二维空气环型光子晶体的带隙及负折射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是介电常数在空间呈周期性排列形成的人工结构。光子带隙是光子晶体的重要特征之一,也是光子晶体应用研究的基础。因此,对光子晶体禁带特性的研究是光子晶体研究的重要内容。同时,电磁波在光子晶体中的负折射现象也引起了人们的广泛关注。本文重点研究了二维三角晶格空气环型光子晶体的能带及负折射特性,并基于负折射成像的原理设计了一种新型的点光源分光器。
     采用平面波展开法(PWE)计算并分析了不同材料(GaAs、Si、Ge)组成的二维三角晶格空气孔、空气环型光子晶体的带隙结构,并就结构参数对光子晶体完全带隙的影响做了详细讨论。研究结果表明,材料介电常数越大两种结构得到的完全带隙越宽;由锗(Ge)作为背景材料的空气环型光子晶体的完全带隙比空气孔型结构增宽了66%。
     研究了由空气环结构组成的二维三角晶格光子晶体平板的负折射特性。通过有效折射率的计算,得到了有效折射率为-1的电磁波频率随空气环内径变化的关系;借助对等频率曲线的分析,发现外径为R=0.40α,内径r为0~0.13a的空气环型结构,归一化频率为0.30的等频率曲线始终保持为圆形,可以实现较好的成像。采用时域有限差分法(FDTD)模拟了光子晶体平板的成像及线光源的负折射传输过程,模拟结果很好地证实了由平面波展开法计算得到的结论。
     基于光子晶体的负折射原理,设计了一种新型分光器结构,解决了点光源的分光问题,设计了三角、六角两个不同的分光模型,并对每个模型的分光性能进行了对比分析,得到了较为理想的结构参数。
Photonic crystal is a kind of manufactured material with periodic arrangement of dielectric constant. Photonic band gap structure of photonic crystal indicates its primary property, which is the base of its design and application. The study on photonic band gap structure is an important part of basic research on photonic crystal. At the same time, negative refraction of electromagnetic waves in photonic crystal has attracted much attention because of variety of novel phenomena. In this paper, some research has been done on the photonic band gap and negative refraction of a novel two-dimensional photonic crystal, which is arranged in triangular lattice with ring-shaped air holes.
     Photonic band gap structures of two-dimensional photonic crystal in triangular lattice with circular/ring-shaped air holes have been calculated by the plane wave expansion method (PWE). Three kinds of dielectric material (Si, GaAs, Ge) have been chosen as background in order to analysis the effects of the dielectric constant to band structure. The effects of parameters of the structure to band structure have been also analyzed. The results show that the structure composed of higher dielectric constant material has larger photonic band gap, and photonic band gap of the ring-shaped structure composed of Ge is 66% larger than that of the circular one.
     Negative refraction in two-dimensional photonic crystal with ring-shaped holes is studied in detail. By the calculation of effective index, the relationship between inner radius and the frequencies with n_(eff)=-1 is obtained. The results show that the equal-frequency contour is a circle, so a perfect image can be obtained with the increasing of inner radius of ring-shaped holes from 0 to 0.13a and the outside radius 0.40a at normalized frequency 0.30. The simulation by the finite-difference time-domain method (FDTD) verifies the result calculated by PWE method.
     Based on the principle of negative refraction in photonic crystal, a new type of splitter which can work well with point light source is designed. There are two models put forward in this paper, one is triangular and the other is hexagonal. By the analysis of performance of splitter more ideal structure parameters have been obtained.
引文
[1] S. John. Strong Localization of Photons in Certain Disordered Dielectric Super lattices. Phys. Rev. Lett. 1987, 58(23): 2486-2489.
    [2] E. Yablonovith. Inhabited spontaneous in solid-state physics and electronics. Phys.Rev. Lett. 1987, 58(20): 2059-2062.
    [3] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of a photonic band gap in periodic dielectric structures. Phys. Rev. Lett.,1990, 65(25): 3152-3155.
