昆虫杆状病毒AcMNPV ORF38的功能研究及特异性转导B淋巴细胞的重组杆状病毒的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     杆状病毒科(Baculoviridae)的成员是一类在自然界中仅感染节肢动物的DNA病毒。苜蓿银纹夜蛾核形多角体病毒(Autographa californica multiplenucleopolyhedrovirus,AcMNPV)是该科病毒的模式种,在科研与实践中都具有广泛的作用。近年,人们对杆状病毒开展了大量的研究,对病毒的复制机制、基因组结构及其表达和调控、蛋白的结构和功能、与宿主相互作用的分子生物学基础等有了较为深入的认识。
     自从1994年AcMNPV全基因组测序工作完成以来,很多必需基因的功能已经被阐释。除了必需基因之外,在杆状病毒的基因组中还有一些基因虽然对于病毒的复制来说并不是必需的,但它们却对病毒的复制起着种调节作用。因此,这些基因对病毒的正常复制同样是重要的。
     AcMNPV的AcORF38就是一个这样的基因。通过生物信息学分析发现,AcORF38蛋白带有焦磷酸水解酶(Nudix水解酶)的保守结构域。克隆表达制备了重组AcORF38蛋白,体外酶活分析证实其具Nudix水解酶的活性,可水解ADP-ribose。在pH=8.0,Mg~(2+)浓度为5mM和AcORF38为28μM时,水解ADP-ribose的K_m值为204μM,K_(cat)=6.96 s~(-1)。RT-PCR证实,该基因确实在病毒感染的早期表达。
     进一步构建了orf38缺失的重组病毒vAcGFP-Δ38,证实该基因并不是病毒完成复制所必须的。但同时也发现vAcGFP-Δ38感染Sf9细胞后,出芽型病毒的效价仅为对照病毒的1/300,表明病毒的正常复制受到影响。因此,AcORF38对AcMNPV的正常复制有重要作用。
     为了研究AcORF38蛋白的作用机理,用电子显微镜比较了缺陷病毒和野生型病毒感染细胞的细胞病理学,发现缺陷病毒感染的细胞中病毒粒子数量远多于野生型病毒。进一步又用实时定量PCR法,分析了病毒早期基因表达,和病毒基因组复制的情况,发现缺陷病毒基因组合成水平及四个早期基因,lef-2,lef-3,dnapol和p143的转录水平也远高于野生型病毒。这提示AcORF38可以降低感染早期病毒基因的转录水平和DNA合成水平。
     进一步用AcORF38表达质粒和报告基因质粒共转染昆虫Sf9细胞,发现AcORF38表达不仅能降低报告基因egfp的表达和细胞荧光强度,同时还能降低细胞actin基因的mRNA水平。用CMV启动子在哺乳动物细胞HEK293等5株细胞中表达AcORF38,也观察到同样的结果。这些结果表明AcORF38可以非特异性地降低mRNA的水平。
     考虑到AcORF38作为Nudix水解酶的特性,初步推测AcORF38可能参与真核mRNA帽子结构的降解。为此,分别用ADP-ribose和mRNA帽子结构模拟物m7GpppG作为AcORF38的底物,进行水解反应,测得的米氏常数显示相对ADP-Ribose而言,m7GpppG更适合作为AcORF38的底物。
     总之,AcORF38对细胞和病毒的基因的表达有负调控作用,且这种调控作用没有专一性,推测可能是通过水解mRNA帽子结构来实现的。AcORF38的这种调控作用,有可能可以避免早期调控蛋白的过度表达,保证病毒正常复制。其确切的机理还有待深入研究。
     第二部分
     杆状病毒作为哺乳动物细胞基因转移的载体有很多独特的优点,包括:安全性好,在哺乳动物中不能复制;对外源基因的容量大,其核衣壳至少可以容纳100kb的外源基因;毒副作用小,即使在高MOI感染时也不会引起细胞毒性等等。但它也存在对一些细胞,包括B淋巴细胞,侵入效率低等问题。
     为了提高杆状病毒对B淋巴细胞的转导效率,本课题首次通过杆状病毒表面展示技术,对病毒的表面蛋白GP64分子进行修饰。采用"贪婪展示"的策略,即每一分子的GP64都是插入了外源短肽的),将人类EBV的表面蛋白GP350/220中能和成熟B淋巴细胞表面分子CD21相互结合的一段十肽,EDPGFFNVEI,成功地展示在重组病毒表面,得到重组病毒vAc-gp350EGFP。用重组病毒转导Raji细胞能使其EGFP的阳性率从0.05%上升至12.6%,同时用其它四株无论是EBV阳性或是EBV阴性的B淋巴细胞HR1,B95-8,BJAB,和DG75也都得到了类似的结果。进一步的实验发现用CD21的抗体处理B淋巴细胞,能竞争性地抑制该重组病毒对细胞的转导,提示重组病毒确实是通过与B淋巴细胞表面CD21蛋白以配-受体结合的方式相互作用,提高病毒转导效率的。
     本研究的结果大大提高了杆状病毒转导B淋巴细胞的效率和外源基因的表达水平,使杆状病毒有可能用于转导B淋巴细胞。此外,本研究的实验途径,可以广泛地应用于利用已知的受-配体关系改造杆状病毒,扩大其可以转导的哺乳动物细胞的范围,获得高效特异的病毒载体。
PartⅠ
     Baculoviridae is a group of viruses that only infects arthropod in nature.The type species of Baculoviridae,Autographa californica nucleopolyhedrovirus (AcMNPV),has been extensively used in research and application.More and more knowledge about the Baculovirus,such as its life cycle,genome structure and replication,the regulation of gene expression,protein structure and function,and the interaction between virus and host,have been accumulated during last few decades.
     After the publication of the whole genome sequence of AcMNPV in 1994,many essential viral genes were identified.However,apart from these essential genes,there are still many other genes that play important roles in the life cycle of the virus, although not being essential for virus replication.Without them,virus replication would be impaired.
     AcORF38 of AcMNPV is one of such genes.Bioinformatics analysis revealed that it contains a conserved motif of Nudix superfamily.In the current study,the recombinant AcORF38 protein was prepared and shown to have the activity to hydrolyze ADP-Ribose in vitro,with a K_m of 204μM,and K_(cat)of 6.96 s~(-1)at pH 8.0 and 5mM MgCl_2 when the concentration of AcORF38 was 28μM.This result implied that AcORF38 is truly a member of Nudix superfamily.The results of RT-PCR showed that orf38 gene is transcribed in the early phase of AcMNPV infection.
     An orf38 gene-deleted mutant virus,vAcGFP-△38,was constructed.The virus produced progeny virus,which meant that orf38 was non-essential for virus replication.However,the extracellular virus produced by the mutant virus was only 1/300 of that of the wild-type virus.This result indicated that orf38 played an important role in the infection cycle of virus.
     To further study the function of AcORF38,infected Sf9 cells were examined with electron microscopy.In the showed much more virus particles were observed in cells infected with vAcGFP-△38 than that infected with vAcGFP.In consistence with electronic microscopy,quantitation of viral DNA and mRNAs by real-time PCR found that the level of viral DNA,as well as four viral early mRNAs,including lef-2, lef-3,dnapol and p143,were significantly high in vAcGFP-△38-infected cells than vAcGFP-infected cells.The results suggested that AcORF38 might reduce the viral DNA synthesis and viral gene expression in the early phase of virus infection.
     Transient-expression assays further confirmed that AcORF38 reduced the expression of reporter gene egfp,as well as the mRNA level of cellular gene actin. Similar results were observed in transient assay in other 5 mammalian cells using AcORF38-expression vector driven by CMV promoter,indicating that AcORF38 might non-specifically reduce mRNA level in various cells.
     Taking the properties of Nudix hydrolase into account,it was postulated that AcORF38 might be an enzyme involved in degrading the cap structure at the 5' end of eukaryotic mRNA.To test it,both the analog of the cap,m7GpppG,and ADP-ribose were used as substrate for AcORF38.The K_m value was lower when m7GpppG was used as substrate,than ADP-Ribose,indicating that m7GpppG mignt be a more appropriate substrate than ADP-Ribose.
     Taking together,the current study suggested that AcORF38 was a negative regulator of viral and cellular gene expression.It did that in a non-specific way, possibly through hydrolyzing the cap structure of mRNAs.Such a negative regulator could prevent the over expression of viral early proteins and ensure the normal replication of the virus.The detailed mechanism of AcORF38 is still to be understood
     PartⅡ
     As a mammalian gene transfer vector,baculovirus has several unique advantages.For example,it is highly safe to use since it can not replicate in mammalian cells,it has a large capacity to hold foreign genes,since its rod-shaped nucleocapsid can accommodate an additional 100kb or more of DNA,and it has little cytotoxicity even at high multiplicity of infection.However,baculovirus also has its disadvantages such as the low transduction efficiency in some cells,including B-lymphocytes.
     In order to enhance baculovirus transduction of B cells,baculovirus surface display technology was applied to modify the virus surface protein of baculovirus. A short peptide motif from GP350/220 of Epstein-Barr virus,EDPGFFNVEI,which was known to bind to CD21,a surface protein on B-lymphocyte,was inserted into GP64,the main surface glycoprotein of AcMNPV.A recombinant virus, vAc-gp350EGFP,was constructed with the "avidity display" strategy,in which all copies of GP64 molecules on the virion had the motif.The recombinant virus, compared with a control virus with wild type GP64,showed increased transduction efficiency in B cell lines Raji,HR1,B95-8,BJAB,and DG75,regardless of their being EBV-positive or EBV-negative.The rate of EGFP positive Raji cell increased from 0.05%when transduced with the control virus,to 12.6%when transduced with vAc-gp350EGFP.The transduction of Raji cells by vAc-gp350EGFP was dose-dependently inhibited by pre-treatment of cells with anti-CD21 antibody, indicating that the improvement of the transduction was due to the interaction between the GP350/220 peptide and the CD21 molecules on the surface of B lymphocytes.
     The work significantly improved the transduction efficiency of baculovirus in B-lymphocytes.The approach used in the work might be applied to explore the known interactions of ligands and receptors,so as to expand the range of susceptible cells of baculovirus-mammalian cells vectors,or to increase the specificity of those vectors.
引文
[1]D.I.Fisher,J.L.Cartwright,H.Harashima,H.Kamiya and A.G.McLennan.Characterization of a Nudix hydrolase from Deinococcus radiodurans with a marked specificity for(deoxy)ribonucleoside 5'-diphosphates[J].BMC Biochem.,2004,5(0):7
    [2]S.T.Safrany,J.J.Caffrey,X.N.Yang,M.E.Bembenek,M.B.Moyer,W.A.Burkhart et al.A novel context for the ‘MutT' module,a guardian of cell integrity,in a diphosphoinositol polyphosphate phosphohydrolase[J].EMBO J.,1998,17(22):6599-6607.
    [3]D.I.Fisher,S.T.Safrany,P.Strike,A.G.McLennan and J.L.Cartwright.Nudix hydrolases that degrade dinucleoside and diphosphoinosicol polyphosphates also have 5-phosphoribosyll-pyrophosphate(PRPP)pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate[J].J.Biol.Chem.2002,277(49):47313-47317.
    [4]B.G.Lawhorn,S.Y.Gerdes and T.P.Begley.A genetic screen for the identification of thiamin metabolic genes[J].J.Biol.Chem.,2004,279(42):43555-43559.
    [5]S.M.J.Klaus,A.Wegkamp,W.Sybesma,J.Hugenholtz,J.F.Gregory and A.D.Hanson.A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants[J].J.Biol.Chem.,2005,280(7):5274-5280.
    [6]A.S.Mildvan,Z.Xia,H.F.Azurmendi,V.Saraswat,P.M.Legler,M.A.Massiah et al.Structures and mechanisms of Nudix hydrolases[J].Arch.Biochem.Biophys.,2005,433(1):129-143.
    [7]M.J.Bessman,D.N.Frick,S.F.O' Handley.The MutT proteins or" Nudix" hydrolases,a family of versatile,widely distributed," housecleaning" enzymes[J].J.Biol.Chem,1996,27l(41):25059-25062.
    [8]C.Yanofsky,E.C.Coxand and V.Horn.The unusual mutagenic specificity of an E.coli mutator gene[J].Proc.Natl.Acad.Sci.USA,1966,55(2):274-281.
    [9]Z.R.Wang,X.F.Jiao,A.Carr-Schmid and M.Kiledjian.The hDcp2 protein is a mammalian mRNA decapping enzyme[J].Proc.Natl.Acad.Sci.USA,2002,99(20):12663-12668.
    [10]J.Sambrook,E.F.Fritsch,T.Maniatis,Molecular Cloning:A Laboratory Manual(2nd ed.).Cold Spring Harbor Laboratory Press,New York,1989.
    [11]Invitrogen,Instruction Manual:BAC-TO-BAC(?)Baculovirus Expression Systems.1-37
    [12]薛庆善(2001)体外培养的原理与技术。科学出版社
    [13]Y.Ho,H.R.Lo,T.C.Lee,C.P.Wu,Y.C.Chao,Enhancement of correct protein folding in vivo by a non-lytic baculovirus[J].Biochem.J.,2004,382(2):695-702.
    [14]GB/T11893-1989.水质总磷的测定钼酸铵分光光度法[S].北京:中国标准出版社,1989:
    [15]C.A.Dunn,S.F.O' Handley,D.N.Frick,M.J.Bessman,Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB,a gene associated with tellurite resistance[J].J.Biol.Chem.,1999,274(45):32318-32324.
    [16]S.Parrish,B.Moss,Characterization of a vaccinia virus mutant with a deletion of the D10R gene encoding a putative negative regulator of gene expression[J].J.Virol.,2006,80(1):553-561.
    [17]S.Parrish,W.Resch,B.Moss.Vaccinia virus D10 protein has mRNA decapping activity,providing a mechanism for control of host and viral gene expression[J].Proc.Natl.Acad.Sci.USA.,2007,104(7):2139-44.
    [1]L.E.Volkman and P.A.Goldsmith.In vitro survey of Autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells[J].Appl.Environ.Microbiol,1983,45(3):1085%1093.
    [2]A.Huser and C.Hofmann.Baculovirus Vectors:Novel Mammalian Cell Gene-Delivery Vehicles and Their Applications[J].Am J Pharmacogenomics,2003,3(1):53-63.
    [3]T.Chen,C.-Y.Xu,Y.-B.Wang,M.Chen,T.Wu,J.Zhang,N.-S.Xia.A rapid and efficient method to express target genes in mammalian cells by baculovirus[J].World J.Gastroenterol.,2004,10(11):1612-1618.
    [4]J.P.Condreay,S.M.Witherspoon,W.C.Clay,T.A.Kost,Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector[J].Proc.Natl.Acad.Sci.U.S.A.,1999,96(1):127-132.
    [5]P.Buttgereit,S.Weineck,G.Ropke,A.Marten,K.Brand,T.Heinicke,W.H.Caselmann,D.Huhn,I.G.Schmidt-Wolf.Efficient gene transfer into lymphoma cells using adenoviral vectors combined with lipofection[J].Cancer Gene Ther.,2000,7(8):1145-1155.
    [6]J.D.Fingeroth,J.J.Weis,T.F.Tedder,J.L Strominger,P.A.Biro,D.T.Fearon.Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2[J].Proc.Natl.Acad.Sci.U.S.A.,1984,81(14):4510-4514.
    [7]J.Tanner,Y.Whang,J.Sample,A.Sears,E.Kieff.Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr Virus adsorption to lymphocytes[J].J.Virol.,1988,62(12):4452-4464.
    [8]A.G.Oomens,S.A.Monsma,G.W.Blissard.The baculovirus GP64 envelope fusion protein:Synthesis,oligomerization,and processing[J].Virology,1995,209(2):592-603.
    [9]Spenger A,Grabherr R,Tollner L,Katinger H,Ernst W.Altering the surface properties of baculovirus Autographa californica NPV by insertional mutagenesis of the envelope protein gp64[J].Eur J Biochem.2002,269(18):4458-67.
    [10]Invitrogen,Instruction Manual:BAC-TO-BAC(?)Baculovirus Expression Systems.1-37.
    [11]G.P.Smith.Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J].Science.1985,228(4705):1315-7.
    [12]J.C.Boulain,A.Charbit,M.Hofnung.Mutagenesis by random linker insertion into the lamB gene of Escherichia coli K12[J].Mol Gen Genet,1986,205(2):339-48.
    [13]A.Roy,C.E Lu,D.L.Marykwas,et al.The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin[J].Mol Cell Biol,1991,11(8):4196-4206.
    [14]R.Tafi,R.Bandi,C.Prezzi,et al.Identification of HCV core mimotopes:improved methods for the selection and use of disease-related phage-displayed peptides[J].Biol Chem.1997,378(6):495-502.
    [15]L.Aujame,F.Geoffroy,R.Sodoyer.High affinity human antibodies by phage display[J].Hum Antibodies,1997,8(4)155-168.
    [16]G.Duisit,S.Saleun,S.Douthe,J.Barsoum,G.Chadeuf,P.Moullier.Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells[J].J Gene Med,1999,1(2):93-102.
    [1] M.J. Bessman, D.N. Frick, S.F. O'Handley. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes[J]. J. Biol. Chem, 1996,271 (41):25059-25062.
    
