] Steegborn C, Skladal P. Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution. Biosensors and Bioelectronics, 1997, 12(1): 19-27
    [281] Konig B, Gratzel M. Development of a piezoelectric immunosensor for the detection of human erythrocytes. Analytica Chimica Acta, 1993, 276(2): 329-333
    [282] Nakanishi K, Muguruma H, Karube I. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry, 1996, 68(10): 1695-1700
    [283] Wu Z Y, Yan Y H, Shen G L, et al. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Analytica Chimica Acta, 2000, 412(1-2): 29-35
    [284] Hoyer B, Florence T M. Application of polymer-coated glassy carbon electrodes to the direct determination of trace metals in body fluids by anodic stripping voltammetry. Analytical Chemistry, 1987, 59(2424): 2839-2842
    [285] Le Gal La Salle A, Limoges B, Rapicault S, et al. New immunoassay techniques using Nafion-modified electrodes and cationic redox labels or enzyme labels. Analytica chimica acta, 1995, 311(3): 301-308
    [286] Liu H, Yang T, Sun K, et al. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Analytica Chimica Acta, 1997, 344(3): 187-199
    [287] Bain C D, Evall J, Whitesides G M. Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. Journal of the American Chemical Society, 1989, 111(18): 7155-7164
    [288] Bunde R L, Jarvi E J, Rosentreter J J. Piezoelectric quartz crystal biosensors-a review. Talanta, 1998, 46(6): 1223-1236
    [289] Hu J M, Liu L J, Danielsson B, et al. Piezoelectric immunosensor for detection of complement C6. Analytica Chimica Acta, 2000, 423(2): 215-219
    [290] Deng T, Wang H, Li J S, et al. A novel immunosensor based on self-assembled chitosan/alginate multilayers for the detection of factor B. Sensors and Actuators B, 2004, 99(1): 123-129
    [291] Lu H C, Chen H M. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress, 2000, 16 (1): 116-124
    [292] Uda T, Hifumi E, Kobayashi T, et al. An approach for an immunoaffinity AIDS sensor using the conservative region of the HIV envelope protein (gp41) and its monoclonal antibody. Biosensors and Bioelectronics, 1995, 10 (5): 477-483
    [293] Wang C, Wang H, Wu Z Y, et al. A piezoelectric immunoassay based on self-assembled monolayers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies. Analytical and Bioanalytical Chemistry, 2002, 373 (8): 803-809
    [294] Kaschak D M, Mallouk T E. Inter- and intralayer energy transfer in Zirconium phosphate-poly(allylamine hydrochloride) multilayers: an efficient photon antenna and a spectroscopic ruler for self-assembled thin films. Journal of the American Chemical Society, 1996, 118 (17): 4222-4223
    [295] Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277 (5330): 1232-1237
    [296] Lowack K, Helm CA. Molecular mechanisms controlling the self-assembly process of polyelectrolyte multiayers. Macromolecules, 1998, 31 (3): 823-833
    [297] Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules, 2000, 33 (11): 4213-4219
    [298] Fabianowski W, Roszko M, Brodzinska W. Optical sensor with active matrix built from polyelectrolytes–smart molecules mixture. Thin Solid Films, 1998, 327 (329): 743-747
    [299] Wagner M, Tamm L. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophysical Journal, 2000, 79 (3): 1400-1414
    [300] Serizawa T, Hashiguchi S, Akashi M. Stepwise assembly of ultrathin poly(vinylalcohol) films on a gold substrate by repetitive adsorption/drying processes. Langmuir, 1999, 15 (16): 5363-5368
    [301] Constantine C A, Mello S V, Dupont A, et al. Layer-by-layer self-assembled chitosan/poly(thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. Journal of the American Chemical Society, 2003, 125 (7): 1805-1809
    [302] Hoshi T, Saiki H, Kuwazawa S, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors. Analytical Chemistry, 2001, 73 (21): 5310-5315
    [303] Yabuki S, Mizutani F, Hirata Y. Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator. Sensors and Actuators B, 2000, 65 (1): 49-51
    [304] Bernkop-Schnürch A, Guggi D, Pinter Y. Thiolated chitosans: development and in vitro evaluation of a mucoadhe- sive, permeation enhancing oral drug delivery system. Journal of Control Release, 2004, 94(1): 177-186
    [305] Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 1995, 117(22): 6117-6123
    [306] 王桦, 吴朝阳, 王存嫦, 等. 基于等离子体聚合膜的日本血吸虫压电免疫传感器的研究. 化学学报 2001, 59 (9): 1457-1463