    [4] J. D. Joannopoulos, R. D. Meade and J. N. Winn. Photonic crystal: Molding the Flow of Light. Princeton NJ: Princeton University Press, 1995: 31-36.
    [5] J. D. Joannopoulos, R. D. Meade and J. N. Winn. Photonic crystal: Molding the Flow of Light. Princeton NJ: Princeton University Press, 1995: 5-7.
    [6] K. M. Leung and Y. Qiu. Multiple-scattering calculation of the two-dimensional photonic band structure. Phys. Rev. B 1993,48(11): 7767-7771.
    [7] Pierre R. Villeneuve and Michel Piche. Photonic band gaps in two-dimensional square and hexagonal lattices. Phys. Rev. B 1992,46(8): 4969-4972.
    [8] Pierre R. Villeneuve and Michel Piche. Photonic band gaps in two-dimensional square lattices: Square and circular rods. Phys. Rev. B 1992,46(8): 4973-4975.
    [9] A. A. Maradudin and A. R. McGun. Photonic band structure of a truncated two-dimensional, periodic dielectric medium. J. Opt. Soc. Am. B 1993,10(2):307-313.
    [10] D. R. Smith, R. Dalichaouch, N. Kroll et al. Photonic band structure and defects in one and two dimensions. J. Opt. Soc. Am. B 1993, 10(2): 314-321.
    [11] Pierre R. Villeneuve and Michel Piche. Photonic band gaps of transverse-electric modes in two-dimensionally periodic media. J. Opt. Soc. Am. A 1993, 8(2):1296-1305.
    [12] M. Sigalas, C. M. Soukoulis, E. N. Economou et al. Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient. Phys. Rev. B 1993,48(19):14121-14126.
    [13]S. Y. Lin and G. Arjavalingam. Tunneling of electromagnetic waves in two-dimensional photonic crystals. Opt. Lett. 1993,18(19): 1666-1668.
    [14]O. Painter, R. K. Lee, A. Scherer et al. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999,284(5421): 1819-1821.
    [15]S. Noda, A. Chutinan, M. Imada. Trapping and emission of photons by a single defect in a photonic band gap structure. Nature 2000,407(6804): 608-610.
    [16]J. C. Knight, T. A. Birks, P. St. J. Russell et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett. 1996,21(19): 1547-1549.
    [17]Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos. Channel Drop Tunneling through Localized States. Phys. Rev. Lett. 1998, 80(5): 960-963.
    [18]Min Q. and Bozena Jaskorzynska. Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 2003,83(6):1074-1076.
    [19]Wataru Nakagawa, Pang-Chen Sun, Chyong-Hua Chen et al. Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities. Opt. Lett. 2002,27(3): 191-193.
    [20]Nicolae C. Panoiu, Mayank Bahl, and Richard M. Osgood, Jr. All-optical tunability of a nonlinear photonic crystal channel drop filter. Opt. Express 2004,12(8):1605-1610.
    [21]J. S .Patel, M. A. Saifi, D. W. Berreman. Electrically tunable optical filter for infrared wavelength using liquid crystal in a Fabry- Perot etalon. Appl. Phys. Lett. 1990,57(17): 1718-1720.
    [22]S. Boscolo, M. Midrio and T. F. Krauss. Y junctions in photonic crystal channel waveguides: high transmission and impedance matching. Opt. Lett. 2002,27(12):1001-1003.
    [23]A. Mekis, J. C. Chen, I. Kurland et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 1996, 77(18): 3787-3790.
    [24]J. Smajic, C. Hafner and D. Erni. Design and optimization of an achromatic photonic crystal bend. Opt. Express 2003,11(12): 1378-1384.
    [25]A. S(?)yn(?)tjoki, M. Mulot, J. Ahopelto, and H. Lipsanen. Dispersion engineering of photonic crystal waveguides with ring-shaped holes. Opt. Express 2007,15(13):8323-8328.