    [2] W. Xu, C.A. Dunn, C.R. Jones, G. D'Souza, M.J. Bessman. The 26 Nudix hydrolases of Bacillus cereus, a close relative of Bacillus anthracis[J]. J. Biol. Chem, 2004, 279(23): 24861-24864.
    
    [3] L.W. Kang, S.B. Gabelli, J.E. Cunningham, S.F. O'Handley, L.M. Amzel,. Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis[J]. Structure, 2003,11(8) :1015-1023.
    
    [4] B.W. Shen, A.L. Perraud, A. Scharenberg, B.L. Stoddard,. The crystal structure and mutational analysis of human NUDT9[J]. J. Mol. Biol.,2003,332(2):385-398.
    
    [5] S.B. Gabelli, M.A. Bianchet, H.F. Azurmendi, Z. Xia, V.Saraswat, A.S. Mildvan, L.M. Amzel. Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus[J]. Structure, 2004,12 (6): 927-935.
    
    [6] J. Gough, K. Karplus, R. Hughey and C. Chothia. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure[J] . J. Mol. Biol.,2001, 313(4): 903-919.
    
    [7] A.G McLennan.The Nudix hydrolase superfamily [J]. Cell Mol Life Sci., 2006, 63(2): 123-143.
    
    [8] C. Yanofsky, E. C. Coxand and V. Horn. The unusual mutagenic specificity of an E. coli mutator gene[J]. Proc. Natl. Acad. Sci. USA, 1966, 55(2): 274-281.
    