    [307] Claesson P M, Ninham B W. pH-dependent interactions between adsorbed chitosan layers. Langmuir, 1992, 8 (5): 1406-1412
    [308] Bartkowiak A, Hunkeler D. Alginate-oligochitosan microcapsules. II. control of mechanical resistance and permeability of the membrane. Chemistry of Materials, 2000, 12 (1): 206-212
    [309] Li S, Wang X T, Zhang X B. Studies on alginate-chitosan microcapsules and renal arterial embolization in rabbits. Journal of Control Release, 2002, 84 (3): 87-98
    [310] Hu J M, Liu L J, Danielsson B, et al. Piezoelectric immunosensor for detection of complement C6. Analytica Chimica Acta, 2000, 423 (2): 215-219
    [311] 吕桂荣, 宋增艺. 新编临床检测手册. 青岛: 青岛出版社, 1996, 186
    [312] Ulman. A. Formation and structure of self-assembled monolayers. Chemical Review, 1996, 96(4): 1533-1535
    [313]沈钟, 王果庭. 胶体表面化学. 北京: 化学工业出版社, 1991, 448-452
    [314]庹新林, 成昊. 侧链型偶氮聚电解质自组装和膜结构研究. 高等学校化学学报 2001, 22(9): 1581-1586
    [315] Lu H C, Chen H M. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress, 2000,16(4): 116-124
    [316]裴仁军, 胡继明. 蛋白A 定向固定抗体的纤维蛋白压电免疫传感器的研究. 高等学校化学学报 1998, 19(3): 363-367
    [317] Bramwell M E, Humm S M. Variations in the relative amounts of biotin-containing enzymes present in both tumorigenic and non-tumorigenic hybrid cells and other cell lines. Biochimica Biophysica Acta, 1992, 1139(1-2): 115-121
    [318] Cherbonnel-Lasserre C L, Linares-Cruz G, Rigaut J P, et al. Strong decrease in biotin content may correlate with metabolic alterations in colorectal adenocarcinoma. International Journal of Cancer, 1997, 72(5): 768-775
    [319] Mock D M, Quirk J G, Mock N I. Marginal biotin deficiency during normal pregnancy. American Journal of Clinical Nutrition, 2002, 75(2): 295-299
    [320] Mock D M. Biotin status: which are valid indicators and how do we know? The Journal of nutrition, 1999, 129(22): 498-503
    [321] Green N M. Spectrophotometric determination of avidin and biotin. Methods Enzymology, 1970, 18(20): 418-424
    [322] Reio L. Third supplement for the paper chromatographic separation and identification of phenol derivatives and related compounds of biochemical interest using a "reference system". Journal of Chromatography, 1970, 47(1): 60-85
    [323] Ahmed J, Verma K. Determination of d-biotin at the microgram level. Talanta, 1979, 26(14): 1025-1026
    [324] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica acta, 1985, 30(1010): 1295-1300
    [325] Masson M, Yun K, Haruyama T, et al. Quartz crystal microbalance bioaffinity sensor for biotin. Analytical Chemistry, 1995, 67(1313): 2212-2215
    [326] Florin E L, Moy V T, Gaub H E. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264 (5157): 415-417
    [327] Anzai J I, Hoshi T, Nakamura N. Construction of multilayer thin films containing avidin by a layer-by-layer deposition of avidin and poly(anion)s. Langmuir, 2000, 16(15): 6306-6311
    [328] Vreeke M, Rocca P, Heller A. Direct electrical detection of dissolvedbiotinylated horseradish peroxidase, biotin, and avidin. Analytical Chemistry, 1995, 67(22): 303-306
    [329] Schriemer D, Yalcin T, Li L. MALDI mass spectrometry combined with avidin-Biotin chemistry for analysis of protein modifications. Analytical Chemistry, 1998, 70 (8): 1569-1575
    [330] Struthers L, Patel R, Clark J, et al. Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Analytical Biochemistry, 1998, 255(1): 20-31
    [331] Frederix F, Bonroy K, Laureyn W, et al. Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold. Langmuir, 2003, 19(10): 4351-4357
    [332] Wang R L C, Kreuzer H J, Grunze M. Molecular conformation and solvation of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. The Journal of physical chemistry B, 1997, 101(47): 9767-9773
    [333] Chapman R G, Ostuni E, Yan L, et al. Preparation of mixed self-assembled monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups. Langmuir, 2000, 16(17): 6927-6936.
    [334] Spinke J, Liley M, Guder H J, et al. Molecular recognition at self-assembled monolayers: the construction of multicomponent multilayers. Langmuir, 1993, 9(77): 1821-1825
    [335] Jung L S, Nelson K E, Stayton P S, et al. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir, 2000, 16(24): 9421-9432
    [336] Ikariyama Y, Furuki M, Aizawa M. Sensitive bioaffinity sensor with metastable molecular complex receptor and enzyme amplifier. Analytical Chemistry, 1985, 57(2): 496-500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700