    [26]Lingkai Kong, Zhiqiang Zheng, Zhuohong Feng et al. Design and analysis of two-dimensional photonic crystals resonant cavity. 2008 2~(nd) EEEE International Nanoelectrionics Conference 741-745
    [27]Xiaofang Yu, Shanhui Fan. Bends and splitters for self-collimated beams in photonic crystals. Appl. Phys. Lett. 2003, 83(16): 3251-3253.
    [28]David M. Pustai, Shouyuan Shi, Caihua Chen et al. Analysis of splitters for self-collimated beams in planar photonic crystals. Opt. Express 2004, 12(9):1823-1831.
    [29]Xianyu Ao and Sailing He. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction. Opt. Lett. 2005, 30(16): 2152-2154.
    [30]Guan Chunying, Shi Jinhui,Yuan Libo et al. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters. Chin. Phys. Lett. 2008,25(2): 556-558.
    [31]Chen Xiyao, Yao Peijun, Chen Bo et al. Design of Polarization Beam Splitter in Two-dimensional Triangular Photonic Crystals. Chin. Phys. Lett. 2004,21(7):1285-1288.
    [32]J. C. Knight, J. Broeng, T. A. Birks et al. Photonic Band Gap Guidance in Optical Fibers. Science 1998,282(5393): 1476-1478.
    [33]Zhiyuan Li, Benyuan Gu and Guozhen Yang. Large Absolute Band Gap in 2D Anisotropic Photonic Crystals. Phys. Rev. Lett. 1998, 81(12): 2574-2577.
    [34]Zhiyuan Li, Benyuan Gu and Guozhen Yang. Photonic band gaps in anisotropic photonic crystals. Physica B: Condensed Matter 2000,279(1-3): 159-161.
    [35]Xiangdong Zhang, Zhao-Qing Zhang, and C. T. Chan. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Phys. Rev. B 2001, 63(8): 081105(R)(4 pages).
    [36]Y. S. Chan, C. T. Chan, and Z. Y. Liu. Photonic Band Gaps in Two Dimensional Photonic Quasicrystals. Phys. Rev. Lett. 1998, 80(5): 956-959.
    [37]J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko et al. Photonic quasicrystals for application in WDM systems. Phys. Stat. Sol. A 202(6): 99-1001.
    [38]Mikael C. Rechtsman, Hyeong-Chai Jeong, Paul M. Chaikin et al. Optimized Structures for Photonic Quasicrystals. Phys. Rev. Lett. 2008, 101(7): 073902(4 pages).
    [39]Ph. Lalanne and H. Benisty. Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis. J. Appl. Phys. 2001, 89(2):1512-1514.
    [40]Jonathan C. Knight. Photonic crystal fibres. Nature 2003,424(6950): 847-851
    [41]Y. Tanaka, T. Asano, Y. Akahane et al. Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes. Appl. Phys. Lett. 2003, 82(11):1661-1663.
    [42]Y. Akahane, T. Asano, B. S. Song et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003,425(6961): 944-947.
    [43]F. Benabid, F. Couny, J. C. Knight et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 2005, 434(7032): 488-491.
    [44]Wonjoo Suh, Olav Solgaard, and Shanhui Fan. Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs. J. Appl.Phys. 2005, 98(3): 033102(4 pages).
    [45]Hong-Gyu Park, Carl J. Barreletl, Yongning Wu et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photonics.2008,2(10): 622-626.
    [46]Li Jing, Zhang Weigang, Du Jiangbing et al. Design of Photonic Bandgap Fiber with Novel Air-Hole Structure. Chin. Phys. Lett. 2008,25(7): 2531-2534.
    [47]Kanna Aoki, Denis Guimard, Masao Nishioka et al. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photonics 2008,2(11): 688-692.
    [48]Y. Chassagneux, R. Colombelli, W. Maineult et al. Electrically pimped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 2009,457(7226): 174-178.
    [49]Rongzhou Wang, Xue-Hua Wang, Benyuan Gu et al. Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. J. Appl. Phys. 2001, 90(9): 4307-4313.
    [50]Nobuhiko Susa. Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes. J. Appl. Phys. 2002, 91(6): 3501-3510.