    [9] M.D. Topal and J.R. Fresco. Complementary base pairing and the origin of substitution mutations[J]. Nature, 1976,263 (5575):285-289.
    
    [10] R.M. Schaaper and R.L. Dunn. Escherichia coli mutt mutator eject during in vitro DNA synthesis. Enhanced AG replication errors[J]. J. Biol. Chem., 1987, 262(34):16267-16270.
    
    [11] M. Akiyama , H. Maki, M. Sekiguchi and T. Horiuchi. A specific role of MutT protein: To prevent dG.dA mispairing in DNA replication[J]. Proc. Natl. Acad. Sci. USA, 1989, 86(11):3949-3952.
    
    [12] R.G. Fowler and R.M. Schaaper. The role of the mutT gene of Escherichia coli[J]. FEMS Microbiology Reviews, 1997, 21(1):43-54
    
    [13] V. Me'jean, C Salles , L. C. Bullions , M. J. Bessman, and J. P. Claverys. Characterization of the mutX gene of Streptococcus pneumoniae as a homologue of Escherichia coli mutT, and tentative definition of a catalytic domain of the dGTP pyrophosphohydrolases [J]. Mol. Microbiol. 1994, 11(2):323-330.
    [14] M. E. Santos and J.W. Drake. Rates of spontaneous mutation in bacteriophage T4 are independent of host fidelity determinants[J]. Genetics,1994,138(3)553-564.
    
    [15] V. Mejean , C. Salles, L.C.BulIions, J.J. Bessman and J.-P. Claverys. Characterization of the mutX gene of Streptococcus pneumoniae as a homologue of Escherichia coli mutT, and tentative definition of a catalytic domain of the dGTP pyrophosphohydrolases[J]. Mol. Microbiol. , 1994, 11(2)323-330.
    
    [16] L.C. Bullions, V. Mejean , J.-P. Claverys and M.J. Bessman. Purification of the MutX protein ofStreptococcus pneumoniae, a homologue of Escherichia coli MutT[J]. J. Biol. Chem., 1994, 269(16):12339-12344.
    
    [17] A.V. Kamath and C.Yanofsky. Sequence and characterization of mutt from Proteus vulgaris[J].Gene,1993,134(1):99-102.
    
    [18] T. Kakuma, J. Nishida, T. Tsuzuki and M. Sekiguchi. Mouse MTH1 protein with 8-oxo-7, 8-dihydro 2P-deox-yguanosine 5P-triphosphatase activity that prevents transversion mutation[J]. J. Biol. Chem.,1995, 270(43)25942-25948.
    
    [19] J.-P. Cai, T. Kakuma, T. Tsuzuki and M. Sekiguchi. cDNA and genomic sequences for rat 8-oxo-dGTPase thatprevents occurrence of spontaneous mutations due to oxida-tion of guanine nucleotides[J]. Carcinogenesis,1995,16(10):2343-2350.
    
    [20] J.-Y. Mo, H. Maki and M. Sekiguchi. Hydrolyticelimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: Sanitization of nucleotide pool[J]. Proc.Natl. Acad. Sci. USA ,1992,89(22)11021-11025.
    
    [21] K. Sakumi, M. Furuichi, T. Tsuzuki, T. Kokuma, S. Kawa-bata, H. Maki and M. Sekiguchi. Cloning andexpression of cDNA for a human enzyme that hydrolyzes8-oxo-dGTP, a mutagenic substrate for DNA synthesis[J]. J. Biol. Chem.,1993,268(31)23524-23530.
    
    [22] Z. Kelman, and M. O'Donnell. DNA polymerase III holoenzyme: structure and function of a chromosomal replication machine[J]. Annu. Rev. Biochem., 1995, 64(0):171-200.
    
    [23] L. C. Bullions, V. Me'jean, J. P. Claverys , and M. J. Bessman. Purification of the MutX protein of Streptococcus pneumoniae, a homologue of Escherichia coli MutT. Identification of a novel catalytic domain for nucleoside triphosphate pyrophosphohydrolase activity [J]. J. Biol. Chem. 1994,269(16): 12339-12344.
    
    [24] S. F. O'Handley, D. N. Frick, L. C. Bullions , A. S. Mildvan , and M. J.Bessman. Escherichia coli orfl7 codes for a nucleoside triphosphate pyrophosphohydrolase member of the MutT family of proteins. Cloning, purification, and characterization of the enzyme [J]. J. Biol. Chem. 1996, 271(40): 24649-24654.
    
    [25] S. F. Altschul, W. Gish, W. Miller, E. W. Meyers , and D. J. Lipman. Basic local alignment search tool[J].J.Mol.Biol.1990,215(3):403-410.
    [26]D.N.Frick,and M.J.Bessman.Cloning,purification,and properties of a novel NADH pyrophosphatase.Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes[J].J.Biol.Chem.1995,270(4):1529-1534.
    [27]D.N.Frick,B.D.Townsend,and M.J.Bessman.A novel GDP-mannose mannosyl hydrolase shares homology with the MutT family of enzymes[J].J.Biol.Chem.1995,270(41):24086-91.
    [28]S.Sonnino,H.Carminatti,and E.Cabib.Direct release of sugar from a sugar nucleotide.A novel enzymatic reaction[J].J.Biol.Chem.1966,241(4):1009-1010.
    [29]M.A.G.Sillero,R.Villalba,A.Moreno,M.Quintinilla,C.D.Lobaton,and A.Sillero.Dinucleosidetriphosphatase from rat liver.Purification and properties[J].Eur.J.Biochem.1977,76(2):331-377.
    [30]W.L.Xu,J.Y.Shen,C.A.Dunn and M.J.Bessman A new subfamily of the nudix hydrolase superfamily active on 5-methyl-UTP(ribo-TTP)and UTP[J].J.Biol.Chem.,2003,278(39):37492-37496.
    [31]W.L.Xu,C.R.Jones,C.A.Dunn and M.J.Bessman.Gene ytkD of Bacillus subtilis encodes an atypical nucleoside triphosphatase member of the Nudix hydrolase superfamily[J].J.Bacteriol.,2004,186(24):8380-8384.
    [32]S.M.J.Klaus,A.Wegkamp,W.Sybesma,J.Hugenholtz,Gregory J.F.and A.D.Hanson A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants[J].J.Biol.Chem.,2005,280(7):5274-5280
    [33]Y.Suzuki and G.M.Brown The biosynthesis of folic acid.Ⅻ.Purification and properties of dihydroneopterin triphosphate[J].J.Biol.Chem.,1974,249(8):2405-2410.
    [34]H.Kloosterman,J.W.Vrijbloed and L.Dijkhuizen.Molecular,biochemical,and functional characterization of a nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase[J].J.Biol.Chem.,2002,277(38):34785-34792.
    [35]E.M.Marcotte,M.Pellegrini,H.-L.Ng,D.W.Rice,T.O.Yeates and D.Eisenberg.Detecting protein function and protein-protein interactions from genome sequences[J].Science,1999,285(5428):751-753.
    [36]N.Raffaelli,T.Lorenzi,A.Amici,M.Emanuelli,S.Ruggieri and G.Magni.Synechocystis sp.slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and 'Nudix' hydrolase activities[J].FEBS Lett.,1999,444(2-3):222-226.
    [37]W.L.Xu.C.A.Dunn and M.J.Bessman.Cloning and characterization of the NADH pyrophosphatases from Caenorhabdits elegans and Saccharomyces cerevisae,members of a Nudix hydrolase subfamily[J].Biochem.Biophys.Res.Commun.,2000,273(2):753-758
    [38]S.R.AbdelRaheim,J.L.Cartwright,L Gasmi and A.G.McLennan.The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes[J].Arch.Biochem.Biophys.,2001,388(1):18-24
    [39]S.R.Abdelraheim,D.G.Spiller and A.G.Mammalian NADH diphosphatases of the Nudix family:cloning and characterization of the human peroxisomal NUDT12 protein[J].Biochem J.,2003,374(2):329-335.
    [40]J.L.Cartwright,L.Gasmi,D.G.Spiller and A.G.McLennan.The Sacchalomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active towards coenzyme A and its derivatives[J].J.Biol.Chem.,2000,275(42):32925-32930
    [41]V.D.Antonenkov,R.T.Sormunen and K.Hiltunen.The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro[J].J.Cell.Sci.,2004,117(23):5633-5642
    [42]T.Nunoshiba,R.Ishida,M.Sasaki,S.Iwai,Y.Nakabeppu and K.Yamamoto.A novel Nudix hydrolase for oxidized purine nucleoside triphosphates encoded by ORFYLR151c(PCD1 gene)in Saccharomyces cerevisiae[J].Nucleic Acids Res.,2004,32(18):5339-5348.
    [43]J.L Cartwright and A.G.McLennan.The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5'5′″_P1,P6-hexaphosphate hydrolase member of the MutT motif(nudix hydrolase)family[J].J.Biol.Chem.,1999,274(13):8604-8610.
    [44]S.W.Ingram,S.T.Safrany and L.D.Barnes.Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene,and effects on growth rate,morphology and intracellular diadenosine 5′,5′″ -P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations[J].Biochem.J.,2003,369(3):519-528.
    [45]A.Saiardi,C.Sciambi,J.M.McCaffery,B.Wendland and S.H.Snyder.Inositol pyrophosphates regulate endocytic trafficking[J].Proc.Natl.Acad.Sci.USA,2002,99(22):14206-14211.
    [46]A.Saiardi,R.Bhandari,A.C.Resnick,A.M Snowman.And S.H.Snyder.Phosphorylation of proteins by inositol pyrophosphates[J].Science,2004,306(5704):2101-2105.
    [47]E.Nagata,H.B.R.Luo,A.Saiardi,B.I.Bae,N.Suzuki and S.H.Snyder Inositol hexakisphosphate kinase-2,a physiologic mediator of cell death[J].J.Biol.Chem.,2005,280(2):1634-1640.
    [48]C.Auesukaree,H.Tochio,M.Shirakawa,Y.Kaneko and S.Harashima.Plc1p,Arg82p and Kcs1p,enzymes involvedin inositol pyrophosphate synthesis,are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae[J].J.Biol.Chem.,2005, 280(26):25127-25133.
    [49]S.T.Safrany.Protocols for regulation and study of diphosphoinositol polyphosphates[J].Mol.Pharmacol.,2004,66(6):1585-1591.
    [50]K.Choi,E.Mollapour and S.B.Shears.Signal transduction during environmental stress:InsP8 operates within highly restricted contexts[J].Cell.Signal.,2005,17(12):1533-1541.
    [51]A.Saiardi,A.C.Resnick,A.M Snowman.,B.S.Wendland and S.H.Snyder.Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinaserelated protein kinases[J].Proc.Natl.Acad.Sci.USA,2005,102(6):19111-1914.
    [52]Z.R.Wang,X.F.Jiao,A.Cart-Schmid and M.Kiledjian.The hDcp2 protein is a mammalian mRNA decapping enzyme[J].Proc.Natl.Acad.Sci.USA,2002,99(20):12663-12668.
    [53]C.Gaudon,P.Chambon and R.Losson.Role of the essential yeast protein PSU1 in transcriptional enhancement by the ligand-dependent activation function AF-2 of nuclear receptors[J].EMBO J.,1999,18(8):2229-2240.
    [54]T.Dunckley and R.Parker.The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif[J].EMBO J.,1999,18(19):5411-5422.
    [55]M.Steiger,A.Cart-Schmid,D.C.Schwartz and M.P.Kiledjian.Analysis of recombinant yeast decapping enzyme[J].RNA,2003,9(2):231-238.
    [56]N.Cougot,E.van Dijk,S.Babajko and B.Seraphin.'Cap-tabolism'[J].Trends Biochem Sci.,2004,29(8):436-444
    [57]C.A.Dunn,S.F.O' Handley,D.N.Frick and M.J.Bessman.Studies on the ADP-ribose pyrophosphatase subfamily of the Nudix hydrolases and tentative identification of trgB,a gene associated with tellurite resistance[J].J.Biol.Chem.,1999,274(45):32318-32324.
    [58]G.Giaever,A.M.Chu,L.Ni,C.Connelly,L.Riles,S.Veronneau.Functional profiling of the Saccharomyces cerevisiae genome[J].Nature,2002,418(6896):387-391.
    [59]K.Sakumi,M.Furuichi,T.Tzuzuki,T.Kakuma,Kawabata S.I.and H.Maki.Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP,a mutagenic substrate for DNA synthesis[J].J.Biol.Chem.,1993,268(31):23524-23530.
    [60]K.Fujikawa,H.Kamiya,H.Yakushiji,Y.Fujii,Y.Nakabeppu and H.Kasai.The oxidized forms of dATP are substratesfor the human MutT homologue,the hMTH1 protein[J].J.Biol.Chem.,1999,274(26):18201-18205.
    [61]K.Fujikawa,H.Kamiya,H.Yakushiji,Y.Nakabeppu and H.Kasai.Human MTH1 protein hydrolyzes the oxidized ribonucleotide,2-hydroxy-ATP[J].Nucleic Acids Res.,2001,29(2):449-454.
    [62] H. Kamiya, H.Yakushiji, L. Dugue, M. Tanimoto, S.Pochet, Y. Nakabeppu et al. Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs[J]. J. Mol. Biol.,2004,336(4): 843-850.
    
    [63] M. Mishima, Y. Sakai, N. Itoh, H. Kamiya, M. Furuichi, M. Takahashi et al. Structure of human MTH1, a nudix family hydrolase that selectively degrades oxidized purine nucleoside Triphosphates[J]. J. Biol. Chem.,2004, 279(32): 33806-33815.
    
    [64] Y. Sakai, M. Furuichi, M.Takahashi, M. Mishima, S. Iwai, M. Shirakawa et al. A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1[J]. J. Biol. Chem.,2002, 277(10): 8579-8587.
    
    [65] T. Tsuzuki, A. Egashira, H. Igarashi, T. Iwakuma, Y. Nakatsura, Y. Tominaga et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase[J]. Proc. Natl. Acad. Sci. USA ,2001,98(20): 11456-11461.
    
    [66] D. Yoshimura, K. Sakumi, M. Ohno, Y. Sakai, M. Furuichi, S. Iwai et al. An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress[J] . J. Biol. Chem.,2003,278(39): 37965-37973.
    
    [67] J. P. Cai, T. Ishibashi, Y. Takagi, H. Hayakawa and M. Sekiguchi. Mouse MTH2 protein which prevents mutations caused by 8-oxoguanine nucleotides[J]. Biochem. Biophys. Res. Commun.,2003,305(4): 1073-1077.
    
    [68] T. Ishibashi, H. Hayakawa, R. Ito, M. Miyazawa, Y. Yamagata and M. Sekiguchi. Mammalian enzymes for preventing transcriptional errors caused by oxidative damage[J]. Nucleic Acids Res.,2005,33(12): 3779-3784.
    
    [69] L. Gasmi, J. L. Cartwright and A. G. McLennan. Cloning, expression and characterization of YSA1H, a human adenosine 5'-diphosphosugar pyrophosphatase possessing a MutT motif [J]. Biochem. J.,1999, 344(2): 331-337.
    
    [70] H. J. Yang, M. M. Slupska, Y. F. Wei, J. H. Tai, W. M. Luther,Y. R. Xia et al. Cloning and characterization of a new member of the nudix hydrolases from human and mouse[J]. J. Biol. Chem. 275(12): 8844-8853.
    
    [71] J. Canales, R. M. Pinto, M. J. Costas, M. T. Hernandez, A. Miro, D. Bernet et al. Rat liver nucleoside diphosphosugar or diphosphoalcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: specificities of Mg2+- and/or Mn2+-dependent hydrolases acting on ADP-ribose[J]. Biochim. Biophys. Acta,1995,1246(2): 167-177.
    
    [72] J. S. Kim, W. Y. Kim, H. W. Rho, J. W. Park, B. H. Park, M. K. Han et al. Purification and characterization of adenosine diphosphate ribose pyrophosphatase from human erythrocytes[J]. Int. J. Biochem. Cell Biol.,1998,30(5): 629-638.
    [73]J.M.Ribeiro,A.Carloto,M.J.Costas and J.C.Cameselle.Human placenta hydrolases active on flee ADP-ribose:an ADP-sugar pyrophosphatase and a specific ADP-ribose pyrophosphatase[J].Biochim.Biophys.Acta,2001,1526(1):86-94.
    [74]T.Ishibashi,H.Hayakawa and M.Sekiguchi.A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides[J].sEMBO Rep.,2003,4(5):479-483.
    [75]K.Bialkowski and K.S.Kasprzak.Inhibition of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase(8-oxo-dGTPase)activity of the antimutagenic human MTH1 protein by nucleoside 5′-diphosphates[J].Free Radic.Biol.Med.,2003,35(6):595-602.
    [76]A.Guranowski and A.Sillero.(1992)Enzymes cleaving dinucleoside polyphosphates.In:Ap4A and Other Dinucleoside Polyphosphates[M],pp.81-133,CRC Press Inc.,Boca Raton
    [77]A.Guranowski.Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates[J].Pharmacol.Ther.,2000,87(2-3):117-139
    [78]D.Lazewska,E.Starzynska and A.Guranowski.Humanplacental(asymmetrical)diadenosine 5′,5′″-P1,P4-tetraphosphate hydrolase-purification to homogeneity and some properties[J].Prot.Express.Purif.,1993,4(1):45-51.
    [79]N.M.H.Thorne,S.Hankin,M.C.Wilkinson,C.Nunez,R.Barraclough and A.G.McLennan Human diadenosine 5′,5′″-P1,P4-tetraphosphate pyrophosphohydrolase is a member of the MutT family of nucleotide pyrophosphatases[J].Biochem.J.,1995,311(3):717-721
    [80]A.H.Warner and F.J.Finamore.Isolation,purificationand characterization of PIP4-diguanosine-5′-tetraphosphate asymmetrical-pyrophosphohydrolase from brine shrimp eggs[J].Biochemistry,1965,4(8):1568-1575.
    [81]M.Prescott,A.D.Milne and A.G.McLennan.Characterization of the bis(5′-nucleosidyl)tetraphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia[J].Biochem.J.,1989,259(3):831-838.
    [82]McLennan A.G.Dinucleoside polyphosphates-friend or foe? Pharmacol[J].Ther.,2000,87(1):73-89.
    [83]A.Jovanovic,A.E.Alekseev and A.Terzic.Intracellular diadenosine polyphosphates-a novel family of inhibitory ligands of the ATP-sensitive K+ channel[J].Biochem.Pharmacol.,1997,54(2):219-225.
    [84]F.Martin,J.Pintor,J.M.Rovira,C.Ripoll,M.T.Miras-Portugal and B.Soria.Intracellular diadenosine polyphosphates:a novel second messenger in stimulus-secretion coupling[J].FASEBJ.,1998,12(14):1499-1506.
    [85]A.Vartanian,I.Alexandrov,I.rudowski,A.McLennan and L.Kisselev.Ap4A induces apoptosis in cultured human cells[J].FEBS Lett.,1999,456(1):175-180.
    [86] C. Brenner Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases[J]. Biochemistry,2002, 41(29): 9003-9014.
    