    [51]J. S .Patel, M. A. Saifi, D. W. Berreman. Electrically tunable optical filter for infrared wavelength using liquid crystal in a Fabry- Perot etalon. Appl. Phys. Lett. 1990,57(17): 1718-1720.
    [52]Po-Lun Chen,Kuen-Chemg Lin,Wei-Ching. et al. Analysis of a liquid crystal Fabry-Perot Etalon Filter: A Novel Model. IEEE Photonics Technology Letters 1997,9:467-469.
    [53]Katsuhiko Hirabayashi, Hiroyuki Tsuda,and Takashi Kurokawa. Narrow-Band Tunable Wavelength-Selective Filters of Fabry-Perot Interferometers with a Liquid Crystal Inteacavity, IEEE Photonics Technology Letters 1991,13: 213-215.
    [54]Sergei F. Mingaleev, Matthias Schillinger, Daniel Hermann et al. Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration. Opt. Lett.2004,29(24): 2858-2860.
    [55]J. B. Pendry, A. J. Holden, D. J. Robbina et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Technol. 1999,47(11): 2075-2084.
    [56]Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita et al. Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits. J. Lightwave Techonl.1999,17(11): 2032-2038.
    [57]Chiyan Luo, Steven G. Johnson and J. D. Joannopoulos. All-angle negative refraction without negative effective index. Phys. Rev. B 2002, 65(20): 201104(4 pages).
    [58]Boris Gralak, Stefan Enoch, and Gerard Tayeb. Anomalous refractive properties of photonic crystals J. Opt. Soc. Am. A 2000,17(6): 1012-1020.
    [59]M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B. 2000,62(16): 10696-10705.
    [60]E. Cubukcu, K. Aydin, E. Ozbay et al. Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens. Phys. Rev. Lett. 2003, 91(20): 207401(4 pages).
    [61]E. Cubukcu, K. Aydin, E. Ozbay et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature 2003,423(6940): 604.
    [62]S. Foteinopoulou, E. N. Economou, and CM. Soukoulis. Refraction at media with negative refractive index. Phys. Rev. Lett. 2003,90(10): 107402 (4 pages).
    [63]Veselago V G. The electrodynamics of substances with simultaneously negative values of s and u. Sov. Phys. Usp. 1968,10(4): 509-514.
    [64]J. B. Pendry, Negative refractive refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85(18): 3966-3969.
    [65]P. V. Parimi, Wentao T. Lu, Plarenta Vodo et al. Imaging by flat lens using negative refraction. Nature 2003,426(6965): 404.
    [66]X. Wang, Z. F. Ren and K. Kempa. Unrestricted superlensing in a triangular two-dimensional photonic crystal. Opt. Express 2004,12(13): 2919-2924.
    [67]Xiangdong Zhang. Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals. Phys. Rev. B 2004,70(20): 205102(6 pages).
    [68]Xianyu Ao and Sailing He. Three-dimensional photonic crystal of negative refraction achieved by interference lithography. Opt. Lett. 2004,29(21): 2542-2544.
    [69]厉以宇,顾培夫,李明宇等.波状结构二维光子晶体近场亚波长成像的研究.光学学报2006,26(9):1409-1413.
    [70]李国俊,康学亮,李永平.二维蜂窝格子光子晶体的远场成像特性及界面对成像质量的影响.物理学报2007,56(11):6403-6407.
    [71]Zhiyan Li. Lanlan Lin. Evaluation of lensing in photonic crystal slabs existing negative refraction. Phys. Rev. B 2003,68(24): 245110(7 pages).
    [72]Shuai Feng, Zhi-Yuan Li, Zhi-Fang Feng et al. Focusing properties of a rectangular-rod photonic-crystal slab. J. Appl. Phys. 2005,98(6): 063102(6 pages).
    [73]Shuai Feng, Zhiyuan Li, Zhifang Feng et al. Imaging properties of an elliptical-rod photonic-crystal slab lens. Phys. Rev. B 2005,72(7): 075101(8 pages).