    [87] Y. N. Lee, H. Nechushtan, N. Figov and E. Razin The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in Fc eRI-activated mast cells[J]. Immunity,2004, 20(1): 145-151.
    
    [88] J. Pintor, M. Diaz-Hernandez, J. Gualix, R. Gomez-Villafuertes, F. Hernando and M. T. Miras-Portugal. Diadenosine polyphosphate receptors from rat and guinea-pig brain to human nervous system. Pharmacol[J].Ther.,2000, 87(1): 103-115.
    
    [89] B. M. Stavrou. Diadenosine polyphosphates: postulated mechanisms mediating the cardiac effects[J]. Curr. Med. Chem. Cardiovasc. Hematol. Agents,2003,1(1): 151-169.
    
    [90] X. N.Yang, S. T. Safrany and S. B. Shears. Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity NUDT enzyme that attacks diadenosine polyphosphates and diphosphoinositol polyphosphates[J]. J. Biol. Chem.,1999,274(50): 35434-35440.
    
    [91] J. J. Caffrey and S. B. Shears. Genetic rationale for microheterogeneity of human diphosphoinositol polyphosphate phosphohydrolase type 2[J]. Gene,2001, 269(1): 53-60.
    
    [92] J. J. Caffrey, S. T.Safrany, X. N. Yang and S. B. Shears. Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases - an expanding NUDT family[J]. J. Biol. Chem.,2000,275(17): 12730-12736.
    
    [93] N. R. Leslie, A. G. McLennan and S. T. Safrany. Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases [J]. BMC Biochem.,2002,3(0): 20
    
    [94] L. V. Hua, K. Hidaka, X. Pesesse, L. D. Barnes and S.B. Shears. Paralogous murine NudtlO and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases[J]. Biochem. J., 2003,373(1): 81-89.
    
    [95] A.W. Li, K. T. L. Catherine, R. Knee, M. Wilkinson and P. R. Murphy. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity[J]. Mol. Cell. Endocrinol.,1997,133(2): 177-182.
    
    [96] M. Baguma-Nibasheka, A. W. Li, M. S. Osman, L. Geldenhuys, A. G. Casson, C. K. Too et al. Coexpression and regulation of the FGF-2 and FGF antisense genes in leukemic cells[J]. Leuk. Res. 2005,29(4): 423-433
    [97]T.Ogawa,Y.Ueda,K.Yoshimura and S.Shigeoka.Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana[J].J.Biol.Chem.,2005,280(26):2527-25283
    [98]A.W.Li and P.R.Murphy.Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system:regulation of FGF-2 mRNA translation[J].Mol.Cell.Endocrinol.,2000,162(1-2):69-78.
    [99]A.Flores-Morales,H.Gullberg,L.Fernandez,N.Stahlberg,N.H.Lee,B.Vennstrom et al.Patterns of liver gene expression governed by TR beta[J].Mol.Endocrinot.,2002,16(6):1257-1268.
    [100]M.Bauer,A.C.Harem,M.Bonaus,A.Jacob,J.Jaekel,H.Schorle et al.Starvation response in mouse fiver shows strong correlation with fife-span-prolonging processes[J].Physiol.Genom.,2004,17(2):230-244
    [101]L.Gasmi and A.G.Mckennan.The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives[J].Biochem.J.,2001,357(1):33-38
    [102]S.AbdelRaheim and A.G.McLennan.The Caenorhabditis elegans Y87G2A.14 Nudix hydrolase is a peroxisomal coenzyme A diphosphatase[J].BMC Biochem.,2002,3(1):5
    [103]L.Rossi,M.Denegri,M.Torti,G.G.Poirier and A.Scovassi.Poly(ADP-ribose)degradation by post-nuclear extracts from human cells[J].Biochimie,2002,84(12):1229-1235.
    [104]L.Du,X.Zhang,Y.Y.Han,N.A.Burke,P.M.Kochanek,S.C.Watkins et al.Intra-mitochondrial poly(ADP-ribosylation)contributes to NAD+depletion and cell death induced by oxidative stress[J].J.Biol.Chem.,2003,278(20):18426-18433.
    [105]N.P.Shull,S.L.Spinelli and E.M.Phizicky.A highly specific phosphatase that acts on ADP-ribose 1″-phosphate,a metabolite of tRNA splicing in Saccharomyces cerevisiae[J].Nucleic Acids Res.,2005,32(2):650-660.
    [106]B.Moser,K H.Winterhalter and C.Richter.Purification and properties of a mitochondrial NAD+glycohydrolase[J].Arch.Biochem.Biophys.,1983,224(1):358-364.
    [107]M.Pfister.A.Ogilvie.C.P.da Silva,A.Grahnert,A.H.Guse and S.Hauschildt.NAD degradation and regulation of CD38 expression by human monocytes/macrophages[J].Eur.J.Biochem.,2001,268(21):5601-5608.
    [108]L.A.Rafty,M.T.Schmidt,A.L.Perraud,A.M.Scharenberg and J.M.Denu.Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases[J].J.Biol.Chem.,2002,277(49):47114-47122.
    [109]A.Gasser and A.H.Guse.Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose[J].J.Chromatog.B.,2005,821(1):181-187.
    [110]L.Guida,E.Zocchi,L.Franco,U.Banatti and Flora A.De.Presence and turnover of adenosine diphosphate ribose in human erythrocytes[J].Biochem.Biophys.Res.Commun.,1992,188(1):402-408.
    [111]S.R.Lin,L.Gasmi,Y.Xie,K.Ying,S.H.Gu,Z.Wang et al.Cloning,expression and characterisation of a human Nudix hydrolase specific for adenosine 5′-diphosphoribose(ADP-ribose)[J].Biochim.Biophys.Acta,2002,1594(1):127-135
    [112]A.-L.Perraud,B.Shen,C.A.Dunn,K.Rippe,M.K.Smith,M.J.Bessman et.al.NUDT9,a member of the nudix hydrolase family,is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase[J].J.Biol.Chem.,2003,278(3):1794-1801.
    [113]A.-L.Perraud,A.Fleig,C.A.Dunn,L.A.Bagley,P.Launay,C.chmitz et al.ADP-ribose gating of the calciumpermeable LTRPC2 channel revealed by Nudix motif homology[J].Nature,2001,411(6837):595-599.
    [114]H.T.Zhang,Z.Q.Yan,X.B.Hu,S.L.Yang and Y.Gong.Interaction of C17orf25 with ADP-ribose pyrophosphatase NUDT9 detected via yeast two-hybrid method[J].Acta Biochim.Biophys.Sinica,2003,35(8):747-751.
    [115]P.J.Thornalley.Protecting the genome:defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy[J].Biochem.Soc.Trans.,2003,31(6):1372-1377.
    [116]I.Heiner,N.Radukina,J.Eisfeld,F.Kuhn and A.Luckhoff.Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose:a promising pharmacological target[J].Naunyn Schmied.Arch.Pharmacol.,2005,371(4):325-333.
    [117]F.J.Kuhn,I.Heiner and A.Luckhoff.TRPM2:a calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose[J].Pflugers Arch.,2005,451(1):212-219.
    [118]A.-L.Perraud,C.L.Takanishi,B.Shen,S.Kang,M.K.Smith,C.Schmitz et al.Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels[J].J.Biol.Chem.,2005,280(7):6138-6148.
    [119]Y.-G.Kwak,S.-K.Park,U.-H.Kim,M.-K.Han,J.-S.Eun,K.-P.Cho et al.Intracellular ADP-ribose inhibits ATPsensitive K+ channels in rat ventricular myocytes[J].Am.J.Physiol.,1996,271(2Pt1):C464-C468.
    [120]G.I.Karras,G.Kustatscher,H.R.Buhecha,M.D.Allen,C.Pugieux,F.Sait et al.The macro domain is an ADPribose binding module[J].EMBO J.,2005,24(11):1911-1920.
    [121]E.van Dijk,N.Cougot,S.Meyer,S.Babajko,E.Wahle and B.Seraphin.Human Dcp2:a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures[J].EMBO J.,2002,21(24):6915-6924
    [122] C. Piccirillo, R. Khanna and M. Kiledjian. Functional characterization of the mammalian mRNA decapping enzyme hDcp2[J]. RNA ,2003,9(9): 1138-1147.
    
    [123] T. Ghosh, B. Peterson, N. Tomasevic and B. A. Peculis. Xenopus u8 snoRNA binding protein is a conserved nuclear decapping enzyme[J]. Mol. Cell,2004,13(6): 817-828.
    
    [124] H. T. Tran, A. Ulke, N. Morrice, C. J. Johannes and Moorhead G. B. G. Proteomic characterization of protein Phosphatase complexes of the mammalian nucleus. Mol. Cell. Proteom.,2004, 3(3): 257-265.
    
    [125] T. Shors, J. G. Keck and B. Moss. Down regulation of gene expression by the vaccinia virus D10 protein[J]. J. Virol.,1999,73(1): 791-796.
    
    [126] J. L.Cartwright, S. T. Safrany, L. K. Dixon, E. Darzynkiewicz, J. Stepinski, R. Burke et al. The g5R (D250) gene of African swine fever virus encodes a nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates[J]. J. Virol.,2002,76(3): 1415-1421.
    
    [127] Z. R. Wang, X. F. Jiao, A. Carr-Schmid and M. Kiledjian. The hDcp2 protein is a mammalian mRNA decapping enzyme[J]. Proc. Natl. Acad. Sci. USA,2002, 99(20): 12663-12668.
    
    [128] S.K. Bhatnagar, M.J. Bessman. Studies on the mutator gene, mutT of Escherichia coli. Molecular cloning of the gene, purification of the gene product, and identification of a novel nucleoside triphosphatase. [J].J. Biol. Chem.,1988, 263 (18) 8953-8957.
    
    [129] H. Maki, M. Sekiguchi. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. [J].Nature,1992,355 (6357): 273-275.
    
    [130] T. Tsuzuki, A. Egashira, H. Igarashi, T. Iwakuma, Y. Nakatsuru, Y. Tominaga, H. Kawate, K. Nakao, K. Nakamura, F. Ide, S. Kura, Y. Nakabeppu, M. Katsuki, T. Ishikawa, M. Sekiguchi. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. [J]. Proc. Natl. Acad. Sci. USA,2001, 98 (20): 11456-11461.
    
    [131] D.J. Weber, S.K. Bhatnagar, L.C. Bullions, MJ. Bessman and A.S. Mildvan. NMR and isotopic exchange studies of the site of bond cleavage in the MutT reaction. [J]J. Biol. Chem.,1992,267 (24): 16939-16942.
    
    [132] A.S. Mildvan, D.J. Weber, C. Abeygunawardana. Solution structure and mechanism of the MutT pyrophosphohydrolase. [J].Adv. Enzymol. Relat. Areas Mol. Biol.,1999,73 (0): 183-207.
    
    [133] R. Wolfenden, M.J. Snider. The depth of chemical time and the power of enzymes as catalysts. [J]. Acc. Chem. Res.,2001, 34 (12): 938-945.
    
    [134] C. Lad, N.H. Williams, R. Wolfenden. The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. [J]. Proc. Natl. Acad. Sci. USA, 2003,100 (10):5607-5610.
    [135] A.S. Mildvan. Mechanisms of signaling and related enzymes. [J]. Proteins: Struct. Funct. Genet.,1997, 29 (4) 401-416.
    
    [136] D.N. Frick, D.J. Weber, C. Abeygunawardana, A.G. Gittis, M.J. Bessman, A.S. Mildvan, NMR studies of the conformations and location of nucleotides bound to the Escherichia coli MutT enzyme. [J] .Biochemistry,1995, 34 (16): 5577-5586.
    
    [137] J. Lin, C. Abeygunawardana, D.N. Frick, M.J. Bessman, A.S. Mildvan, Solution structure of the quaternary MutT-M2+-AMPCPP-M2+ complex and mechanism of its pyrophosphohydrolase action. [J].Biochemistry,1997, 36 (6): 1199-1211.
    
    [138] T.K. Harris, G. Wu, M.A. Massiah and A.S. Mildvan. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. [J]. Biochemistry,2000,39(7): 1655-1674.
    
    [139]J. Lin, C. Abeygunawardana, D.N. Frick, M.J. Bessman, A.S. Mildvan. The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. [J].Biochemistry,1996, 35 (21): 6715-6726.
    
    [140] D.J. Weber, A.G. Gittis, G.P. Mullen, C. Abeygunawardana, E.E. Lattman, A.S. Mildvan, NMR docking of a substrate into the X-ray structure of staphylococcal nuclease. [J].Proteins: Struct. Funct. Genet., 1992,13(4): 275-287.
    
    [141] M.A. Massiah, V. Saraswat, H.F. Azurmendi, A.S. Mildvan, Solution structure and NH exchange studies of the MutT pyrophosphohydrolase complexed with Mg(2+) and 8-oxo-dGMP, a tightly bound product. [J].Biochemistry, 2003, 42 (34): 10140-10154.
    
    [142] V. Saraswat, H.F. Azurmendi, A.S. Mildvan, Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. [J].Biochemistry,2004, 43(12): 3404-3414.
    
    [143] S.B. Gabelli, M.A. Bianchet, Y. Ohnishi, Y. Ichikawa, M.J. Bessman, L.M. Amzel. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase. [J].Biochemistry,2002, 41 (30): 9279-9285.
    
    [144] S. Yoshiba, T. Ooga, N. Nakagawa, T. Shibata, Y. Inoue, S. Yokoyama, S. Kuramitsu, R. Masui.Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal[J].J. Biol. Chem.,2004, 279(35): 37163-37174.
    
    [145] S.D. Aubert, Y. Li, F.M. Raushel. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase[J]. Biochemistry,2002, 41 (30) 5707-5715.
    
    [146] A. J. Shatkin. Capping of eucaryotic mRNAs[J]. Cell, 1976, 9(2):645-653.
    