    [74]Xiangdong Zhang. Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens. Phys. Rev. B 2004, 70(19): 195110(9 pages).
    [75]Zhifang Feng, Xiangdong Zhang, Yiquan Wang. Negative Refraction and Imaging Using 12-fold-Symmetry Quasicrystals. Phys. Rev. Lett. 2005,94(24): 247202(4 pages).
    [76]Xianyu Ao and Sailing He, Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength. Appl. Phys. Lett. 2005,87(10): 101112(3 pages).
    [77]R. Gaji(?), R. Meisels, F. Kuchar et al. Refraction and rightness in photonic crystals Opt. Express 2005,13(21): 8596-8605.
    [78]Xueliang Kang, Guojun Li, Yongping Li. Positive-negative refraction effect based on overlapping bands in a two-dimensional photonic crystal. J. Opt. Soc. Am. B 2009,26(1): 60-63.
    [79]Zhifang Feng, Xiangdong Zhang, Kun Ren et al. Experimental demonstration of non-near-field image formed by negative refraction. Phys. Rev. B 2006, 73(7):075118(5 pages).
    [80]Min Q. Wave propagation through a photonic crystal in a negative phase refractive-index region. IEEE J. Select. Topics Quantum Electron. 2003,9(1):106-110.
    [81] Alejandro Martinez and Javier Marti, Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination. Phys. Rev. B.2005, 71(23): 235115(12 pages).
    [82]Alexey Sukhovich, Li Jing and John H Page, Negative refraction and focusing of ultrasound in two-dimensional photonic crystals. Phys. Rev. B, 2008, 77(1):014301(9 pages).
    [83]A. Pimenov, A. Loidl, K. Gehrke et al. Negative refraction observed in a Metallic Ferromagnet in the gigahertz frequency range. Phys. Rev. Lett. 2007, 98(19):197401(4 pages).
    
    [84]J. B. Pendry, Negative refractive. Contemporary Phys. 2004,45(3): 191-202.
    [85]D. R. Smith and D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003, 90(7): 077405-077408.
    [86]G Shvets, Photonic approach to making a material with a negative index of refraction.Phys. Rev. B 2003,67(3): 035109(8 pages).
    [87]G V. Eleftheriades, A. K. Iyer and P. C. Kremer. Planar negative refractive index media using periodically L-C loadedtransmission lines. IEEE Trans. MTT 2002,50(12): 2702-2712.
    [88]Rados Gajic, Ronald Meisels, Friedemar Kuchar et al. All-angle left-hand negative refraction in Kagome honeycomb lattice photonic crystals. Phys. Rev. B 2006, 73(16):165310(5 pages).
    [89]S. L. McCall and P. M. Platzman. Microwave propagation in two-dimensional dielectric lattices. Phys. Rev. Lett. 1991,67(15): 2017-2020.
    [90]王华.光子晶体带结构的研究.[国防科技大学硕士学位论文]2002:8-9.
    [91]刘璟.二维异质结光子晶体滤波器的设计和性能分析.[福建师范大学硕士学位论文]2007:11-14.
    [92]Kane Yee. Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media. Antennas and Propagation 1966, 14: 302-307.
    [93]葛德彪.电磁波时域有限差分法.西安:西安电子科技大学出版社,2002.
    [94]J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves.J. Comp. Phys. 1994,114(2): 185.
    [95]Hamza Kurt and D. S. Citrin. Annular photonic crystals. Opt. Express 2005,13(25):10316-10326.
    [96]H. Kurt, R. Hao, Y. Chen et al. Design of annular photonic crystal slabs. Opt. Lett.2008,33(14): 1614-1616.
    [97]M Mulot, A S(?)yn(?)tjoki, S Arpiainen et al. J. Opt. A: Pure Appl. Opt. 2007, 9:S415-418.
    [98]孔令凯,郑志强,冯卓宏等.二维空气环型光子晶体的负折射现象.中国激光2008,35(s2):178-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700