    [147] C. J. Wilusz , M. Wormington, and S. W. Peltz. The cap-to-tail guide to mRNA turnover[J]. Nat Rev Mol Cell Biol.,2001,2(4);237-46.
    [148]E.Izaurralde,J.Lewis,C.Gamberi,A.Jarmolowski,C.McGuigan,and I.W.Mattaj.A cap-binding protein complex mediating U snRNA export[J].Nature,1995,376(6542);709-712.
    [149]E.L.Vandijk,J.S.Sussenbach,P.E.Holthuizen.Kinetics and regulation of site-specific endonucleolytic cleavage of human IGF-II mRNAs[J].Nuleic Acids Res.,2001,29(17);3477-86.
    [150]J.Coller,R.Parker Eukaryotic mRNA decapping.[J].Annu.Rev.Biochem.,2004,73(0);861-890.
    [151]R.Parker,H.Song.The enzymes and control of eukaryotic mRNA turnover.[J]Nat.Struct.Mol.Biol.,2004,11(2);121-127.
    [152]D.Muhlrad,C.J.Decker,R.Parker.Turnover mechanisms of the stable yeast PGK1 mRNA.[J].Mol.Celt,Biol.,(1995),15(4);2145-2156.
    [153]B.P.Lewis,R.E.Green,S.E.Brenner.Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans.[J].Proc.Natl.Acad.Sci.2003,100(1);189-192.
    [154]M.J.Moore.RNA events.NO end to nonsense[J].Science,2002,298(5592);370-1.
    [155]J.S.J.Anderson,R.Parker.The 3′to 5′degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′to 5′exonucleases of the exosome complex.[J].EMBO J.,1998,17(5);1497-1506.
    [156]C.Y Chen,et al.AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs[J].Celt,2001,107(3);451-464.
    [157]Liu,H.,N.D.Rodgers,,X.Jiao,M.Kiledjian.The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases.[J].EMBO J.,2002,21(17);4699-4708.
    [158]D Cao,R Parker.Computational modeling of eukaryotic mRNA turnover[J].RNA,2001,7(9);1192-212.
    [159]D.C.Higgs and J.T.Colbert.Oat Phytochrome A mRNA Degradation Appears To Occur Via Two Distinct Pathways[J].Plant Cell,1994,6(7);1007-1019.
    [160]C.Piccirillo,R.Khanna,M.Kiledjian.Functional characterization of the mammalian mRNA decapping enzyme hDcp2.[J].RNA 2003,9(9);1138-1147.
    [161]M.She,CA.Decker,N.Chen,S.Tumati,Parker R,Song H.Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe.[J].Nat.Struct.Mol.Biol.,2006,13(1);63-70.
    [162]M.She,CJ.Decker,K.Sundramurthy,Y Liu,N.Chen,Parker R,Song H.Crystal structure of Dcp1p and its functional implications in mRNA decapping.[J].Nat.Struct.Mol.Biol., 2004,11(3):249-256.
    [163]Z.Wang,M.Kiledjian.Functional link between the mammalian exosome and mRNA decapping.[J].Cell,2001,107(6):751-762.
    [164]Z.R.Wang,X.F.Jiao,A Carr-Schmid,M.Kiledjian.The hDcp2 protein is a mammalian mRNA decapping enzyme.[J].Proc.Natl.Acad.Sci.,2002,99(20):12663-12668.
    [165]T.E.LaGrandeur,R.Parker.Isolation and characterization of Dcp1p,the yeast mRNA decapping enzyme[J].EMBO J.,2002,17(5):1487-1496.
    [166]U.Sheth,R.Parker.Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.[J].Science 2003,300(5620):805-808.
    [167]S.Parrish,W.Resch,B.Moss.Vaccinia virus D10 protein has mRNA decapping activity,providing a mechanism for control of host and viral gene expression[J].Proc.Natl.Acad.Sci.USA.,2007,104(7):2139-44.
    [168]L.K.Miller(1997).The Baculoviruses[M].Plenum Press,New York.
    [169]G.W..Blissard,G.F..Rohrmann.Location,sequence,transcriptional mapping,and temporal expression of the gp64 envelope glycoprotein gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus[J].Virology,1989,170(2):537-555.
    [170]A.G.P.Oomens,S.A.Monsma,G.W..Blissard.The Baculovirus GP64 Envelope Fusion Protein:Synthesis,oligomerization,and Processing[J].Virology,1995,209(2):592-603.
    [171]R.L.Russell,G.F.Rohrmann.A 25 kilodalton protein is associated with the envelope of occluded baculovirus virions[J].Virology,1993,195(2):532-540.
    [172]T.Hong,S.C..Braungagel,M.D.Summers.Transcription,translation,and cellular localization of PDV-E66:A structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus[J].Virology,1994,204(1):210-222.
    [173]S.C.Braunagel,M.D.Summers.Autographa californica nuclear polyhedrosis virus,PDV,and ECV viral envelopes and nucleocapsids:Structural protein,antigens,lipid and fatty acid profiles[J].Virology,1994,202(1):315-328.
    [174]G.W.Blissard,J.R.Wenz.Baculovirus Gp64 envelope glycoprotein is sufficient to mediate pH dependent membrane fusion[J].J Virol,1992,66(11):6829-6835.
    [175]G.Sudip,P.Md.Khalid,B.Kakoli,K.S.Shiv,E.H.Seyed.Baculovirus as Mammalian Cell Expression Vector for Gene Therapy:An Emerging Strategy[J].Mol Ther,2002,6(1):5-11.
    [176]M.D.Ayres,S.C..Howard,J..Kuzio,M..LopezFerber,R.D..Possee.The complete DNA sequence of Autographa californica nuclear polyhedrosis virus[J].Virology,1994,202(2):586-605.
    [177]C.H..Ahrens,R.L.Q.Russell,C.J..Funk,J.T..Evans,S.H..Harwood,G.F.Rohrjmann.The sequence of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus genome[J].Virology,1997,229(1):381-399.
    [178]X..Chen,W-J Zhang,J.Wong,G.Chun,A..Lu et al.Comparative analysis of the complete genome sequence of Helicoverpa zea and Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus[J].J Gen Virol,2002,83(3):673-684.
    [179]Y Hashimoto,T.Hayakawa,Y Ueno,T.Fujita,Y Sano,T.Matsumoto.Sequence analysis of the Plutella xylostella granulovirus genome[J].Virology,2000,275(1):358-372.
    [180]E.A.Herniou,T.Luque,X.Chen,J.M.Vlak,D.Winstanley et al.Use of whole genome sequence data to infer baculovirus phylogeny[J].J Virol,2001,75(17):8117-8126.
    [181]A.H.Elisabeth,.A.O.Herniou,Julie,S.C.Jennifer,R.O.David.The Genome Sequence and Evolution of Baculovirus[J].Annu.Rev.Entomol,2003,48(1)221-234.
    [182]K.L.Hefferon.Baculovirus Late Expression Factors[J],J Mol Microbiol Biotechnol,2004,7(4):89-101.
    [183]H.Chaabihi,M.H.Ogliastro,M.Martin,M.M Cerutti.Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells[J].J Virol,1993,67(5):2664-2672.
    [184]R.Krappa,M.D.Knebel.Identification of the very early transcribed baculovirus gene PE-38[J].J Vivol,1991,65(2):805-812.
    [185]J.Kuzio,D.J.Rohel,C.J.Curry.Nucleotide sequence of the p10 polypeptide gene of Autographa californica Nuclear Polyhedrosis Virus[J].Virology,1984,139(2):414-418.
    [186]B.M.Ribeiro,K.Hutchinson,L.K.Miller.A mutant baculovirus with temperature-sensitive IE-1 transregulatory protein[J].J Virol,1994,68(2):1075-1084.
    [187]A.O.Victoria,A.W.Justin,and D.F.Paul.The Highly Conserved Basic Domain I of Baculovirus IE1 Is Requiredfor hr Enhancer DNA Binding and hr-Dependent Transactivation[J].J Virol,2003,77(5):5668-5677.
    [188]L.V.Adam,O.Kazuhiro,F.R.George.Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene[J].Virology,2005,331(1):175-180.
    [189]V.V.McDougal,L.A.Guarino.DNA and ATP Binding Activities of the Baculovirus DNA Helicase P143[J].J Virol,2001,75(15):7206-7209.
    [190]E.A.Prikhod'ko,A.Lu,J.A.Wilson,L.K.Miller.In Vivo and In Vitro Analysis of Baculovirus ie-2 Mutants[J].J Virol,1999,73(3):2460-2468.
    [191]L.M.Maynard,O.W.Jan,GW.Leslie,E.V.Loy,A.T.David.Deletion of pe38 attenuates AcMNPV genome replication,budded virus production,and virulence in Helioth viresces[J].Virology,2003,310(2):224-234.
    [192]E.A.Prikhod'ko,L.K.Miller.The Baculovirus PE38 Protein Augments Apoptosis Induced by Transactivator IEI[J].J Virol,1999,73(8):6691-6699.
    [193]J.W.Todd,A.L.Passarelli,L.K.Miller.Eighteen Baculovirus Genes,Including lef-11,p35,39K,andp47,Support Late Gene Expression[J].J Virol,1995,69(2):968-974.
    [194]A.Lu,L.K.Miller.The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication[J].J Virol,1995,69(2):975-982.
    [195]V.S.Mikhailov,G.F.Rohrmann.Baculovirus Replication Factor LEF-1 is a DNA Primase[J].J Virol,2002,76(5):2287-2297.
    [196]C.H.Ahrens,G.F.Rohrmann.Replication of Orgyia pseudotsugata Baculovirus DNA:lef-2 and ie-1 Are Essential and ie-2,p34,and Op-iap Are Stimulatory Genes[J].Virology,1995,212(2):650-662.
    [197]H.A.Christian,C.Cheryl,ER.George.Identification,Sequencing,and Transcriptional Analysis of lef-3,a gene Essential for Orgyia pseudotsugata Baculovirus DNA Replication[J].Virology,1995,210(2):372-382.
    [198]V.S.Mikhailov.Helix-Destabilizing Properties of the Baculovirus Single-Stranded DNA-Binding Protein(LEF-3)[J].Virology,2000,270(1):180-189.
    [199]L.A.Guarino,J.Jin,W.Dong.Guanylyltransferase Activity of the LEF-4 Subunit of Baculovirus RNA Polymerase[J].J Virol,1998,72(12):10001-10010.
    [200]L.A.Guarino,W.Dong,J.Jin.In Vitro Activity of the Baculovirus Late Expression Factor LEF-5[J].J Virol,2002,76(24):12663-12675.
    [201]L.A.Guarino,T.A.Mistretta,W.Dong.Baculovirus lef-12 Is Not Required for Viral Replication[J].J Virol,2002,76(1):12032-12043.
    [202]A.G.Oomens,S.A.Monsma,G.W.Blissard.The Baculovirus GP64 Envelope Fusion Protein:Synthesis,Oligomerization,and Processing[J].Virology,1995,209(2):592-603.
    [203]K.L.Hefferon,A.G.Oomens,S.A.Monmsa,C.M.Finnerty,G.W.Blissard.Host Receptor Binding by Baculovirus GP64 and Kinetics of Virion Entry[J].Virology,1999,258(2):455-468.
    [204]H.Tani,M.Nishijima,H.Ushijima,T.Miyamura,Y.Matsuura.Characterization of cell-surface determinants important for baculovirus infection[J].Virology,2001,279(1):343-53
    [205]C.Hofmann,W.Lehnert and M.Strauss.The baculovirus vector system for gene delivery into hepatocytes[J].Gene Ther Mol Biol,1998,1(1):231-239.
    [206]A.M.Gronowski,D.M.Hilbert,K.C.Sheehan,G.Garotta,R.D.Schreiber.Baculovirus stimulates antiviral effects in mammalian cells[J].J.Virol.1999,73(12):9944-9951.
    [207]R.Grabherr,W.Ernst,C.Oker-Blom,I.Jones.Developments in the use of baculoviruses for the surface display of complex eucaryotic proteins[J]. Trends Biotechnol, 2001,19(6): 231-236.
    
    [208] B. Ooi , L.K. Miller. Regulation of host RNA levels during baculovirus infection[J]. Virology,1988,166(2):515-523.
    
    [209] van B.J. Hooft, G.E. Smith, G.D. Summers. Nucleotide sequence of the polyhedron gene of Autographa californica nuclear polyhedrosis virus[J]. Virology ,1983,131(3):561-565.
    
    [210] R.L. Russell, M.N. Pearson, G.F. Rohrmann. Immunoelectron microscopic examination of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus-infected Lymantria dispar cells: Time course and localization of major polyhedron-associated proteins[J]. J Gen Virol ,1991,72(2):275-283.
    
    [211] M. Whitford, P. Faulkner. Nucleotide sequence and transcription analysis of a gene encoding gp41, a structural glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus[J]. J Virol, 1992,66(8):4763-4768.
    
    [212] J. Olszewski, L.K. Miller. A Role for Baculovirus GP41 in Budded Virus Production[J]. Virology ,1997,233(2):292-301.
    
    [213] J.R. Mclachllin, L.K. Miller. Identification and characterization of the vlf, a baculovirus gene involved in very late gene expression[J]. J Virol ,1994,68(12):7746-7756.
    
    [214] A.L.Vanarsdall, K.Okano, G.F. Rohrmann. Characterization of a baculovirus with a deletion of vlf-1[J]. Virology ,2004,326(1):191-201.
    
    [215] S.Yang, L.K. Miller. Expression and Mutational Analysis of the Baculovirus Very Late Factor 1 (vlf-1) Gene[J]. Virology,1998, 245(1):99-109.
    
    [216] P. Wang, R.R. Granados. An intestinal mucin is the target substrate for a baculovirus enhancing[J]. Proc. Natl. Acad. Sci. USA ,1997,94(13):6977-6982.
    
    [217] D.A.Theilmann, J.K. Chantler, S. Stewart, H.T.M. Flipsen, J.M. Vlak, N.E.Crook. Characterization of a Highly Conserved Baculovirus Structural Protein That Is Specific for Occlusion-Derived Virions[J]. Virology ,1996,218(1):148-158.
    
    [218] L. Hongshen.Molecular Biology of Insect viruses[M].Beijing:Agricultural Scientech Press(1998).
    
    [219] D.R. O'Reily.Auxiliary genes of baculoviruses.In:Miller L K ed. Baculovirus[M]. New York: Plenum Press,267. (1997)
    
    [220]L.M. Lanier, M. Slack and L.E. Volkman. Actin binding and proteolysis by the baculovirus AcMNPV: The role of Virion-associated V-CATH[J].Virology,1996,21(216):380-388.
    
    [221] M. Kool, J.W. Voncken, F.L.J. Van Lier, J. Tramper, J.M. Vlak. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties[J]. Virology,1991,183(2):739-746.
    [222]M.Kool,C.Ahrens,R.W.Goldbach,G.F.Rohrmann,J.M.Vlak.Identification of genes involved in DNA replication of the Autographa californica baculovirus[J].Proc.Natl.Acad.Sci.U.S.A.,1994,91(23):11212-11216.
    [223]H.A.M.Lauzon,C.J.Lucarotti,P.J.Krell,Q.Feng,A.Retnakaran,B.M.Arif.Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome[J].J.Virol,2004,78(13):7023-7035.
    [224]L.K.Miller.Baculoviruses:high-level expression in insect cells[J].Curr Opin Gene,1993,3(1):97-101.
    [225]J.S.Cory and D.H.Bishop.Use of baculoviruses as biological insecticides.Mol Biotechnol 1997,7(3):303-13.
    [226]C.Hofmann,V.Sandig,G.Jennings,et al.Efficient gene transfer into human hepatocytes by baculovirus vectors.Proc.Natl.Acad.Sci.U.S.A.1995,92(22):10099-10103.
    [227]L.E.Volkman and P.A.Goldsmith.In vitro survey of Autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells[J].Appl.Environ.Microbiol,1983,45(3):1085-1093.
    [228]F.M.Boyce and N.Bucher.Baculovirus mediated gene transfer into mammalian cells[J].Proc.Natl.Acad.Sci.U.S.A.,1996,93(6):2348-2352
    [229]T.A.Kost and J.P Condreay.Recombinant baculoviruses as mammalian cell gene-delivery vectors[J].Trends in Biotechnol.,2002,20(4):173-180
    [230]A.Huser and C.Hofmann.Baculovirus Vectors:Novel Mammalian Cell Gene-Delivery Vehicles and Their Applications[J].Am J Pharmacogenomics,2003,3(1):53-63
    [231]C.Hofmann,V.Sandig,G.Jennings,M.Rudolph,P.Schlag,M.Strauss.Efficient gene transfer into human hepatocytes by baculovirus vectors[J].Proc.Natl.Acad.Sci.U.S.A.,1995,92(22):10099-10103.
    [232]J.P.Bilello,W.E.Delaney 4th,F.M.Boyce,H.C.Isom.Transient disruption of intracellular junctions enables baculovirus entry into nondividing hepatocytes[J].J.Virol.,2001,75(20):9857-9871.
    [233]G.Duisit,S.Saleun,S.Douthe,J.Barsoum,G.Chadeuf,P.Moullier.Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells[J].J Gene Med,1999,1(2):93-102.
    [234]L.E.Volkman and P.A.Goldsmith.Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody:inhibition of entry by adsorptive endocytosis[J].Virology,1985,143(1):185-95
    [235]C.A.Charlton and L.E.Volkman.Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation[J].Virology,1993,197(1):245-254
    [236]N.D.Van Loo,E.Fortunati,E.Ehlert,M.Rabelink,F.Grosveld,B.J.Scholte.Baculovirus infection of non-dividing mammalian cells:mechanisms of entry and nuclear transport of capsids[J].J.Virol.,2001,75(2):961-970.
    [237]J.Barsoum,R.Brown,M.McKee,FM.Boyce.Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis G glycoprotein[J].Hum.Gene Ther.,1997,8(17):2011-2018.
    [238]S.Ghosh,A.Jain,B.Mukherjee,S.Habib.The host factor polyhedrin promoter binding protein(PPBP)is involved in transcription from the baculovirus polyhedrin gene promoter[J].J.Virol.,1998,72(9):7484-7490.
    [239]I.Shoji,H.Aizaki,H.Tani,T.Chiba,I.Saito,T.Miyamura,Y.Matsuura.Efficient gene transfer into various mammalian cells,including non-hepatic cells,by baculovirus vectors[J].J Gen Virol,1997,78(10):2657-64.
    [240]S.W.Park,H.K.Lee,T.G.Kim,S.K.Yoon,S.Y.Paik.Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein[J].Biochem Biophys Res Commun,2001,289(2):444-50.
    [241]J.P.Condreay,S.M.Witherspoon,W.C.Clay.Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector[J].Proc.Natl.Acad.Sci.USA,1999,96(1):127-132.
    [242]F.Palombo,A.Monciotti,A.Recchia,R.Cortese,G.Ciliberto,N.La Monica.Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector[J].J.Viro.,1998,72(6):5025-5034.
    [243]G.Y.Wu,J.M.Wilson,F.Shalaby,M.Grossman,D.A.Shafritz,C.H.Wu.Receptor-mediated gene delivery in vivo.Partial correction of genetic analbuminemia in Nagase rats[J].J Biol Chem.1991,266(22):14338-42.
    [244]C.Hofmann and M.Strauss.Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system[J].Gene Ther.1998, 5(4):531-6.
    [245]C.Hofmann,A.Huser,W.Lehnert,M.Strauss.Protection of baculovirus-vectors against complement-mediated inactivation by recombinant soluble complement receptor type 1[J].Biol Chem.1999,380(3):393-5.
    [246]J.M.Hoare,S.Waddinton,H.C.Thomas,C.Coutelle,M.McGarvey.Soluble complement receptor 1(SCR1)rescues mice from fatal toxicity following intra-portal administration of baculovirus vectors[J].Mol Ther.2002,5(0):S152.
    [247]V.Sandig,C.Hofmann,S.Steinert,G.Jennings,P.Schlag,M.Strauss.Gene transfer into hepatocytes and human liver tissue by baculovirus vectors[J].Hum Gene Ther.1996,7(16):1937-45.
    [248]R.Kircheis,L.Wightman,A.Schreiber,B.Robitza,V.Rossler,M.Kursa,E.Wagner.Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application[J].Gene Ther.2001,8(1):28-40.
    [249]K.J.Airenne,M.O.Hiltunen,M.P.Turunen,A.M.Turunen,O.H.Laitinen,M.S.Kulomaa,S.Yla-Herttuala.Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery[J].Gene Ther.2000 Sep;7(17):1499-504.
    [250]A.Huser,M.Rudolph and C.Hofmann.Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors[J].Nat Biotechnol.2001,19(5):451-5.
    [251]G.P.Smith.Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J].Science.1985,228(4705):1315-7.
    [252]R.Grabherr,W.Ernst,C.Oker-Biota,I.Jones.Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins.Trends Biotechnol[J].2001,19(6):231-6.
    [253]A.G.Oomens,S.A.Monsma,G.W.Blissard.The baculovirus GP64 envelope fusion protein:Synthesis,oligomerization,and processing[J].Virology,1995,209(2):592-603
    [254]I.Markovic,H.Pulyaeva,A.Sokoloff,L.V.Chernomordik.Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates[J].J Cell Biol.1998,143(5):1155-66.
    [255]D.B.Garrity,M.J.Chang,G.W.Blissard.Late promoter selection in the baculovirus gp64 envelope fusion protein gene[J].Virology.1997,231(2):167-181.
    [256]D.L.Jarvis,A Jr.Garcia.Biosynthesis and processing of the Autographa californica nuclear polyhedrosis virus gp64 protein[J].Virology.1994,205(1):300-13.
    [257]A.Spenger,R.Grabherr,L.Tollner,H.Katinger,w.Ernst.Altering the surface properties of baculovirus Autographa californica NPV by insertional mutagenesis of the envelope protein gp64[J].Eur J Biochem.2002,269(18):4458-67
    [258]W.J.Ernst,A.Spenger.L.Toellner,H.Katinger,R.M.Grabherr.Expanding baculovirus surface display.Modification of the native coat protein gp64 of Autographa californica NPV[J].Eur J Biochem.2000,67(13):4033-9.
    [259]Y.Boublik,P.Di Bonito,M.Jones.Eukaryotic virus display:engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus(AcNPV)for the presentation of foreign proteins on the virus surface[J].Biotechnology,1995,13(10):1079-1084.
    [260]D.Mottershead,I.van der Linden,C.H.von Bonsdorff,K.Keinanen,C.Oker-Blom.Baculoviral display of the green fluorescent protein and rubella virus envelope proteins[J].Biochem Biophys Res Commun.1997,238(3):717-22.
    [261]Invitrogen,Instruction Manual:BAC-TO-BAC(?)Baculovirus Expression Systems.1-37.
    [262]S.D.Chapple,I.M.Jones,Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor[J].J Biotechnol.2002,95(3):269-75.
    [263]Q Feng,Y Liu,X Qu,H Deng,M Ding,TL Lau,AC Yu,J Chen.Baculovirus surface display of SARS coronavirus(SARS-CoV)spike protein and immunogenicity of the displayed protein in mice models[J].DNA Cell Biol.2006,25(12):668-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700